

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

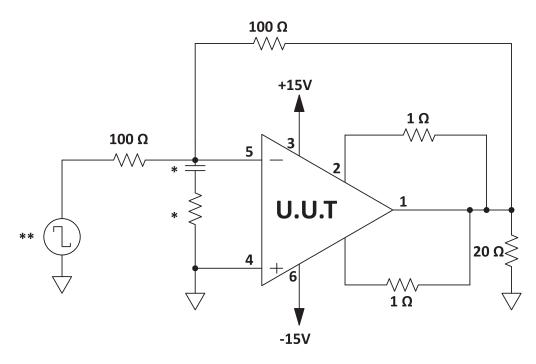
Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Table 4 Group A Inspection

SG	Parameter	Symbol	Temp.	Power	Test Conditions	Min	Max	Units
1	Quiescent Current	IQ	25°C		V _{IN} = 0, A _V = 100		10	mA
1	Input Offset Voltage	V _{OS}	25°C		V _{IN} = 0, A _V = 100		±6	mV
1	Input Offset Voltage	V _{OS}	25°C		V _{IN} = 0, A _V = 100		±10.4	mV
1	Input Offset Voltage	V _{OS}	25°C		V _{IN} = 0, A _V = 100		±8.6	mV
1	Input Bias Current, +IN	+I _B	25°C		V _{IN} = 0		±30	nA
1	Input Bias Current, –IN	−I _B	25°C		V _{IN} = 0		±30	nA
1	Input Offset Current	I _{OS}	25°C	±32V	V _{IN} = 0		±30	nA
3	Quiescent Current	IQ	–55°C	±32V	V _{IN} = 0, A _V = 100		10	mA
3	Input Offset Voltage	V_{OS}	−55°C	±32V	$V_{IN} = 0$, $A_V = 100$		±11.2	mV
3	Input Offset Voltage	V_{OS}	−55°C	±10V	$V_{IN} = 0$, $A_V = 100$		±15.6	mV
3	Input Offset Voltage	V_{OS}	−55°C	±45V	$V_{IN} = 0$, $A_V = 100$		±13.8	mV
3	Input Bias Current, +IN	+I _B	−55°C	±32V	V _{IN} = 0		±115	nA
3	Input Bias Current, –IN	-I _B	−55°C	±32V	V _{IN} = 0		±115	nA
3	Input Offset Current	I _{OS}	−55°C	±32V	V _{IN} = 0		±115	nA
2	Quiescent Current	IQ	125°C	±32V	V _{IN} = 0, A _V = 100		15	mA
2	Input Offset Voltage	V_{OS}	125°C	±32V	$V_{IN} = 0$, $A_V = 100$		±12.5	mV
2	Input Offset Voltage	V_{OS}	125°C	±10V	$V_{IN} = 0$, $A_V = 100$		±16.9	mV
2	Input Offset Voltage	V_{OS}	125°C	±45V	$V_{IN} = 0$, $A_V = 100$		±15.1	mV
2	Input Bias Current, +IN	+I _B	125°C	±32V	V _{IN} = 0		±70	nA
2	Input Bias Current, -IN	-I _B	125°C	±32V	V _{IN} = 0		±70	nA
2	Input Offset Current	I _{OS}	125°C	±32V	V _{IN} = 0		±70	nA
4	Output Voltage, I _O = 10A	Vo	25°C	±17V	R _L = 1 Ω	10		٧
4	Output Voltage, I _O = 80mA	V_{O}	25°C	±45V	R _L = 500 Ω	40		٧
4	Output Voltage, I _O = 4A	V_{O}	25°C	±30V	R _L = 6 Ω	24		٧
4	Current Limits	I _{CL}	25°C	±15V	$R_L = 6 \Omega$, $R_{CL} = 1 \Omega$.56	.88	Α
4	Stability/Noise	E _N	25°C	±32V	R _L =500 Ω, A _V = 1, C _L =10nF		1	mV
4	Slew Rate	SR	25°C	±32V	R _L = 500 Ω	1	10	V/µs
4	Open Loop Gain	A_{OL}	25°C	±32V	R _L = 500 Ω, F = 10 Hz	96		dB
4	Common Mode Rejection	CMR	25°C	±15V	R_L = 500 Ω, F = DC, V_{CM} = ±9V	74		dB

