: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Power Rating: up to 250 W
Height: 9.1 mm to 10.4 mm Max
Footprint: $29.5 \mathrm{~mm} \times 26.7 \mathrm{~mm}$ Max
Frequency Range: 200 kHz to 700 kHz Isolation (Primary to Secondary): 1750VDC

Electrical Specifications @ $25^{\circ} \mathrm{C}$ - Operating Temperature $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$										
Part Number	Turns Ratio		Schematic	Primary* Inductance ($\mu \mathrm{H}$ MIN)	Leakage** Inductance ($\mu \mathrm{H}$ MAX)	DCR (m, MAX)				Maximum Height (mm)
	Primary A	Secondary				Primary A	Primary B	Primary Aux.	Secondary	
Double Interleave Designs (Higher Efficiency, Lower DCR and Lower Leakage)										
PA0901NL	4 T \& 4T	$4 T$(IT:IT:TT:TT)	A1	216	0.3	13	13	-	4.5	10.2
PA0903NL	5 T \& 5 T (w/5T aux)			340	0.3	15	15	235		
PA0905NL	6 T \& 6 T (w/2T aux)			480	0.3	21	21	78		
PA0907NL	7 T \& 7 T (w/3T aux)			660	0.3	50	50	100		
PA0909NL	8T \& 8T			860	0.3	60	60	-		
PA0908NL	4 T \& 4T	$1 T \& T$	A2	216	0.3	13	13	-	0.56 \& 0.56	10.2
PA0910NL	5 T \& 5 T (w/5T aux)			340	0.3	15	15	235		
PA0912NL	6 T \& 6 T (w/2T aux)			480	0.3	21	21	78		
PA0914NL	$7 T \& 7 \mathrm{~T}$ (w/3T aux)			660	0.3	50	50	100		
Single Interleave Designs (Lower Cost)										
PA0930NL	4T	$\begin{gathered} \text { 4T } \\ (I T: I T: I T: 1 T) \end{gathered}$	B1	54	0.3	13	-	-		
PA0931NL	5 T (w/5T aux)			85	0.3	15	-	470		
PA0934NL	4T	$7 T \& 7 T$	B2	54	0.3	13	-	-	40 \& 40	9.1
PA0935NL	5 T (w/5T aux)			85	0.3	15	-	470		
PA0936NL	6 T (w/2T aux)			120	0.3	21	-	156		
PA0937NL	7 T (w/3T aux)			165	0.3	50	-	200		
PA0947NL	8 T			215	0.3	60	-	-		
PA0943NL	5 T (w/5T aux)	$2 T \& 1 T$	B3	85	0.3	15	-	470	1.8 \& 0.6	9.1

Notes: *Inductance is measured, where applicable, with both primary windings connected in series (2 to 5 , with 3 and 4 shorted).
${ }^{* *}$ Leakage inductance is measured with both primary windings connected in series (where applicable) with all other windings shorted.

Mechanical

PA090X

Weight19.8grams
Trayreel
Dimensions: $\frac{\text { nches }}{m m}$
Unless otherwise specified, all tolerances are $\pm \frac{010}{0,25}$

$6 \times \varnothing \frac{.047}{1,19}$ SHAFT

*H - Maximum Height (see table above)

SUGGESTED PAD LAYOUT

Schematics

PAO9OX

- DOUBL	E	INTER	SCH	ATICS
A1			A2	
$2 \text { PRIA }$			$20-3$	
			PRIA	- 11
3 -			$30-$	1 T
PRI B		$\bigcirc 9$	3 PRIB ${ }^{\circ}$	- 010
$5 \bigcirc$			$5 \bigcirc$	$\longrightarrow 8$
10		$\bigcirc 8$	1	
PRI AUX 3		1 T	PRI AUX 3	O
$6 \bigcirc$		- 7	$6 \bigcirc$	

- Single interleave schematics -

High Frequency Planar
Transformers

PA09XXNL Series（up to 250W）

PA09XX Transformer Winding Configuration Matrix

The following is a matrix of the winding configurations that are possible with the Pulse PA09XX Planar Transformer Platform．The package is typically capable of handling between 150－250W of power depending on the application，ambient conditions and available cooling．

Once a configuration is selected，the formulae and charts can be used to determine the approximate power dissipation and temperature rise of the component in a given application．

