: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

MODEL PAX ${ }^{\circledR}$ - 1/8 DIN ANALOG INPUT PANEL METERS

- PROCESS, VOLTAGE, CURRENT, TEMPERATURE, AND STRAIN gage inputs
- 5-DIGIT 0.56" RED SUNLIGHT READABLE DISPLAY
- VARIABLE INTENSITY DISPLAY
- 16 POINT SCALING FOR NON-LINEAR PROCESSES
- PROGRAMMABLE FUNCTION KEYS/USER INPUTS
- 9 DIGIT TOTALIZER (INTEGRATOR) WITH BATCHING
- OPTIONAL CUSTOM UNITS OVERLAY W/BACKLIGHT
- FOUR SETPOINT ALARM OUTPUTS (W/OPTION CARD)
- communication and bus capabilities (w/option card)
- retransmitted analog output (wioption card)
- CRIMSON® PROGRAMMING SOFTWARE
- NEMA 4XIP65 SEALED FRONT BEZEL

GENERAL DESCRIPTION

The PAX $^{\circledR}$ Analog Panel Meters offer many features and performance capabilities to suit a wide range of industrial applications. Available in five different models to handle various analog inputs, including DC Voltage/Current, AC Voltage/Current, Process, Temperature, and Strain Gage Inputs. Refer to pages 4 through 6 for the details on the specific models. The option cards allow the opportunity to configure the meter for present applications, while providing easy upgrades for future needs.

The meters employ a bright 0.56 " LED display. The unit is available with a red sunlight readable or a standard green LED. The intensity of display can be adjusted from dark room applications up to sunlight readable, making it ideal for viewing in bright light applications.

The meters provide a MAX and MIN reading memory with programmable capture time. The capture time is used to prevent detection of false max or min readings which may occur during start-up or unusual process events.

The signal totalizer (integrator) can be used to compute a time-input product. This can be used to provide a readout of totalized flow, calculate service intervals of motors or pumps, etc. The totalizer can also accumulate batch weighing operations.

Optional digital output cards provide the meter with up to four setpoint outputs. The cards are available as dual relay, quad relay, quad sinking transistor, quad sourcing transistor/SSR drive, or dual triac/dual SSR drive outputs. The setpoint alarms can be configured to suit a variety of control and alarm requirements.

Communication and Bus Capabilities are also available as option cards. These include RS232, RS485, Modbus, DeviceNet, and Profibus-DP. Readout values and setpoint alarm values can be controlled through the bus. Additionally, the meters have a feature that allows a remote computer to directly control the outputs of the meter. With an RS232 or RS485 card installed, it is possible to
configure the meter using a Windows ${ }^{\circledR}$ based program. The configuration data can be saved to a file for later recall.

A linear DC output signal is available as an optional card. The card provides either 20 mA or 10 V signals. The output can be scaled independent of the input range and can track either the input, totalizer, max or min readings.

Once the meters have been initially configured, the parameter list may be locked out from further modification in its entirety or only the setpoint values can be made accessible.

The meters have been specifically designed for harsh industrial environments. With NEMA 4X/IP65 sealed bezel and extensive testing of noise effects to CE requirements, the meter provides a tough yet reliable application solution.

SAFETY SUMMARY

All safety related regulations, local codes and instructions that appear in this literature or on equipment must be observed to ensure personal safety and to prevent damage to either the instrument or equipment connected to it. If equipment is used in a manner not specified by the manufacturer, the protection provided by the equipment may be impaired.

Do not use this unit to directly command motors, valves, or other actuators not equipped with safeguards. To do so can be potentially harmful to persons or equipment in the event of a fault to the unit.

CAUTION: Risk of Danger
Read complete instructions prior to installation and operation of the unit.

DIMENSIONS In inches (mm)

.10
(2.5)

Note: Recommended minimum clearance (behind the panel) for mounting clip installation is 2.1" (53.4) H x 5.0" (127) W.

Ordering Information
 2
 Universal DC Input Panel Meter
 4
 Process Input Panel Meter
 4
 AC True RMS Voltage and Current Meter.
 5
 Strain Gage Input Panel Meter
 5
 Thermocouple and RTD Input Meter
 6
 Option Cards
 7
 Installing the Meter
 8
 Ordering Information

Setting the Jumpers 8
General Meter Specifications 3
Installing Option Cards 10

Meter Part Numbers

* PAXH is only available with 85-250 VAC power supply.

Option Card and Accessories Part Numbers

TYPE	MODEL NO.	DESCRIPTION	PART NUMBER
Option Cards	PAXCDS	Dual Setpoint Relay Output Card	PAXCDS10
		Quad Setpoint Relay Output Card	PAXCDS20
		Quad Setpoint Sinking Open Collector Output Card	PAXCDS30
		Quad Setpoint Sourcing Open Collector Output Card	PAXCDS40
		Dual Triac/Dual SSR Drive Output Card	PAXCDS50
		Quad Form C Relay Output Card	PAXCDS60 *
	PAXCDC	RS485 Serial Communications Card with Terminal Block	PAXCDC10
		Extended RS485 Serial Communications Card with Dual RJ11 Connector	PAXCDC1C
		RS232 Serial Communications Card with Terminal Block	PAXCDC20
		Extended RS232 Serial Communications Card with 9 Pin D Connector	PAXCDC2C
		DeviceNet Communications Card	PAXCDC30
		Modbus Communications Card	PAXCDC40
		Extended Modbus Communications Card with Dual RJ11 Connector	PAXCDC4C
		Profibus-DP Communications Card	PAXCDC50
	PAXCDL	Analog Output Card	PAXCDL10
	PAXUSB	PAX USB Programming Card (Not included in PAX product UL E179259 file)	PAXUSB00
Accessories	CBLUSB	USB Programming Cable Type A-Mini B	CBLUSB01
	ICM8	Ethernet Gateway	ICM80000
	PAXLBK	Units Label Kit Accessory (Not required for PAXT)	PAXLBK10
	SFCRD *	Crimson PC Configuration Software for Windows 98, ME, 2000 and XP	SFCRD200

[^0]
General Meter Specifications

1. DISPLAY: 5 digit, $0.56{ }^{\prime \prime}(14.2 \mathrm{~mm})$ red sunlight readable or standard green

LEDs, (-19999 to 99999)
2. POWER:

AC Versions:
AC Power: 85 to 250 VAC, $50 / 60 \mathrm{~Hz}, 15 \mathrm{VA}$
Isolation: 2300 Vrms for 1 min . to all inputs and outputs.
DC Versions (Not available on PAXH):
DC Power: 11 to 36 VDC, 11 W
(derate operating temperature to $40^{\circ} \mathrm{C}$ if operating $<15 \mathrm{VDC}$ and three option cards are installed)
AC Power: $24 \mathrm{VAC}, \pm 10 \%, 50 / 60 \mathrm{~Hz}, 15 \mathrm{VA}$
Isolation: 500 Vrms for 1 min . to all inputs and outputs (50 V working).
3. ANNUNCIATORS:

MAX - maximum readout selected
MIN - minimum readout selected
TOT - totalizer readout selected, flashes when total overflows
SP1 - setpoint alarm 1 is active
SP2 - setpoint alarm 2 is active
SP3 - setpoint alarm 3 is active
SP4 - setpoint alarm 4 is active
Units Label - optional units label backlight
4. KEYPAD: 3 programmable function keys, 5 keys total
5. A/D CONVERTER: 16 bit resolution
6. UPDATE RATES:

A/D conversion rate: 20 readings/sec.
Step response: 200 msec . max. to within 99% of final readout value
(digital filter and internal zero correction disabled)
700 msec. max. (digital filter disabled, internal zero correction enabled)
PAXH Only: 1 sec max. to within 99% of final readout value (digital filter disabled)
Display update rate: 1 to 20 updates/sec.
Setpoint output on/off delay time: 0 to 3275 sec .
Analog output update rate: 0 to 10 sec
Max./Min. capture delay time: 0 to 3275 sec.
7. DISPLAY MESSAGES:
"OLOL" - Appears when measurement exceeds + signal range.
"ULUL" - Appears when measurement exceeds - signal range
PAXT: "SHrt" - Appears when shorted sensor is detected. (RTD only)
PAXT: "OPEN" - Appears when open sensor is detected.
". . . ." - Appears when display values exceed + display range.
"- . . ." - Appears when display values exceed - display range.
"E . . ." - Appears when Totalizer exceeds 9 digits.
"h . . ." - Denotes the high order display of the Totalizer.
8. INPUT CAPABILITIES: See specific product specifications, pages 4-6
9. EXCITATION POWER: See specific product specifications, pages 4-6
10. LOW FREQUENCY NOISE REJECTION: (Does not apply to PAXH)

Normal Mode: $>60 \mathrm{~dB} @ 50$ or $60 \mathrm{~Hz} \pm 1 \%$, digital filter off
Common Mode: > 100 dB , DC to 120 Hz
11. USER INPUTS: Three programmable user inputs

Max. Continuous Input: 30 VDC
Isolation To Sensor Input Common: Not isolated. (Not PAXH)
PAXH: Isolation to Sensor Input Common: 1400 Vrms for 1 min . Working Voltage: 125 V
Response Time: 50 msec . max.
Logic State: Jumper selectable for sink/source logic

INPUT STATE	SINKING INPUTS $\mathbf{2 2} \mathbf{K} \Omega$ pull-up to $+5 \mathbf{V}$	SOURCING INPUTS $22 \mathbf{K} \Omega$ pull-down
Active	$\mathrm{V}_{\text {IN }}<0.9 \mathrm{VDC}$	$\mathrm{V}_{\mathrm{IN}}>3.6 \mathrm{VDC}$
Inactive	$\mathrm{V}_{\mathrm{IN}}>3.6 \mathrm{VDC}$	$\mathrm{V}_{\text {IN }}<0.9 \mathrm{VDC}$

12. TOTALIZER:

Function:
Time Base: second, minute, hour, or day
Batch: Can accumulate (gate) input display from a user input
Time Accuracy: 0.01\% typical
Decimal Point: 0 to 0.0000
Scale Factor: 0.001 to 65.000
Low Signal Cut-out: -19,999 to 99,999
Total: 9 digits, display alternates between high order and low order readouts
13. CUSTOM LINEARIZATION:

Data Point Pairs: Selectable from 2 to 16
Display Range: - 19,999 to 99,999
Decimal Point: 0 to 0.0000
PAXT: Ice Point Compensation: user value (0.00 to $650.00 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$)
14. MEMORY: Nonvolatile E^{2} PROM retains all programmable parameters and display values.