PA61M/883


SG	Parameter	Symbol	Temp.	Power	Test Conditions	Min	Max	Units
6	Output Voltage, I _O = 10A	v _o	− 55°C	±17V	R _L = 1 Ω	10		V
6	Output Voltage, I _O = 80mA	V_{O}	−55°C	±45V	R _L = 500 Ω	40		V
6	Output Voltage, I _O = 4A	V_{O}	−55°C	±30V	R _L = 6 Ω	24		V
6	Stability/Noise	E _N	−55°C	±32V	R _L =500 Ω, A _V =1, C _L = 10nF		1	mV
6	Slew Rate	SR	−55°C	±32V	$R_L = 500 \Omega$	1	10	V/µs
6	Open Loop Gain	A_{OL}	−55°C	±32V	R _L = 500 Ω, F = 10 Hz	96		dB
6	Common Mode Rejection	CMR	−55°C	±15V	$R_L = 500 \Omega, F = DC, V_{CM} = \pm 9V$	74		dB
5	Output Voltage, I _O = 8A	v _o	125°C	±15V	$R_L = 1 \Omega$	8		V
5	Output Voltage, I _O = 80mA	V_{O}	125°C	±45V	$R_L = 500 \Omega$	40		V
5	Output Voltage, I _O = 4A	V_{O}	125°C	±30V	$R_L = 6 \Omega$	24		V
5	Stability/Noise	E _N	125°C	±32V	R_L =500 Ω, A_V =1, C_L =10nF		1	mV
5	Slew Rate	SR	125°C	±32V	$R_L = 500\Omega$	1	10	V/µs
5	Open Loop Gain	A_{OL}	125°C	±32V	$R_L = 500\Omega$, $F = 10Hz$	96		dB
5	Common Mode Rejection	CMR	125°C	±15V	$R_L = 500\Omega$, $F = DC$, $V_{CM} = \pm 9V$	74		dB

2 PA61MU Rev I

BURN IN CIRCUIT

Figure 1: Burn In Circuit

^{*} These components are used to stabilize device due to poor high frequency characteristics of burn in board.

NEED TECHNICAL HELP? CONTACT APEX SUPPORT!

For all Apex Microtechnology product questions and inquiries, call toll free 800-546-2739 in North America. For inquiries via email, please contact apex.support@apexanalog.com. International customers can also request support by contacting their local Apex Microtechnology Sales Representative. To find the one nearest to you, go to www.apexanalog.com

IMPORTANT NOTICE

Apex Microtechnology, Inc. has made every effort to insure the accuracy of the content contained in this document. However, the information is subject to change without notice and is provided "AS IS" without warranty of any kind (expressed or implied). Apex Microtechnology reserves the right to make changes without further notice to any specifications or products mentioned herein to improve reliability. This document is the property of Apex Microtechnology and by furnishing this information, Apex Microtechnology grants no license, expressed or implied under any patents, mask work rights, copyrights, trademarks, trade secrets or other intellectual property rights. Apex Microtechnology owns the copyrights associated with the information contained herein and gives consent for copies to be made of the information only for use within your organization with respect to Apex Microtechnology integrated circuits or other products of Apex Microtechnology. This consent does not extend to other copying such as copying for general distribution, advertising or promotional purposes, or for creating any work for resale.

APEX MICROTECHNOLOGY PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED TO BE SUITABLE FOR USE IN PRODUCTS USED FOR LIFE SUPPORT, AUTOMOTIVE SAFETY, SECURITY DEVICES, OR OTHER CRITICAL APPLICATIONS. PRODUCTS IN SUCH APPLICATIONS ARE UNDERSTOOD TO BE FULLY AT THE CUSTOMER OR THE CUSTOMER'S RISK.

Apex Microtechnology, Apex and Apex Precision Power are trademarks of Apex Microtechnology, Inc. All other corporate names noted herein may be trademarks of their respective holders.

PA61MU Rev I

^{**} Input signals are calculated to result in internal power dissipation of approximately 2.1W at case temperature = 125°C.