				High Efficiency Double Interleaved Designs						
				SECONDARY WINDINGS						
				Single Winding			Tapped Winding			Dual Winding
		Turns		17	2 T	41	1：1	1：3	2：2	1\％\＆ 11
			DCR（m）	0.28	1.12	4.5	1.12	4.5	4.5	1.12
	$\begin{aligned} & \text { ㅎㅡㅡㅡ } \\ & \text { 亲 } \\ & \text { 른 } \\ & \text { 튼 } \end{aligned}$	41	5	PA0908	PA0908	PA0901	PA0908	PA0901	PA0901	PA0908
		5	7.5	PA0910	PA0910	PA0903	PA0910	PA0903	PA0903	PA0910
		6 T	12	PA0912	PA0912	PA0905	PA0912	PA0905	PA0905	PA0912
		7	30	PA0914	PA0914	PA0907	PA0914	PA0907	PA0907	PA0914
		8 T	20	PA0908	PA0908	PA0901	PA0908	PA0901	PA0901	PA0908
		10T	30	PA0910	PA0910	PA0903	PA0910	PA0903	PA0903	PA0910
		121	48	PA0912	PA0912	PA0905	PA0912	PA0905	PA0905	PA0912
		14 T	120	PA0914	PA0914	PA0907	PA0914	PA0907	PA0907	PA0914
		16 T	140	PA0916	PA0916	PA0909	PA0916	PA0909	PA0009	PA0916
	은晋言	47／4T	20	PA0908	PA0908	PA0901	PA0908	PA0901	PA0901	PA0908
		47／5T	30	PA0910	PA0910	PA0903	PA0910	PA0903	PA0903	PA0910
		5T／5T	48	PA0912	PA0912	PA0905	PA0912	PA0905	PA0905	PA0912
		5T／6T	120	PA0914	PA0914	PA0907	PA0914	PA0907	PA0907	PA0914
		6T／6T	140	－	－	PA0909	－	PA0909	PA0009	－

Lower Cost Single Interleaved Designs

		Turns					SECONDARY WINDINGS							
		Single Winding	Tapped Winding				Dual Winding							
		31	4T	71	1：2	1：3	2：2	7：7	1T \＆2T	7T \＆ 71				
			DCR（m）	3.4	4.5	20	3.4	4.5	4.5	80	4.5	80		
				4T	10	－	PA0930	PA0934	－	PA0930	PA0930	PA0934	－	PA0934
				51	15	PA0943	PA0931	PA0935	PA0943	PA0931	PA0931	PA0935	PA0943	PA0935
		$6 T$	24	－	－	PA0936	－	－	－	PA0936	－	PA0936		
		71	60	－	－	PA0937	－	－	－	PA0937	－	PA0937		
		8 T	70	－	－	PA0947	－	－	－	PA0947	PA0947	PA0947		

Notes：

1．The primary inductance for any configuration can be calculated as： Primary Inductance $(\mu \mathrm{H}$ MIN $)=3.4^{*}$（Primary＿Turns）${ }^{2}$
2．The above base part numbers（PAO9XXNL）are available from stock．
3．It is possible to add a small gap to the transformer．Gapped transformers are
non－standard and can be made available upon request，but are not typically available from stock．To request a gapped version of the transformer，add a suffix＂G＂to the base number （i．e．PA0901GNL）．The nominal inductance with the a gap can be calculated as： Primary Inductance $(\mu \mathrm{H}$ nominal）$)=2.2^{*}$（Primary Turns）${ }^{2}$

High Frequency Planar
 Transformers

PA09XXNL Series (up to 250W)

Notes from Tables

1. The above transformers have been tested and approved by Pulse's IC partners and are cited in the appropriate datasheet or evaluation board documentation at these companies. To determine which IC and IC companies are matched with the above transformers, please refer to the IC cross reference on the Pulse web page.
2. To determine if the transformer is suitable for your application, it is necessary to ensure that the temperature rise of the component (ambient plus temperature
rise) does not exceed its operating temperature. To determine the approximate temperature rise of the transformer, refer to the graphs below.

Temperature Rise vs. Power (W) Dissipation

Total Power (W) Dissipation
Total Power Dissipation (W) = . 001 * (DCRprimary * IRMs_primary ${ }^{2}+$ DCRsecondary * IRMs_secondary 2) + Core Loss (W)