15. ENVIRONMENTAL CONDITIONS:

Operating Temperature Range: 0 to $50^{\circ} \mathrm{C}\left(0\right.$ to $45^{\circ} \mathrm{C}$ with all three option cards installed)
Vibration to IEC 68-2-6: Operational 5 to $150 \mathrm{~Hz}, 2$ g.
Shock to IEC 68-2-27: Operational 25 g (10 g relay).
Storage Temperature Range: -40 to $60^{\circ} \mathrm{C}$
Operating and Storage Humidity: 0 to 85% max. RH non-condensing
Altitude: Up to 2000 meters
16. CERTIFICATIONS AND COMPLIANCES:

CE Approved
EN 61326-1 Immunity to Industrial Locations
Emission CISPR 11 Class A
Safety requirements for electrical equipment for measurement control, and laboratory use:
EN 61010-1: General Requirements
EN 61010-2-030: Particular Requirements for Testing and Measuring Circuits
RoHS Compliant
UL Recognized Component: File \#E179259
UL Recognized Component (PAXT only): File \#E156876
UL Listed Component: File \#E137808
Type 4X Enclosure rating (Face only)
IP65 Enclosure rating (Face only)
IP20 Enclosure rating (Rear of unit)
Refer to EMC Installation Guidelines section of the bulletin for additional information.
17. CONNECTIONS: High compression cage-clamp terminal block

Wire Strip Length: 0.3" (7.5 mm)
Wire Gage: 30-14 AWG copper wire
Torque: 4.5 inch-lbs ($0.51 \mathrm{~N}-\mathrm{m}$) max.
18. CONSTRUCTION: This unit is rated for NEMA 4X/IP65 outdoor use. IP20 Touch safe. Installation Category II, Pollution Degree 2. One piece bezel/case. Flame resistant. Synthetic rubber keypad. Panel gasket and mounting clip included.
19. WEIGHT: $10.4 \mathrm{oz} .(295 \mathrm{~g})$

Model PAXD - Universal DC Input

- FOUR VOLTAGE RANGES (300 VDC Max)
- FIVE CURRENT RANGES (2A DC Max)
- THREE RESISTANCE RANGES (10K Ohm Max)
- SELECTABLE 24 V, 2 V, 1.75 mA EXCITATION

PAXD SPECIFICATIONS

INPUT RANGES:

INPUT RANGE	ACCURACY* (18 to $28^{\circ} \mathrm{C}$)	ACCURACY* $\text { (0 to } 50^{\circ} \mathrm{C} \text {) }$	IMPEDANCEI COMPLIANCE	MAX CONTINUOUS OVERLOAD	RESOLUTION
$\pm 200 \mu \mathrm{ADC}$	$\begin{gathered} \hline 0.03 \% \text { of reading } \\ +0.03 \mu \mathrm{~A} \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.12 \% \text { of reading } \\ +0.04 \mu \mathrm{~A} \\ \hline \end{gathered}$	1.11 Kohm	15 mA	10 nA
$\pm 2 \mathrm{mADC}$	$\begin{gathered} 0.03 \% \text { of reading } \\ +0.3 \mu \mathrm{~A} \\ \hline \end{gathered}$	$\begin{gathered} 0.12 \% \text { of reading } \\ +0.4 \mu \mathrm{~A} \\ \hline \end{gathered}$	111 ohm	50 mA	$0.1 \mu \mathrm{~A}$
$\pm 20 \mathrm{mADC}$	$\begin{gathered} 0.03 \% \text { of reading } \\ +3 \mu \mathrm{~A} \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.12 \% \text { of reading } \\ +4 \mu \mathrm{~A} \\ \hline \end{gathered}$	11.1 ohm	150 mA	$1 \mu \mathrm{~A}$
$\pm 200 \mathrm{mADC}$	$\begin{gathered} 0.05 \% \text { of reading } \\ +30 \mu \mathrm{~A} \\ \hline \end{gathered}$	$\begin{gathered} 0.15 \% \text { of reading } \\ +40 \mu \mathrm{~A} \\ \hline \end{gathered}$	1.1 ohm	500 mA	$10 \mu \mathrm{~A}$
± 2 ADC	$\begin{gathered} 0.5 \% \text { of reading } \\ +0.3 \mathrm{~mA} \end{gathered}$	$\begin{gathered} \hline 0.7 \% \text { of reading } \\ +0.4 \mathrm{~mA} \end{gathered}$	0.1 ohm	3 A	0.1 mA
$\pm 200 \mathrm{mVDC}$	$\begin{gathered} 0.03 \% \text { of reading } \\ +30 \mu \mathrm{~V} \\ \hline \end{gathered}$	$0.12 \% \text { of reading }$ $+40 \mu \mathrm{~V}$	1.066 Mohm	100 V	$10 \mu \mathrm{~V}$
$\pm 2 \mathrm{VDC}$	$\begin{gathered} 0.03 \% \text { of reading } \\ +0.3 \mathrm{mV} \end{gathered}$	$\begin{gathered} \hline 0.12 \% \text { of reading } \\ +0.4 \mathrm{mV} \end{gathered}$	1.066 Mohm	300 V	0.1 mV
± 20 VDC	$\begin{gathered} 0.03 \% \text { of reading } \\ +3 \mathrm{mV} \end{gathered}$	$\begin{gathered} 0.12 \% \text { of reading } \\ +4 \mathrm{mV} \end{gathered}$	1.066 Mohm	300 V	1 mV
± 300 VDC	$\begin{gathered} 0.05 \% \text { of reading } \\ +30 \mathrm{mV} \end{gathered}$	$\begin{gathered} 0.15 \% \text { of reading } \\ +40 \mathrm{mV} \end{gathered}$	1.066 Mohm	300 V	10 mV
100 ohm	0.05\% of reading +0.03 ohm	$0.2 \% \text { of reading }$ +0.04 ohm	0.175 V	30 V	0.01 ohm
1000 ohm	0.05\% of reading +0.3 ohm	0.2% of reading +0.4 ohm	1.75 V	30 V	0.1 ohm
10 Kohm	0.05% of reading +1 ohm	$\begin{gathered} \hline 0.2 \% \text { of reading } \\ +1.5 \mathrm{ohm} \end{gathered}$	17.5 V	30 V	1 ohm

* After 20 minute warm-up. Accuracy is specified in two ways: Accuracy over an 18 to $28^{\circ} \mathrm{C}$ and 10 to 75% RH environment; and accuracy over a 0 to $50^{\circ} \mathrm{C}$ and 0 to $85 \% \mathrm{RH}$ (non-condensing environment). Accuracy over the 0 to $50^{\circ} \mathrm{C}$ range includes the temperature coefficient effect of the meter.

EXCITATION POWER:

Transmitter Power: 24 VDC, $\pm 5 \%$, regulated, 50 mA max.
Reference Voltage: 2 VDC, $\pm 2 \%$
Compliance: 1 kohm load min. (2 mA max.)
Temperature coefficient: $40 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max.
Reference Current: $1.75 \mathrm{mADC}, \pm 2 \%$
Compliance: 10 kohm load max.
Temperature coefficient: $40 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \max$

Model PAXP - Process Input

- DUAL RANGE INPUT (20 mA or 10 VDC)
- 24 VDC TRANSMITTER POWER

PAXP SPECIFICATIONS

SENSOR INPUTS:

$\begin{aligned} & \text { INPUT } \\ & \text { (RANGE) } \end{aligned}$	ACCURACY* (18 to $28^{\circ} \mathrm{C}$)	ACCURACY* $\left(0 \text { to } 50^{\circ} \mathrm{C}\right)$	IMPEDANCE/ COMPLIANCE	MAX CONTINUOUS OVERLOAD	DISPLAY RESOLUTION
$\begin{gathered} 20 \mathrm{~mA} \\ (-2 \text { to } 26 \mathrm{~mA}) \end{gathered}$	$\begin{aligned} & 0.03 \% \text { of } \\ & \text { reading }+2 \mu \mathrm{~A} \end{aligned}$	$\begin{gathered} 0.12 \% \text { of } \\ \text { reading +3 } \mu \mathrm{A} \end{gathered}$	20 ohm	150 mA	$1 \mu \mathrm{~A}$
$\begin{gathered} 10 \text { VDC } \\ (-1 \text { to } 13 \text { VDC }) \end{gathered}$	$\begin{gathered} 0.03 \% \text { of } \\ \text { reading +2 mV } \end{gathered}$	$\begin{gathered} 0.12 \% \text { of } \\ \text { reading +3 mV } \end{gathered}$	500 Kohm	300 V	1 mV

* After 20 minute warm-up. Accuracy is specified in two ways: Accuracy over an 18 to $28^{\circ} \mathrm{C}$ and 10 to $75 \% \mathrm{RH}$ environment; and accuracy over a 0 to $50^{\circ} \mathrm{C}$ and 0 to 85% RH (non-condensing environment). Accuracy over the 0 to $50^{\circ} \mathrm{C}$ range includes the temperature coefficient effect of the meter.

EXCITATION POWER

Transmitter Power: 24 VDC, $\pm 5 \%$, regulated, 50 mA max

Model PAXH - AC True RMS Volt and Current

PAXH SPECIFICATIONS

INPUT RANGES:

4
Isolation To Option Card Commons and User Input Commons: 125 Vrms Isolation To AC Power Terminals: 250 Vrms

INPUT RANGE	ACCURACY*	IMPEDANCE (60 Hz)	MAX CONTINUOUS OVERLOAD	MAX DC blocking	RESOLUTION
200 mV	$\begin{gathered} 0.1 \% \text { of reading } \\ +0.4 \mathrm{mV} \end{gathered}$	686 Kohm	30 V	$\pm 10 \mathrm{~V}$	0.01 mV
2 V	$\begin{gathered} 0.1 \% \text { of reading } \\ +2 \mathrm{mV} \end{gathered}$	686 Kohm	30 V	$\pm 50 \mathrm{~V}$	0.1 mV
20 V	$\begin{gathered} 0.1 \% \text { of reading } \\ +20 \mathrm{mV} \end{gathered}$	686 Kohm	300 V	$\pm 300 \mathrm{~V}$	1 mV
300 V	$\begin{gathered} \hline 0.2 \% \text { of reading } \\ +0.3 \mathrm{~V} \end{gathered}$	686 Kohm	300 V	$\pm 300 \mathrm{~V}^{* * *}$	0.1 V
$200 \mu \mathrm{~A}$	$\begin{gathered} 0.1 \% \text { of reading } \\ +0.4 \mu \mathrm{~A} \\ \hline \end{gathered}$	1.11 Kohm	15 mA	$\pm 15 \mathrm{~mA}$	$0.01 \mu \mathrm{~A}$
2 mA	$\begin{gathered} 0.1 \% \text { of reading } \\ +2 \mu \mathrm{~A} \\ \hline \end{gathered}$	111 ohm	50 mA	$\pm 50 \mathrm{~mA}$	$0.1 \mu \mathrm{~A}$
20 mA	$\begin{gathered} 0.1 \% \text { of reading } \\ +20 \mu \mathrm{~A} \\ \hline \end{gathered}$	11.1 ohm	150 mA	$\pm 150 \mathrm{~mA}$	$1 \mu \mathrm{~A}$
200 mA	$\begin{gathered} \hline 0.1 \% \text { of reading } \\ +0.2 \mathrm{~mA} \end{gathered}$	1.1 ohm	500 mA	$\pm 500 \mathrm{~mA}$	$10 \mu \mathrm{~A}$
5 A	$\begin{gathered} 0.5 \% \text { of reading } \\ +5 \mathrm{~mA} \\ \hline \end{gathered}$	0.02 ohm	7 A**	± 7 A**	1 mA

- FOUR VOLTAGE RANGES (300 VAC Max)
- FIVE CURRENT RANGES (5 A Max)
- ACCEPTS AC OR DC COUPLED INPUTS
- THREE WAY ISOLATION: POWER, INPUT AND OUTPUTS
*Conditions for accuracy specification:
- 20 minutes warmup
$-18-28^{\circ} \mathrm{C}$ temperature range, $10-75 \% \mathrm{RH}$ non-condensing
$-50 \mathrm{~Hz}-400 \mathrm{~Hz}$ sine wave input with 1.414 crest factor
- 1% to 100% of range

For conditions outside the above listed:
Temperature from $0-18$ and $28-50^{\circ} \mathrm{C}$: Add 0.1% reading +20 counts error Crest factors:
$1-3$: Add 0.2% reading +10 counts error
3-5: Add 1% reading
DC component: Add 0.5% reading +10 counts
$20-50 \mathrm{~Hz}$ and $400-10 \mathrm{KHz}$: Add 1% reading +20 counts error
** Non-repetitive surge rating: 15 A for 5 seconds
*** Inputs are direct coupled to the input divider and shunts. Input signals with high DC component levels may reduce the usable range.

MAX CREST FACTOR (Vp/VRMS): 5 @ Full Scale Input
INPUT COUPLING: AC or AC and DC
INPUT CAPACITANCE: 10 pF
COMMON MODE VOLTAGE: 125 VAC working
COMMON MODE REJECTION: (DC to 60 Hz$) 100 \mathrm{~dB}$

Model PAXS - Strain Gage Input

- LOAD CELL, PRESSURE AND TORQUE BRIDGE INPUTS
- DUAL RANGE INPUT: $\pm 24 m V$ OR $\pm 240 \mathrm{mV}$
- SELECTABLE 5 VDC OR 10 VDC BRIDGE EXCITATION
- PROGRAMMABLE AUTO-ZERO TRACKING

PAXS SPECIFICATIONS

SENSOR INPUTS:

INPUT RANGE	ACCURACY* (18 to $28^{\circ} \mathrm{C}$)	ACCURACY* (0 to $50^{\circ} \mathrm{C}$)	IMPEDANCE	MAX Continuous overload	RESOLUTION
$\pm 24 \mathrm{mVDC}$	$\begin{aligned} & 0.02 \% \text { of } \\ & \text { reading +3 } \mu \mathrm{V} \end{aligned}$	$\begin{gathered} 0.07 \% \text { of } \\ \text { reading +4 } \mu \mathrm{V} \end{gathered}$	100 Mohm	30 V	$1 \mu \mathrm{~V}$
$\pm 240 \mathrm{mVDC}$	$\begin{array}{\|c\|} \hline 0.02 \% \text { of } \\ \text { reading }+30 \mu \mathrm{~V} \end{array}$	$\begin{gathered} 0.07 \% \text { of } \\ \text { reading }+40 \mu \mathrm{~V} \end{gathered}$	100 Mohm	30 V	$10 \mu \mathrm{~V}$

* After 20 minute warm-up. Accuracy is specified in two ways: Accuracy over an 18 to $28^{\circ} \mathrm{C}$ and 10 to $75 \% \mathrm{RH}$ environment; and accuracy over a 0 to $50^{\circ} \mathrm{C}$ and 0 to $85 \% \mathrm{RH}$ (non-condensing environment). Accuracy over the 0 to $50{ }^{\circ} \mathrm{C}$ range includes the temperature coefficient effect of the meter.

CONNECTION TYPE: 4-wire bridge (differential)
2-wire (single-ended)
COMMON MODE RANGE (w.r.t. input common): 0 to +5 VDC
Rejection: $80 \mathrm{~dB}(\mathrm{DC}$ to 120 Hz$)$
BRIDGE EXCITATION :
Jumper Selectable: 5 VDC @ 65 mA max., $\pm 2 \%$
10 VDC @ 125 mA max., $\pm 2 \%$
Temperature coefficient (ratio metric): $20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max.

Model PAXT - Thermocouple and RTD Input

- THERMOCOUPLE AND RTD INPUTS
- CONFORMS TO ITS-90 STANDARDS
- CUSTOM SCALING FOR NON-STANDARD PROBES
- time-TEMPERATURE INTEGRATOR

PAXT SPECIFICATIONS

READOUT:

Resolution: Variable: $0.1,0.2,0.5$, or 1,2 , or 5 degrees
Scale: F or C
Offset Range: -19,999 to 99,999 display units
THERMOCOUPLE INPUTS:
Input Impedance: $20 \mathrm{M} \Omega$
Lead Resistance Effect: $0.03 \mu \mathrm{~V} / \mathrm{ohm}$
Max. Continuous Overvoltage: 30 V

INPUT	RANGE	ACCURACY* (18 to $28{ }^{\circ} \mathrm{C}$)	ACCURACY* (0 to $50^{\circ} \mathrm{C}$)	STANDARD	WIRE COLOR	
					ANSI	BS 1843
T	$\begin{array}{l\|l\|} \hline-200 \text { to } 400^{\circ} \mathrm{C} \\ -270 \text { to }-200^{\circ} \mathrm{C} \end{array}$	$1.2^{\circ} \mathrm{C}$	$2.1{ }^{\circ} \mathrm{C}$	ITS-90	(+) blue (-) red	(+) white (-) blue
E	$\begin{array}{\|l\|} \hline-200 \text { to } 871^{\circ} \mathrm{C} \\ -270 \text { to }-200^{\circ} \mathrm{C} \\ \hline \end{array}$	$1.0^{\circ} \mathrm{C}$	$2.4{ }^{\circ} \mathrm{C}$	ITS-90	(+) purple (-) red	(+) brown (-) blue
J	-200 to $760^{\circ} \mathrm{C}$	$1.1{ }^{\circ} \mathrm{C}$	$2.3{ }^{\circ} \mathrm{C}$	ITS-90	(+) white (-) red	(+) yellow (-) blue
K	$\begin{aligned} & -200 \text { to } 1372^{\circ} \mathrm{C} \\ & -270 \text { to }-200^{\circ} \mathrm{C} \end{aligned}$	$1.3^{\circ} \mathrm{C}$	$3.4{ }^{\circ} \mathrm{C}$	ITS-90	(+) yellow (-) red	(+) brown (-) blue
R	-50 to $1768^{\circ} \mathrm{C}$	$1.9{ }^{\circ} \mathrm{C}$	$4.0^{\circ} \mathrm{C}$	ITS-90	no standard	(+) white (-) blue
S	-50 to $1768^{\circ} \mathrm{C}$	$1.9{ }^{\circ} \mathrm{C}$	$4.0^{\circ} \mathrm{C}$	ITS-90	no standard	(+) white (-) blue
B	$\begin{array}{\|c\|} \hline 100 \text { to } 300^{\circ} \mathrm{C} \\ 300 \text { to } 1820^{\circ} \mathrm{C} \end{array}$	$\begin{aligned} & 3.9^{\circ} \mathrm{C} \\ & 2.8^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 5.7^{\circ} \mathrm{C} \\ & 4.4^{\circ} \mathrm{C} \end{aligned}$	ITS-90	no standard	no standard
N	$\begin{array}{\|l\|} \hline-200 \text { to } 1300^{\circ} \mathrm{C} \\ -270 \text { to }-200^{\circ} \mathrm{C} \end{array}$	$1.3^{\circ} \mathrm{C}$	$3.1{ }^{\circ} \mathrm{C}$	ITS-90	(+) orange (-) red	(+) orange (-) blue
$\begin{array}{c\|} \hline \text { C } \\ \text { (W5/W26) } \end{array}$	0 to $2315^{\circ} \mathrm{C}$	$1.9{ }^{\circ} \mathrm{C}$	$6.1{ }^{\circ} \mathrm{C}$	$\begin{gathered} \text { ASTM } \\ \text { E988-90*** } \end{gathered}$	no standard	no standard

*After 20 min . warm-up. Accuracy is specified in two ways: Accuracy over an 18 to $28^{\circ} \mathrm{C}$ and 15 to $75 \% \mathrm{RH}$ environment; and Accuracy over a 0 to $50^{\circ} \mathrm{C}$ and 0 to $85 \% \mathrm{RH}$ (non condensing) environment. Accuracy specified over the 0 to $50{ }^{\circ} \mathrm{C}$ operating range includes meter tempco and ice point tracking effects. The specification includes the A/D conversion errors, linearization conformity, and thermocouple ice point compensation. Total system accuracy is the sum of meter and probe errors. Accuracy may be improved by field calibrating the meter readout at the temperature of interest.
** The accuracy over the interval -270 to $-200{ }^{\circ} \mathrm{C}$ is a function of temperature, ranging from $1{ }^{\circ} \mathrm{C}$ at $-200^{\circ} \mathrm{C}$ and degrading to $7{ }^{\circ} \mathrm{C}$ at $-270{ }^{\circ} \mathrm{C}$. Accuracy may be improved by field calibrating the meter readout at the temperature of interest.
*** These curves have been corrected to ITS-90.

AcCESSORIES

UNITS LABEL KIT (PAXLBK) - Not required for PAXT

Each meter has a units indicator with backlighting that can be customized using the Units Label Kit. The backlight is controlled in the programming.

Each PAXT meter is shipped with ${ }^{\circ} \mathrm{F}$ and ${ }^{\circ} \mathrm{C}$ overlay labels which can be installed into the meter's bezel display assembly.

EXTERNAL CURRENT SHUNTS (APSCM)

To measure DC current signals greater than 2 ADC , a shunt must be used. The APSCM010 current shunt converts a maximum 10 ADC signal into 100.0 mV . The APSCM100 current shunt converts a maximum 100 ADC signal into 100.0 mV . The continuous current through the shunt is limited to 115% of the rating.

PROGRAMMING SOFTWARE

Crimson software is a Windows based program that allows configuration of the PAX meter from a PC. Crimson offers standard drop-down menu commands, that make it easy to program the meter. The meter's program can then be saved in a PC file for future use. A PAX serial option card or PAX USB programming card is required to program the meter using the software. Crimson can be downloaded at www.redlion.net.

WARNING: Disconnect all power to the unit before installing option cards.

Adding Option Cards

The PAX and MPAX series meters can be fitted with up to three option cards. The details for each option card can be reviewed in the specification section below. Only one card from each function type can be installed at one time. The function types include Setpoint Alarms (PAXCDS), Communications (PAXCDC), and Analog Output (PAXCDL). The option cards can be installed initially or at a later date.

PAXH Isolation Specifications For All Option Cards
 Isolation To Sensor Commons: 1400 Vrms for 1 min . Isolation to User Input Commons: 500 Vrms for 1 min .

COMMUNICATION CARDS (PAXCDC)

A variety of communication protocols are available for the PAX and MPAX series. Only one of these cards can be installed at a time. When programming the unit via Crimson, a Windows ${ }^{\circledR}$ based program, the RS232, RS485, or USB Cards must be used.

SERIAL COMMUNICATIONS CARD: PAXCDC1_ and PAXCDC2_
Type: RS485 or RS232
Isolation To Sensor \& User Input Commons: 500 Vrms for 1 min .
Not Isolated from all other commons.
Data: 7/8 bits
Baud: 300 to 19,200
Parity: No, Odd or Even
Bus Address: Selectable 0 to 99, Max. 32 meters per line (RS485)
Transmit Delay: Selectable for 2 to 50 msec or 50 to 100 msec (RS485)
DEVICENET ${ }^{\text {TM }}$ CARD: PAXCDC30
Compatibility: Group 2 Server Only, not UCMM capable
Baud Rates: 125 Kbaud, 250 Kbaud, and 500 Kbaud
Bus Interface: Phillips 82C250 or equivalent with MIS wiring protection per DeviceNet ${ }^{\text {TM }}$ Volume I Section 10.2.2.
Node Isolation: Bus powered, isolated node
Host Isolation: 500 Vrms for 1 minute between DeviceNet ${ }^{\mathrm{TM}}$ and meter input common.

MODBUS CARD: PAXCDC4
Type: RS485; RTU and ASCII MODBUS modes
Isolation To Sensor \& User Input Commons: 500 Vrms for 1 minute. Not isolated from all other commons.
Baud Rates: 300 to 38400 .
Data: 7/8 bits
Parity: No, Odd, or Even
Addresses: 1 to 247.
Transmit Delay: Programmable; See Transmit Delay explanation.
PROFIBUS-DP CARD: PAXCDC50
Fieldbus Type: Profibus-DP as per EN 50170, implemented with Siemens SPC3 ASIC
Conformance: PNO Certified Profibus-DP Slave Device
Baud Rates: Automatic baud rate detection in the range 9.6 Kbaud to 12 Mbaud
Station Address: 0 to 125, set by rotary switches.
Connection: 9-pin Female D-Sub connector
Network Isolation: 500 Vrms for 1 minute between Profibus network and sensor and user input commons. Not isolated from all other commons.
PAXUSB PROGRAMMING CARD: PAXUSB00
Type: USB Virtual Comms Port
Connection: Type mini B
Isolation To Sensor \& User Input Commons: 500 Vrms for 1 min . Not Isolated from all other commons.
Baud Rate: 300 to 19.2 k
Unit Address: 0 to 99; only 1 meter can be configured at a time

SETPOINT CARDS (PAXCDS)

The PAX and MPAX series has 6 available setpoint alarm output option cards. Only one of these cards can be installed at a time. (Logic state of the outputs can be reversed in the programming.)
DUAL RELAY CARD: PAXCDS 10
Type: Two FORM-C relays
Isolation To Sensor \& User Input Commons: 2000 Vrms for 1 min . Contact Rating:

One Relay Energized: 5 amps @ 120/240 VAC or 28 VDC (resistive load).
Total current with both relays energized not to exceed 5 amps
Life Expectancy: 100 K cycles min. at full load rating. External RC snubber extends relay life for operation with inductive loads

QUAD RELAY CARD: PAXCDS20
Type: Four FORM-A relays
Isolation To Sensor \& User Input Commons: 2300 Vrms for 1 min . Contact Rating:

One Relay Energized: $3 \mathrm{amps} @ 240$ VAC or 30 VDC (resistive load).
Total current with all four relays energized not to exceed 4 amps
Life Expectancy: 100K cycles min. at full load rating. External RC snubber extends relay life for operation with inductive loads

QUAD SINKING OPEN COLLECTOR CARD: PAXCDS30
Type: Four isolated sinking NPN transistors.
Isolation To Sensor \& User Input Commons: 500 Vrms for 1 min .
Not Isolated from all other commons.
Rating: $100 \mathrm{~mA} \max @ \mathrm{~V}_{\mathrm{SAT}}=0.7 \mathrm{~V} \max . \mathrm{V}_{\mathrm{MAX}}=30 \mathrm{~V}$
QUAD SOURCING OPEN COLLECTOR CARD: PAXCDS40
Type: Four isolated sourcing PNP transistors.
Isolation To Sensor \& User Input Commons: 500 Vrms for 1 min . Not Isolated from all other commons.
Rating: Internal supply: $24 \mathrm{VDC} \pm 10 \%, 30 \mathrm{~mA}$ max. total External supply: 30 VDC max., 100 mA max. each output
DUAL TRIAC/DUAL SSR DRIVE CARD: PAXCDS50
Triac:
Type: Isolated, zero crossing detection
Voltage: 260 VAC max., 20 VAC min.
Max Load Current: 1 Amp @ $25^{\circ} \mathrm{C}$
$0.75 \mathrm{Amp} @ 50^{\circ} \mathrm{C}$
Total load current with both triacs ON not to exceed 1.5 Amps
Min Load Current: 5 mA
Off State Leakage Current: $1 \mathrm{~mA} \max @ 60 \mathrm{~Hz}$
Operating Frequency: $20-400 \mathrm{~Hz}$
SSR Drive:
Type: Two isolated sourcing PNP Transistors.
Isolation To Sensor \& User Input Commons: 500 Vrms for 1 min .
Not Isolated from all other commons.
Rating:
Output Voltage: $18 / 24$ VDC (unit dependent) $\pm 10 \%, 30 \mathrm{~mA}$ max. total both outputs

QUAD FORM C RELAY CARD: PAXCDS60
Type: Four FORM-C relays
Isolation To Sensor \& User Input Commons: 500 Vrms for 1 min . Contact Rating:

Rated Load: 3 Amp @ 30 VDC/125 VAC
Total Current With All Four Relays Energized not to exceed 4 amps
Life Expectancy: 100 K cycles min. at full load rating. External RC snubber extends relay life for operation with inductive loads

ALL SETPOINT CARDS

Response Time: 200 msec . max. to within 99% of final readout value (digital filter and internal zero correction disabled)

700 msec. max. (digital filter disabled, internal zero correction enabled)

LINEAR DC OUTPUT (PAXCDL)

Either a $0(4)-20 \mathrm{~mA}$ or $0-10 \mathrm{~V}$ retransmitted linear DC output is available from the analog output option card. The programmable output low and high scaling can be based on various display values. Reverse slope output is possible by reversing the scaling point positions.
ANALOG OUTPUT CARD: PAXCDL10 - Self-Powered Output (Active)
Types: 0 to $20 \mathrm{~mA}, 4$ to 20 mA or 0 to 10 VDC
Isolation To Sensor \& User Input Commons: 500 Vrms for 1 min .
Not Isolated from all other commons.
Accuracy: 0.17% of FS (18 to $28^{\circ} \mathrm{C}$); 0.4% of FS $\left(0\right.$ to $\left.50^{\circ} \mathrm{C}\right)$
Resolution: 1/3500
Compliance: $10 \mathrm{VDC}: 10 \mathrm{~K} \Omega$ load min., $20 \mathrm{~mA}: 500 \Omega$ load max.
Update time: 200 msec . max. to within 99% of final output value (digital filter and internal zero correction disabled)
700 msec. max. (digital filter disabled, internal zero correction enabled)

1.0 Installing the Meter

Installation

The PAX meets NEMA 4X/IP65 requirements when properly installed. The unit is intended to be mounted into an enclosed panel. Prepare the panel cutout to the dimensions shown. Remove the panel latch from the unit. Slide the panel gasket over the rear of the unit to the back of the bezel. The unit should be installed fully assembled. Insert the unit into the panel cutout.

While holding the unit in place, push the panel latch over the rear of the unit so that the tabs of the panel latch engage in the slots on the case. The panel latch should be engaged in the farthest forward slot possible. To achieve a proper seal, tighten the latch screws evenly until the unit is snug in the panel (Torque to approximately $7 \mathrm{in}-\mathrm{lbs}[79 \mathrm{~N}-\mathrm{cm}]$). Do not over-tighten the screws.

Installation Environment

The unit should be installed in a location that does not exceed the maximum operating temperature and provides good air circulation. Placing the unit near devices that generate excessive heat should be avoided.

The bezel should be cleaned only with a soft cloth and neutral soap product. Do NOT use solvents. Continuous exposure to direct sunlight may accelerate the aging process of the bezel.

Do not use tools of any kind (screwdrivers, pens, pencils, etc.) to operate the keypad of the unit.

PANEL CUT-OUT

2.0 Setting the Jumpers

The meter can have up to four jumpers that must be checked and / or changed prior to applying power. The following Jumper Selection Figures show an enlargement of the jumper area.

To access the jumpers, remove the meter base from the case by firmly squeezing and pulling back on the side rear finger tabs. This should lower the latch below the case slot (which is located just in front of the finger tabs). It is recommended to release the latch on one side, then start the other side latch.

Input Range Jumper

This jumper is used to select the proper input range. The input range selected in programming must match the jumper setting. Select a range that is high enough to accommodate the maximum input to avoid overloads. The selection is different for each meter. See the Jumper Selection Figure for appropriate meter.

Excitation Output Jumper

If your meter has excitation, this jumper is used to select the excitation range for the application. If excitation is not being used, it is not necessary to check or move this jumper.

User Input Logic Jumper

This jumper selects the logic state of all the user inputs. If the user inputs are not used, it is not necessary to check or move this jumper.

PAXH:

Signal Jumper

This jumper is used to select the signal type. For current signals, the jumper is installed. For voltage signals, remove the jumper from the board. (For 2 V inputs, this removed jumper can be used in the " 2 V only" location.)

Couple Jumper

This jumper is used for AC / DC couple. If AC couple, then the jumper is removed from the board. If DC couple is used, then the jumper is installed.

PAXD Jumper Selection

Input Range Jumper

One jumper is used for voltage/ohms or current input ranges. Select the proper input range high enough to avoid input signal overload. Only one jumper is allowed in this area. Do not have a jumper in both the voltage and current ranges at the same time. Avoid placing the jumper across two ranges.

JUMPER SELECTIONS
The \neg indicates factory setting.

PAXH Jumper Selection

CAUTION: To maintain the electrical safety of the meter, remove unneeded jumpers completely from the meter. Do not move the jumpers to positions other than those specified.

Signal Jumper

One jumper is used for the input signal type. For current signals, the jumper is installed. For voltage signals, remove the jumper from the board. (For 2 V inputs, this removed jumper can be used in the " 2 V only" location.)

Couple Jumper

One jumper is used for $\mathrm{AC} / \mathrm{DC}$ couple. If AC couple is used, then the jumper is removed from the board. If DC couple is used, then the jumper is installed.

Input Range Jumper

For most inputs, one jumper is used to select the input range. However, for the following ranges, set the jumpers as stated:

5 A : Remove all jumpers from the input range.
$2 \mathbf{V}$: Install one jumper in ". $2 / 2 \mathrm{~V}$ " position and one jumper in " 2 V only".
All Other Ranges: One jumper in the selected range only.
Do not have a jumper in both the voltage and current ranges at the same time. Avoid placing a jumper across two ranges.

JUMPER SELECTIONS

The \neg indicates factory setting.

PAXS Jumper Selection

Bridge Excitation

One jumper is used to select bridge excitation to allow use of the higher sensitivity 24 mV input range. Use the 5 V excitation with high output ($3 \mathrm{mV} / \mathrm{V}$) bridges. The 5 V excitation also reduces bridge power compared to 10 V excitation.

A maximum of four 350 ohm load cells can be driven by the internal bridge excitation voltage.
JUMPER SELECTIONS
The \neg indicates factory setting.

d REAR TERMINALS

PAXT Jumper Selection

RTD Input Jumper

One jumper is used for RTD input ranges. Select the proper range to match the RTD probe being used. It is not necessary to remove this jumper when not using RTD probes.

JUMPER SELECTIONS
The \curvearrowleft indicates factory setting.

3.0 Installing Option Cards

Note: For option card specific installation instructions, refer to the literature shipped with the option card.
The option cards are separately purchased cards that perform specific functions. These cards plug into the main circuit board of the meter. The option cards have many unique functions when used with the PAX.

CAUTION: The option card and main circuit board contain static sensitive components. Before handling the cards, discharge static charges from your body by touching a grounded bare metal object. Ideally, handle the cards at a static controlled clean workstation. Also, only handle the cards by the edges. Dirt, oil or other contaminants that may contact the cards can adversely affect circuit operation.

To Install:

1. With the meter removed from the case, locate the option card connector for the card type to be installed. The types are keyed by position with different main circuit board connector locations. When installing the card, hold the meter by the rear terminals and not by the front display board.
2. Install the option card by aligning the card terminals with the slot bay in the rear cover. Be sure the connector is fully engaged and the tab on the option card rests in the alignment slot on the display board.
3. Slide the meter base back into the case. Be sure the rear cover latches fully into the case.
4. Apply the option card label to the bottom side of the meter in the designated area. Do Not Cover the vents on the top surface of the meter. The surface of the case must be clean for the label to adhere properly.

4.0 Wiring the Meter

WIRING OVERVIEW

Electrical connections are made via screw-clamp terminals located on the back of the meter. All conductors should conform to the meter's voltage and current ratings. All cabling should conform to appropriate standards of good installation, local codes and regulations. It is recommended that power supplied to the meter (DC or AC) be protected by a fuse or circuit breaker.

When wiring the meter, compare the numbers embossed on the back of the meter case against those shown in wiring drawings for proper wire position. Strip the wire, leaving approximately $0.3^{\prime \prime}(7.5 \mathrm{~mm})$ bare lead exposed (stranded wires should be tinned with solder). Insert the lead under the correct screwclamp terminal and tighten until the wire is secure. (Pull wire to verify tightness.) Each terminal can accept up to one \#14 AWG (2.55 mm) wire, two \#18 AWG (1.02 mm), or four \#20 AWG (0.61 mm).

EMC INSTALLATION GUIDELINES

Although Red Lion Controls Products are designed with a high degree of immunity to Electromagnetic Interference (EMI), proper installation and wiring methods must be followed to ensure compatibility in each application. The type of the electrical noise, source or coupling method into a unit may be different for various installations. Cable length, routing, and shield termination are very important and can mean the difference between a successful or troublesome installation. Listed are some EMI guidelines for a successful installation in an industrial environment.

1. A unit should be mounted in a metal enclosure, which is properly connected to protective earth.
2. Use shielded cables for all Signal and Control inputs. The shield connection should be made as short as possible. The connection point for the shield depends somewhat upon the application. Listed below are the recommended methods of connecting the shield, in order of their effectiveness.
a. Connect the shield to earth ground (protective earth) at one end where the unit is mounted.
b. Connect the shield to earth ground at both ends of the cable, usually when the noise source frequency is over 1 MHz .
3. Never run Signal or Control cables in the same conduit or raceway with AC power lines, conductors, feeding motors, solenoids, SCR controls, and heaters, etc. The cables should be run through metal conduit that is properly grounded. This is especially useful in applications where cable runs are long and portable two-way radios are used in close proximity or if the installation is near a commercial radio transmitter. Also, Signal or Control cables within an enclosure should be routed as far away as possible from contactors, control relays, transformers, and other noisy components.

4.1 POWER WIRING

4. Long cable runs are more susceptible to EMI pickup than short cable runs.
5. In extremely high EMI environments, the use of external EMI suppression devices such as Ferrite Suppression Cores for signal and control cables is effective. The following EMI suppression devices (or equivalent) are recommended:

Fair-Rite part number 0443167251 (RLC part number FCOR0000)
Line Filters for input power cables:
Schaffner \# FN2010-1/07 (Red Lion Controls \# LFIL0000)
6. To protect relay contacts that control inductive loads and to minimize radiated and conducted noise (EMI), some type of contact protection network is normally installed across the load, the contacts or both. The most effective location is across the load.
a. Using a snubber, which is a resistor-capacitor (RC) network or metal oxide varistor (MOV) across an AC inductive load is very effective at reducing EMI and increasing relay contact life.
b. If a DC inductive load (such as a DC relay coil) is controlled by a transistor switch, care must be taken not to exceed the breakdown voltage of the transistor when the load is switched. One of the most effective ways is to place a diode across the inductive load. Most RLC products with solid state outputs have internal zener diode protection. However external diode protection at the load is always a good design practice to limit EMI. Although the use of a snubber or varistor could be used.
RLC part numbers: Snubber: SNUB0000
Varistor: ILS11500 or ILS23000
7. Care should be taken when connecting input and output devices to the instrument. When a separate input and output common is provided, they should not be mixed. Therefore a sensor common should NOT be connected to an output common. This would cause EMI on the sensitive input common, which could affect the instrument's operation.
Visit RLC's web site at http://www.redlion.net/emi for more information on EMI guidelines, Safety and CE issues as they relate to Red Lion Controls products.

4.2 INPUT SIGNAL WIRING

PAXD INPUT SIGNAL WIRING

Before connecting signal wires, the Input Range Jumper and Excitation Jumper should be verified for proper position.

Current Signal (3 wire requiring excitation)
Terminal 4: +ADC (signal) Terminal 5: -ADC (common) Terminal 6: +Volt supply Excitation Jumper: 24 V

Voltage Signal (3 wire requiring excitation)
Terminal 3: +VDC (signal) Terminal 5: -VDC (common)
Terminal 6: +Volt supply
Excitation Jumper: 24 V

Resistance Signal (3 wire requiring excitation)
Terminal 3: Resistance
Terminal 5: Resistance
Terminal 6: Jumper to terminal 3
Excitation Jumper: 1.75 mA REF

Potentiometer Signal (3 wire requiring excitation)
Terminal 3: Wiper
Terminal 5: Low end of pot.
Terminal 6: High end of pot.
Excitation Jumper: 2 V REF.
Input Range Jumper: 2 Volt
Module 1 Input Range: 2 Volt
Note: The Apply signal scaling style should be used because the signal will be in volts.

CAUTION: Sensor input common is NOT isolated from user input common. In order to preserve the safety of the meter application, the sensor input common must be suitably isolated from hazardous live earth referenced voltages; or input common must be at protective earth ground potential. If not, hazardous live voltage may be present at the User Inputs and User Input Common terminals. Appropriate considerations must then be given to the potential of the user input common with respect to earth common; and the common of the isolated option cards with respect to input common.

PAXP INPUT SIGNAL WIRING

CAUTION: Sensor input common is NOT isolated from user input common. In order to preserve the safety of the meter application, the sensor input common must be suitably isolated from hazardous live earth referenced voltages; or input common must be at protective earth ground potential. If not, hazardous live voltage may be present at the User Inputs and User Input Common terminals. Appropriate considerations must then be given to the potential of the user input common with respect to earth common; and the common of the isolated option cards with respect to input common.

PAXH INPUT SIGNAL WIRING

Before connecting signal wires, the Signal, Input Range and Couple Jumpers should be verified for proper position.

CAUTION: Connect only one input signal range to the meter. Hazardous signal levels may be present on unused inputs.

CAUTION: The isolation rating of the input common of the meter with respect to the option card commons and the user input common Terminal 8 (If used) is 125 Vrms ; and 250 Vrms with respect to AC Power (meter Terminals 1 \& 2). To be certain that the ratings are not exceeded, these voltages should be verified by a high-voltage meter before wiring the meter.

CAUTION:

1. Where possible, connect the neutral side of the signal (including current shunts) to the input common of the meter. If the input signal is sourced from an active circuit, connect the lower impedance (usually circuit common) to the input signal common of the meter.
2. For phase-to-phase line monitoring where a neutral does not exist, or for any other signal input in which the isolation voltage rating is exceeded, an isolating potential transformer must be used to isolate the input voltage from earth. With the transformer, the input common of the meter can then be earth referenced for safety.
3. When measuring line currents, the use of a current transformer is recommended. If using external current shunts, insert the shunt in the neutral return line. If the isolation voltage rating is exceeded, the use of an isolating current transformer is necessary.
4. If the secondary output leads become open, dangerously high voltage can become present if the primary remains energized. It is recommended that the current transformer be internally protected or that a voltage clamping circuit be employed to prevent high voltage across the CT secondary windings. When using a CT, in order to prevent risk of electrick shock, ensure that the CT is installed according to local NEC regulation.

PAXS INPUT SIGNAL WIRING

Before connecting signal wires, the Input Range Jumper should be verified for proper position.

6-Wire Bridge Input

DEADLOAD COMPENSATION

In some cases, the combined deadload and liveload output may exceed the range of the 24 mV input. To use this range, the output of the bridge can be offset a small amount by applying a fixed resistor across one arm of the bridge. This shifts the electrical output of the bridge downward to within the operating range of the meter. A 100 K ohm fixed resistor shifts the bridge output approximately -10 mV (350 ohm bridge, 10 V excitation).

Connect the resistor between + SIG and -SIG. Use a metal film resistor with a low temperature coefficient of resistance.

BRIDGE COMPLETION RESISTORS

For single strain gage applications, bridge completion resistors must be employed externally to the meter. Only use metal film resistors with a low temperature coefficient of resistance.
Load cells and pressure transducers are normally implemented as full resistance bridges and do not require bridge completion resistors.

PAXT INPUT SIGNAL WIRING

$4^{C A}$
CAUTION: Sensor input common is NOT isolated from user input common. In order to preserve the safety of the meter application, the sensor input common must be suitably isolated from hazardous live earth referenced voltages; or input common must be at protective earth ground potential. If not, hazardous live voltage may be present at the User Inputs and User Input Common terminals. Appropriate considerations must then be given to the potential of the user input common with respect to earth common; and the common of the isolated option cards with respect to input common.

4.3 USER INPUT WIRING

Before connecting the wires, the User Input Logic Jumper should be verified for proper position. If not using User Inputs, then skip this section. Only the appropriate User Input terminal has to be wired.

Sinking Logic

Terminal 8-10: Connect external switching device between
Terminal 7: $\}$ appropriate User Input terminal and User Comm. In this logic, the user inputs of the meter are internally pulled up to +5 V with 22 K resistance. The input is active when it is pulled low $(<0.9 \mathrm{~V})$.

Sourcing Logic

Terminal 8-10: + VDC thru external switching device Terminal 7: -VDC thru external switching device In this logic, the user inputs of the meter are internally pulled down to 0 V with 22 K resistance. The input is active when a voltage greater than 3.6 VDC is applied.

PAXH ONLY

Sinking Logic

Terminals 9-11) Connect external
Terminal $8 \quad$ switching device between appropriate User Input terminal and User Comm.

In this logic, the user inputs of the meter are internally pulled up to +5 V with 22 K resistance. The input is active when it is pulled low ($<0.9 \mathrm{~V}$).

Sourcing Logic

Terminals 9-11:

+ VDC through external switching device
Terminal 8:
-VDC through external switching device
In this logic, the user inputs of the meter are internally pulled down with 22 K resistance. The input is active when a voltage greater than 3.6 VDC is applied.

4.4 SETPOINT (ALARMS) WIRING 4.5 SERIAL COMMUNICATION WIRING 4.6 ANALOG OUTPUT WIRING

5.0 Reviewing the Front Buttons and Display


```
KEY DISPLAY MODE OPERATION
DSP Index display through max/min/total/input readouts
PAR Access parameter list
F1』 Function key 1; hold for 3 seconds for Second Function 1**
F2V Function key 2; hold for 3 seconds for Second Function 2**
RST Reset (Function key)**
* Display Readout Legends may be locked out in Factory Settings
** Factory setting for the F1, F2, and RST keys is NO mode.
```

PROGRAMMING MODE OPERATION
Quit programming and return to display mode
Store selected parameter and index to next parameter
Increment selected parameter value
Decrement selected parameter value
Hold with F1』, F2 $\boldsymbol{\nabla}$ to scroll value by $x 1000$

6.0 Programming the Meter

* Only accessible with appropriate option card installed.

DISPLAY MODE

The meter normally operates in the Display Mode. In this mode, the meter displays can be viewed consecutively by pressing the DSP key. The annunciators to the left of the display indicate which display is currently shown; Max Value (MAX), Min Value (MIN), or Totalizer Value (TOT). Each of these displays can be locked from view through programming. (See Module 3) The Input Display Value is shown with no annunciator.

PROGRAMMING MODE

Two programming modes are available.
Full Programming Mode permits all parameters to be viewed and modified. Upon entering this mode, the front panel keys change to Programming Mode operations. This mode should not be entered while a process is running, since the meter functions and User Input response may not operate properly while in Full Programming Mode.
Quick Programming Mode permits only certain parameters to be viewed and/ or modified. When entering this mode, the front panel keys change to Programming Mode operations, and all meter functions continue to operate properly. Quick Programming Mode is configured in Module 3. The Display Intensity Level " $d-L E u$ " parameter is available in the Quick Programming Mode only when the security code is non-zero. For a description, see Module 9 -Factory Service Operations. Throughout this document, Programming Mode (without Quick in front) always refers to "Full" Programming Mode.

PROGRAMMING TIPS

The Programming Menu is organized into nine modules (See above). These modules group together parameters that are related in function. It is recommended to begin programming with Module 1 and proceed through each module in sequence. Note that Modules 6 through 8 are only accessible when the appropriate option card is installed. If lost or confused while programming, press the DSP key to exit programming mode and start over. When programming is complete, it is recommended to record the meter settings on the Parameter Value Chart and lock-out parameter programming with a User Input or lock-out code. (See Modules 2 and 3 for lock-out details.)

FACTORY SETTINGS

Factory Settings may be completely restored in Module 9. This is a good starting point if encountering programming problems. Throughout the module description sections which follow, the factory setting for each parameter is shown below the parameter display. In addition, all factory settings are listed on the Parameter Value Chart following the programming section.

ALTERNATING SELECTION DISPLAY

In the module description sections which follow, the dual display with arrows appears for each programming parameter. This is used to illustrate the display alternating between the parameter (top display) and the parameter's Factory Setting (bottom display). In most cases, selections or value ranges for the parameter will be listed on the right.

STEP BY STEP PROGRAMMING INSTRUCTIONS:

PROGRAMMING MODE ENTRY (PAR KEY)

The Programming Mode is entered by pressing the PAR key. If this mode is not accessible, then meter programming is locked by either a security code or a hardware lock. (See Modules 2 and 3 for programming lock-out details.)

MODULE ENTRY (ARROW \& PAR KEYS)

Upon entering the Programming Mode, the display alternates between Pro and the present module (initially $\boldsymbol{\pi}$). The arrow keys (F1A and F2V) are used to select the desired module, which is then entered by pressing the PAR key.

PARAMETER (MODULE) MENU (PAR KEY)

Each module has a separate parameter menu. These menus are shown at the start of each module description section which follows. The PAR key is pressed to advance to a particular parameter to be changed, without changing the programming of preceding parameters. After completing a module, the display will return to Pra $\quad \mathrm{AD}$. From this point, programming may continue by selecting and entering additional modules. (See MODULE ENTRY above.)

PARAMETER SELECTION ENTRY (ARROW \& PAR KEYS)

For each parameter, the display alternates between the parameter and the present selection or value for that parameter. For parameters which have a list of selections, the arrow keys ($\mathbf{F 1 4}$ and $\mathbf{F 2 \nabla}$) are used to sequence through the list until the desired selection is displayed. Pressing the PAR key stores and activates the displayed selection, and also advances the meter to the next parameter.

NUMERICAL VALUE ENTRY (ARROW, RST \& PAR KEYS)

For parameters which require a numerical value entry, the arrow keys can be used to increment or decrement the display to the desired value. When an arrow key is pressed and held, the display automatically scrolls up or scrolls down. The longer the key is held, the faster the display scrolls.

The RST key can be used in combination with the arrow keys to enter large numerical values. When the RST key is pressed along with an arrow key, the display scrolls by 1000's. Pressing the PAR key stores and activates the displayed value, and also advances the meter to the next parameter.

PROGRAMMING MODE EXIT (DSP KEY or PAR KEY at Pront)

The Programming Mode is exited by pressing the DSP key (from anywhere in the Programming Mode) or the PAR key (with Pra \quad IO displayed). This will commit any stored parameter changes to memory and return the meter to the Display Mode. If a parameter was just changed, the PAR key should be pressed to store the change before pressing the DSP key. (If power loss occurs before returning to the Display Mode, verify recent parameter changes.)

6．1 MODULE 1 －Signal Input Parameters（ 1 －inp）

Refer to the appropriate Input Range for the selected meter．Use only one Input Range，then proceed to Display Decimal Point．

PAXD INPUT RANGE

rR\＃5E 合	SELECTION	RANGE RESOLUTION	SELECTION	RANGE resolution
$\stackrel{4}{4} 30$	2004	$\pm 200.00 \mu \mathrm{~A}$	24	± 2.00
	0．002\％	$\pm 2.0000 \mathrm{~mA}$	$20 \sim$	$\pm 20.000 \mathrm{~V}$
	0.028	$\pm 20.000 \mathrm{~mA}$	$300 \sim$	$\pm 300.00 \mathrm{~V}$
	0.28	$\pm 200.00 \mathrm{~mA}$	180	100.00 ohm
	28	$\pm 2.0000 \mathrm{~A}$	10080	1000.0 ohm
	0.34	$\pm 200.00 \mathrm{mV}$	［80	10000 oh

Select the input range that corresponds to the external signal．This selection should be high enough to avoid input signal overload but low enough for the desired input resolution．This selection and the position of the Input Range Jumper must match．

PAXP INPUT RANGE

Select the input range that corresponds to the external signal．This selection should be high enough to avoid input signal overload but low enough for the desired input resolution．This selection and the position of the Input Range Jumper must match．

PAXH INPUT COUPLE

RE or d［
The input signal can be either AC coupled（rejecting the DC components of the signal）or DC coupled（measures both the AC and DC components of the signal）．The coupling jumper and the setting of this parameter must match．

PAXS INPUT RANGE

Select the input range that corresponds to the external signal．This selection should be high enough to avoid input signal overload but low enough for the desired input resolution．This selection and the position of the Input Range Jumper must match．

PAXT INPUT TYPE

EYPE 㐫	SELECTION	TYPE	SELECTIon	TYPE
$\stackrel{H}{\Rightarrow}$ ヒc－d	$t c-t$	TTC	tcec	C TC
	tc－J	J TC	Pt392	RTD platinum 385 RTD platinum 392
	tc－r	K TC	\％．672	RTD nickel 672
	tc－r	RTC	［u42］	RTD copper 10Ω
	tc－5	S TC	［5－tc	Custom TC
	tc－b	B TC	［5－rH	Custom RTD High
	tc－n	N TC	［5－ri	Custom RTD Low

Select the input type that corresponds to the input sensor．For RTD types， check the RTD Input Jumper for matching selection．For custom types，the Temperature Scale parameter is not available，the Display Decimal Point is expanded，and Custom Sensor Scaling must be completed．

\section*{PAXT TEMPERATURE SCALE} | 5LRLE 出 |
| :--- |
| $\Leftrightarrow \square \sigma$ |

Select the temperature scale．This selection applies for Input，MAX，MIN， and TOT displays．This does not change the user installed Custom Units Overlay display．If changed，those parameters that relate to the temperature scale should be checked．This selection is not available for custom sensor types．

DISPLAY DECIMAL POINT

$\square \quad 0.0$

For the PAXT，these are only available with Custom Scaling．

Select the decimal point location for the Input，MAX and MIN displays．（The TOT display decimal point is a separate parameter．）This selection also affects round，$d 5 P \cdot$ and $d 5 P \mathbf{P}$ parameters and setpoint values．

DISPLAY ROUNDING

Rounding selections other than one, cause the Input Display to 'round' to the rounding increment selected (ie. rounding of ' 5 ' causes 121 to round to 120 and 124 to round to 125). Rounding starts at the least significant digit of the Input Display. Some parameter entries (setpoint values, etc.) may be adjusted to this display rounding selection.

HFF5t PAXT: TEMPERATURE DISPLAY OFFSET
$\stackrel{\square}{\square}$
The temperature display can be corrected with an offset value. This can be used to compensate for probe errors, errors due to variances in probe placement or adjusting the readout to a reference thermometer. This value is automatically updated after a Zero Display to show how far the display is offset. A value of zero will remove the affects of offset.

FILTER SETTING

0.0 to 25.0 seconds

The input filter setting is a time constant expressed in tenths of a second. The filter settles to 99% of the final display value within approximately 3 time constants. This is an Adaptive Digital Filter which is designed to steady the Input Display reading. A value of ' 0 ' disables filtering.

FILTER BAND

D.0 to 25.0 display units

The digital filter will adapt to variations in the input signal. When the variation exceeds the input filter band value, the digital filter disengages. When the variation becomes less than the band value, the filter engages again. This allows for a stable readout, but permits the display to settle rapidly after a large process change. The value of the band is in display units. A band setting of ' 0 ' keeps the digital filter permanently engaged.

For the PAXT, the following parameters only apply to Custom Sensor Scaling.

PAXT: ICE POINT SLOPE

\square to $650.00 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$

This parameter sets the slope value for ice point compensation for the Custom TC range ($\mathbf{[5 - t \boldsymbol { c })}$ only. The fixed thermocouple ranges are automatically compensated by the meter and do not require this setting. To calculate this slope, use $\mu \mathrm{V}$ data obtained from thermocouple manufacturers' tables for two points between $0^{\circ} \mathrm{C}$ and $50^{\circ} \mathrm{C}$. Place this corresponding $\mu \mathrm{V}$ and ${ }^{\circ} \mathrm{C}$ information into the equation:

$$
\text { slope }=\left(\mu \mathrm{V}_{2}-\mu \mathrm{V}_{1}\right) /\left({ }^{\circ} \mathrm{C}_{2}-{ }^{\circ} \mathrm{C}_{1}\right)
$$

Due to the nonlinear output of thermocouples, the compensation may show a small offset error at room temperatures. This can be compensated by the offset parameter. A value of 0 disables internal compensation when the thermocouple is externally compensated.

SCALING POINTS

2 to 15

Linear - Scaling Points (2)

For linear processes, only 2 scaling points are necessary. It is recommended that the 2 scaling points be at opposite ends of the input signal being applied. The points do not have to be the signal limits. Display scaling will be linear between and continue past the entered points up to the limits of the Input Signal Jumper position. Each scaling point has a coordinate-pair of Input Value (IAP) and an associated desired Display Value ($\mathbf{d 5 P}$).

Nonlinear - Scaling Points (Greater than 2)

For non-linear processes, up to 16 scaling points may be used to provide a piece-wise linear approximation. (The greater the number of scaling points used, the greater the conformity accuracy.) The Input Display will be linear between scaling points that are sequential in program order. Each scaling point has a coordinate-pair of Input Value ($\mathbf{1 \cap P}$) and an associated desired Display Value ($\mathbf{d 5 P}$). Data from tables or equations, or empirical data could be used to derive the required number of segments and data values for the coordinate pairs. In the SFPAX software, several linearization equations are available.

SCALING STYLE

This parameter does not apply for the PAXT. Scaling values for the PAXT must be keyed-in.

If Input Values and corresponding Display Values are known, the Key-in $(\boldsymbol{H E Y})$ scaling style can be used. This allows scaling without the presence or changing of the input signal. If Input Values have to be derived from the actual input signal source or simulator, the Apply (RPLY) scaling style must be used. After using the Apply ($\boldsymbol{R P L} \boldsymbol{Y}$) scaling style, this parameter will default back to $\mu E Y$ but the scaling values will be shown from the previous applied method.

INPUT VALUE FOR SCALING POINT 1

- 9999 to 99999

For Key-in ($\boldsymbol{\mu} E \boldsymbol{Y}$), enter the known first Input Value by using the arrow keys. The Input Range selection sets up the decimal location for the Input Value. With 0.02A Input Range, 4 mA would be entered as 4.000 . For Apply (RPL $\boldsymbol{\text { P }}$), apply the input signal to the meter, adjust the signal source externally until the desired Input Value appears. In either method, press the PAR key to enter the value being displayed.
Note: RPLy style - Pressing the RST key will advance the display to the next scaling display point without storing the input value.

DISPLAY VALUE FOR SCALING POINT 1

- 19999 to 99999

Enter the first coordinating Display Value by using the arrow keys. This is the same for ${ }^{\prime \prime} E Y$ and $R P L Y$ scaling styles. The decimal point follows the $d E[P E$ selection.

INPUT VALUE FOR SCALING POINT 2

- 19999 to 99999 18 $4.0 \square$
For Key-in ($\boldsymbol{H E Y}$), enter the known second Input Value by using the arrow keys. For Apply ($\boldsymbol{R P L L}_{\mathrm{L}}$), adjust the signal source externally until the next desired Input Value appears. (Follow the same procedure if using more than 2 scaling points.)

DISPLAY VALUE FOR SCALING POINT 2

- 19999 to 99999

100.0日

Enter the second coordinating Display Value by using the arrow keys. This is the same for ${ }^{H E S}$ and $R P L Y$ scaling styles. (Follow the same procedure if using more than 2 scaling points.)

General Notes on Scaling

1. Input Values for scaling points should be confined to the limits of the Input Range Jumper position.
2. The same Input Value should not correspond to more than one Display Value. (Example: 20 mA can not equal 0 and 10.)
This is referred to as read out jumps (vertical scaled segments).
3. The same Display Value can correspond to more than one Input Value. (Example: 0 mA and 20 mA can equal 10.)
This is referred to as readout dead zones (horizontal scaled segments).
4. The maximum scaled Display Value spread between range maximum and minimum is limited to 65,535 . For example using +20 mA range the maximum +20 mA can be scaled to is 32,767 with 0 mA being 0 and Display Rounding of 1. (Decimal points are ignored.) The other half of 65,535 is for the lower half of the range 0 to -20 mA even if it is not used. With Display Rounding of 2, +20 mA can be scaled for $65,535(32,767 \times 2)$ but with even Input Display values shown.
5. For input levels beyond the first programmed Input Value, the meter extends the Display Value by calculating the slope from the first two coordinate pairs
 would be some negative Display Value. This could be prevented by making
 $d 5 P 3=$ the desired high Display Value. The calculations stop at the limits of the Input Range Jumper position.
6. For input levels beyond the last programmed Input Value, the meter extends the Display Value by calculating the slope from the last two sequential coordinate pairs. If three coordinate pair scaling points were entered, then the Display Value calculation would be between $\operatorname{IRPZ} / d 5 P \mathcal{Z} \&\{\pi P\} / d 5 P\}$ The calculations stop at the limits of the Input Range Jumper position.

6.2 MODULE 2 - User Input and Front Panel Function Key Parameters (2-Far)

The three user inputs are individually programmable to perform specific meter control functions. While in the Display Mode or Program Mode, the function is executed the instant the user input transitions to the active state.

The front panel function keys are also individually programmable to perform specific meter control functions. While in the Display Mode, the primary function is executed the instant the key is pressed. Holding the function key for three seconds executes a secondary function. It is possible to program a secondary function without a primary function.

In most cases, if more than one user input and/or function key is programmed for the same function, the maintained (level trigger) actions will be performed while at least one of those user inputs or function keys are activated. The momentary (edge trigger) actions will be performed every time any of those user inputs or function keys transition to the active state.

Note: In the following explanations, not all selections are available for both user inputs and front panel function keys. Alternating displays are shown with each selection. Those selections showing both displays are available for both. If a display is not shown, it is not available for that selection. $\mathbf{4 5 r - 1}$ will represent all three user inputs. \mathcal{F} will represent all five function keys.

NO FUNCTION

No function is performed if activated. This is the factory setting for all user inputs and function keys. No function can be selected without affecting basic start-up.

PROGRAMMING MODE LOCK-OUT

Programming Mode is locked-out, as long as activated (maintained action). A security code can be configured to allow programming access during lock-out.

ZERO (TARE) DISPLAY

The Zero (Tare) Display provides a way to zero the Input Display value at various input levels, causing future Display readings to be offset. This function is useful in weighing applications where the container or material on the scale should not be included in the next measurement value. When activated (momentary action), rE5EL flashes and the Display is set to zero. At the same time, the Display value (that was on the display before the Zero Display) is subtracted from the Display Offset Value and is automatically stored as the new Display Offset Value ($\boldsymbol{O F F 5 t}$). If another Zero (tare) Display is performed, the display will again change to zero and the Display reading will shift accordingly.

RELATIVE/ABSOLUTE DISPLAY

This function will switch the Input Display between Relative and Absolute. The Relative is a net value that includes the Display Offset Value. The Input Display will normally show the Relative unless switched by this function. Regardless of the display selected, all meter functions continue to operate based on relative values. The Absolute is a gross value (based on Module 1 DSP and INP entries) without the Display Offset Value. The Absolute display is selected as long as the user input is activated (maintained action) or at the transition of the function key (momentary action). When the user input is released, or the function key is pressed again, the input display switches back to Relative
 to indicate which display is active.

HOLD DISPLAY

The shown display is held but all other meter functions continue as long as activated（maintained action）．

HOLD ALL FUNCTIONS

The meter disables processing the input，holds all display contents，and locks the state of all outputs as long as activated （maintained action）．The serial port continues data transfer．

SYNCHRONIZE METER READING

The meter suspends all functions as long as activated （maintained action）．When the user input is released，the meter synchronizes the restart of the A / D with other processes or timing events．

STORE BATCH READING IN TOTALIZER

The Input Display value is one time added（batched）to the Totalizer at transition to activate（momentary action）．The Totalizer retains a running sum of each batch operation until the Totalizer is reset．When this function is selected， the normal operation of the Totalizer is overridden．

SELECT TOTALIZER DISPLAY

The Totalizer display is selected as long as activated （maintained action）．When the user input is released，the Input Display is returned．The DSP key overrides the active user input．The Totalizer continues to function including associated outputs independent of being displayed．

RESET TOTALIZER

When activated（momentary action）， $\boldsymbol{r E 5 E L}$ flashes and the Totalizer resets to zero．The Totalizer then continues to operate as it is configured．This selection functions independent of the selected display．

RESET AND ENABLE TOTALIZER

When activated（momentary action），rE5EL flashes and
 the Totalizer resets to zero．The Totalizer continues to operate while active（maintained action）．When the user input is released，the Totalizer stops and holds its value．This selection functions independent of the selected display．

ENABLE TOTALIZER

The Totalizer continues to operate as long as activated （maintained action）．When the user input is released，the Totalizer stops and holds its value．This selection functions independent of the selected display．

SELECT MAXIMUM DISPLAY

The Maximum display is selected as long as activated （maintained action）．When the user input is released，the Input Display returns．The DSP key overrides the active user input．The Maximum continues to function independent of being displayed．

When activated（momentary action），rE5EL flashes and the Maximum resets to the present Input Display value．The Maximum function then continues from that value．This selection functions independent of the selected display．

RESET，SELECT，ENABLE MAXIMUM DISPLAY

When activated（momentary action），the Maximum value is set to the present Input Display value．Maximum continues from that value while active（maintained action）．When the user input is released，Maximum detection stops and holds its value．This selection functions independent of the selected display．The DSP key overrides the active user input display but not the Maximum function．

SELECT MINIMUM DISPLAY

The Minimum display is selected as long as activated （maintained action）．When the user input is released，the Input Display is returned．The DSP key overrides the active user input．The Minimum continues to function independent of being displayed．

RESET MINIMUM

When activated（momentary action），rE5EL flashes and the Minimum reading is set to the present Input Display value．The Minimum function then continues from that value． This selection functions independent of the selected display．

RESET，SELECT，ENABLE MINIMUM DISPLAY

When activated（momentary action），the Minimum value is set to the present Input Display value．Minimum continues from that value while active（maintained action）．When the user input is released，Minimum detection stops and holds its value．This selection functions independent of the selected display．The DSP key overrides the active user input display but not the Minimum function．

RESET MAXIMUM AND MINIMUM

When activated（momentary action），rE5EL flashes and the Maximum and Minimum readings are set to the present Input Display value．The Maximum and Minimum function then continues from that value．This selection functions independent of the selected display．

CHANGE DISPLAY INTENSITY LEVEL

When activated（momentary action），the display intensity changes to the next intensity level（of 4）．The four levels correspond to Display Intensity Level $(d-L E L)$ settings of $0,3,8$ ，and 15 ．The intensity level，when changed via the User Input／Function Key，is not retained at power－down，unless Quick Programming or Full Programming mode is entered and exited．The meter will power－up at the last saved intensity level．

SETPOINT SELECTIONS

The following selections are accessible only with the Setpoint option card installed. Refer to Module 6 for an explanation of their operation.

	$\left\{\begin{array}{l} \text { Li5t - Select main or alternate setpoints } \\ \text { r- 1-Reset Setpoint } 1 \text { (Alarm 1) } \end{array}\right.$
Setpoint	r-2-Reset Setpoint 2 (Alarm 2)
rd	-3-Reset Setpoint 3 (Alarm 3)
	-4-Reset Setpoint 4 (Alarm 4)
Only	34 - Reset Setpoint 3 \& 4 (Alarm 3 \& 4)
	(r-hlL - Reset Setpoint All (Alarm All)

PRINT REQUEST

The meter issues a block print through the serial port when activated. The data transmitted during a print request is programmed in Module 7. If the user input is still active after the transmission is complete (about 100 msec), an additional transmission occurs. As long as the user input is held active, continuous transmissions occur.

6.3 MODULE 3 - Display and Program Lock-out Parameters ($3-\mathrm{L}$ [I)

3-1矿			PARAMETER MENU					Pro
PAR \downarrow								\uparrow
Hi	10	60t	$50-1$	$5 P-2$	50-3	50-4	Codt	
Max Display Lock-out	Min Display Lock-out	Total Display Lock-out	Setpoint 1 Access	Setpoint 2 Access	Setpoint 3 Access	Setpoint 4 Access	Security Code	

Module 3 is the programming for Display lock-out and "Full" and "Quick" Program lock-out.

When in the Display Mode, the available displays can be read consecutively by repeatedly pressing the DSP key. An annunciator indicates the display being shown. These displays can be locked from being visible. It is recommended that the display be set to $\mathcal{L I L}$ when the corresponding function is not used.

SELECTION	DESCRIPTION
rEd	Visible in Display Mode
LIL	Not visible in Display Mode

"Full" Programming Mode permits all parameters to be viewed and modified. This Programming Mode can be locked with a security code and/or user input. When locked and the PAR key is pressed, the meter enters a Quick Programming Mode. In this mode, the setpoint values can still be read and/or changed per the selections below. The Display Intensity Level ($d-L E U$) parameter also appears whenever Quick Programming Mode is enabled and the security code is greater than zero.

SELECTION	DESCRIPTION
$\boldsymbol{r E d}$	Visible but not changeable in Quick Programming Mode
$\boldsymbol{E H L}$	Visible and changeable in Quick Programming Mode
$\mathbf{L} \boldsymbol{\pi} \boldsymbol{L}$	Not visible in Quick Programming Mode

MAXIMUM DISPLAY LOCK-OUT MINIMUM DISPLAY LOCK-OUT TOTALIZER DISPLAY LOCK-OUT

These displays can be programmed for $\mathbf{L} \boldsymbol{Z} \mathbf{E}$ or $\boldsymbol{r} \boldsymbol{E d}$. When programmed for $\mathbf{L T L}$, the display will not be shown when the DSP key is pressed regardless of Program Lock-out status. It is suggested to lock-out the display if it is not needed. The associated function will continue to operate even if its display is locked-out.

SP-1 SP-2 SP-3 SP-4 SETPOINT ACCESS*

The setpoint displays can be programmed for LUE, rEd or $\boldsymbol{E} \boldsymbol{I} \boldsymbol{I}$ (See the following table). Accessible only with the Setpoint option card installed.

PROGRAM MODE SECURITY CODE

\square to $25 \square$

By entering any non-zero value, the prompt $\boldsymbol{\operatorname { C o d } E} \boldsymbol{\square}$ will appear when trying to access the Program Mode. Access will only be allowed after entering a matching security code or universal code of 222 . With this lock-out, a user input would not have to be configured for Program Lock-out. However, this lock-out is overridden by an inactive user input configured for Program Lock-out.

PROGRAMMING MODE ACCESS

SECURITY CODE	USER INPUT CONFIGURED	USER INPUT STATE	WHEN PAR KEY IS PRESSED	"FULL" PROGRAMMING MODE ACCESS
0	not PLIE	- -	"Full" Programming	Immediate access.
>0	not PLEE	-	Quick Programming w/Display Intensity	After Quick Programming with correct code \# at [0dE prompt.
>0	PLEL	Active	Quick Programming w/Display Intensity	After Quick Programming with correct code \# at [0dE prompt.
>0	PLit	Not Active	"Full" Programming	Immediate access.
0	PLEL	Active	Quick Programming	No access
0	PLit	Not Active	"Full" Programming	Immediate access.

Throughout this document, Programming Mode (without Quick in front) always refers to "Full" Programming (all meter parameters are accessible).

6.4 MODULE 4 - Secondary Function Parameters (4-5EL)

MAX CAPTURE DELAY TIME

0.0 to 3275.0 sec.

When the Input Display is above the present MAX value for the entered delay time, the meter will capture that display value as the new MAX reading. A delay time helps to avoid false captures of sudden short spikes.

min Capture delay time

0.0 to 3275.0 sec .

When the Input Display is below the present MIN value for the entered delay time, the meter will capture that display value as the new MIN reading. A delay time helps to avoid false captures of sudden short spikes.

DISPLAY UPDATE RATE

125310 20 updates/sec.
This parameter determines the rate of display update. When set to 20 updates/second, the internal re-zero compensation is disabled, allowing for the fastest possible output response.

PAXS: AUTO-ZERO TRACKING

PAXS: AUTO-ZERO BAND
RL-b 出
1 to 4895

0.02

The meter can be programmed to automatically compensate for zero drift. Drift may be caused by changes in the transducers or electronics, or accumulation of material on weight systems.

Auto-zero tracking operates when the readout remains within the tracking band for a period of time equal to the tracking delay time. When these conditions are met, the meter re-zeroes the readout. After the re-zero operation, the meter resets and continues to auto-zero track.

The auto-zero tracking band should be set large enough to track normal zero drift, but small enough to not interfere with small process inputs. The resolution of the band value will be affected by the input rounding factor ((-19 P , round).

For filling operations, the fill rate must exceed the auto-zero tracking rate. This avoids false tracking at the start of the filling operation.

Fill Rate $\geq \frac{\text { tracking band }}{\text { tracking time }}$

Auto-zero tracking is disabled and internally reset by setting the auto-zero tracking parameter $=0$.

UNITS LABEL BACKLIGHT

7\% BFF

The Units Label Kit Accessory contains a sheet of custom unit overlays which can be installed in to the meter's bezel display assembly. The backlight for these custom units is activated by this parameter.

DISPLAY OFFSET VALUE

This parameter does not apply for the PAXT.

OFF5L 会 - 19999 to 19999 $\stackrel{\square}{4} \boldsymbol{\square} \boldsymbol{\square}$

Unless a Zero Display was performed or an offset from Module 1 scaling is desired, this parameter can be skipped. The Display Offset Value is the difference from the Absolute (gross) Display value to the Relative (net) Display value for the same input level. The meter will automatically update this Display Offset Value after each Zero Display. The Display Offset Value can be directly keyed-in to intentionally add or remove display offset. See Relative / Absolute Display and Zero Display explanations in Module 2.

PAXT: ICE POINT COMPENSATION

This parameter turns the internal ice point compensation on or off. Normally, the ice point compensation is on. If using external compensation, set this parameter to off. In this case, use copper leads from the external compensation point to the meter. If using Custom TC range, the ice point compensation can be adjusted by a value in Module 1 when this is yes.

6.5 MODULE 5 - Totalizer (Integrator) Parameters (5-tat)

The totalizer accumulates (integrates) the Input Display value using one of two modes. The first is using a time base. This can be used to compute a timetemperature product. The second is through a user input or function key programmed for Batch (one time add on demand). This can be used to provide a readout of temperature integration, useful in curing and sterilization applications. If the Totalizer is not needed, its display can be locked-out and this module can be skipped during programming.

TOTALIZER DECIMAL POINT

$\begin{array}{lllll}0 & 0,0 & 0,00 & 0,000 & 0,0000\end{array}$

For most applications, this matches the Input Display Decimal Point $(\mathbf{d E L P L})$. If a different location is desired, refer to Totalizer Scale Factor.

TOTALIZER TIME BASE

LbR5E 5EL - seconds ($\div 1$) hour -hours ($\div 3600$) $\stackrel{1}{>} \quad$ - 17 . in - minutes $(\div 60)$ dRy - days $(\div 86400)$

This is the time base used in Totalizer accumulations. If the Totalizer is being accumulated through a user input programmed for Batch, then this parameter does not apply.

TOTALIZER SCALE FACTOR

0.00 t to 65.000

For most applications, the Totalizer reflects the same decimal point location and engineering units as the Input Display. In these cases, the Totalizer Scale Factor is 1.000 . The Totalizer Scale Factor can be used to scale the Totalizer to a different value than the Input Display. Common possibilities are:

1. Changing decimal point location (example tenths to whole)
2. Average over a controlled time frame.

Details on calculating the scale factor are shown later.
If the Totalizer is being accumulated through a user input programmed for Batch, then this parameter does not apply.

TOTALIZER LOW CUT VALUE

Lacut 分

- 19999 to 99999

-1999

A low cut value disables Totalizer when the Input Display value falls below the value programmed.

The resolution of this parameter will be affected by the input rounding factor (i - inP, round).

TOTALIZER POWER UP RESET

70 Do not reset buffer
 r5t Reset buffer

The Totalizer can be reset to zero on each meter power-up by setting this parameter to reset.

TOTALIZER HIGH ORDER DISPLAY

When the total exceeds 5 digits, the front panel annunciator TOT flashes. In this case, the meter continues to totalize up to a 9 digit value. The high order 4 digits and the low order 5 digits of the total are displayed alternately. The letter " h " denotes the high order display. When the total exceeds a 9 digit value, the Totalizer will show "E . . ." and will stop.

TOTALIZER BATCHING

The Totalizer Time Base and scale factor are overridden when a user input or function key is programmed for store batch (\mathbf{b} 肘). In this mode, when the user input or function key is activated, the Input Display reading is one time added to the Totalizer (batch). The Totalizer retains a running sum of each batch operation until the Totalizer is reset. This is useful in weighing operations, when the value to be added is not based on time but after a filling event.

TOTALIZER USING TIME BASE

Totalizer accumulates as defined by:
$\frac{\text { Input Display x Totalizer Scale Factor }}{\text { Totalizer Time Base }}$
Where:
Input Display - the present input reading
Totalizer Scale Factor - 0.001 to 65.000
Totalizer Time Base - (the division factor of \boldsymbol{t} R $5 \mathbf{5 E}$)

Example: The input reading is at a constant rate of 10.0 gallons per minute. The Totalizer is used to determine how many gallons in tenths has flowed. Because the Input Display and Totalizer are both in tenths of gallons, the Totalizer Scale Factor is 1 . With gallons per minute, the Totalizer Time Base is minutes (60). By placing these values in the equation, the Totalizer will accumulate every second as follows:
$\frac{10.0 \times 1.000}{60}=0.1667$ gallon accumulates each second
This results in:
10.0 gallons accumulates each minute
600.0 gallons accumulates each hour

TOTALIZER SCALE FACTOR CALCULATION EXAMPLES

1. When changing the Totalizer Decimal Point ($\mathbf{d E E P} \boldsymbol{P}$) location from the Input Display Decimal Point ($\mathbf{d E [P L} \mathbf{F}$), the required Totalizer Scale Factor is multiplied by a power of ten.

Example:

Input $(\mathbf{d E L P L} \mathbf{L})=0$		Input $(\mathbf{d E L P L} \mathbf{L})=0.0$		Input ($\mathbf{d E L P E} \mathbf{L})=0.00$	
Totalizer dE[PE	Scale Factor	Totalizer dE[PE	Scale Factor	Totalizer dE[PE	Scale Factor
0.0	10	0.00	10	0.000	10
0	1	0.0	1	0.00	1
x10	0.1	0	0.1	0.0	0.1
$\times 100$	0.01	x10	0.01	0	0.01
x1000	0.001	x100	0.001	x10	0.001

($x=$ Totalizer display is round by tens or hundreds)
2. To obtain an average reading within a controlled time frame, the selected Totalizer Time Base is divided by the given time period expressed in the same timing units.

Example: Average temperature per hour in a 4 hour period, the scale factor would be 0.250 . To achieve a controlled time frame, connect an external timer to a user input programmed for rtotz. The timer will control the start (reset) and the stopping (hold) of the totalizer.
6.6 MODULE 6 - Setpoint (Alarm) Parameters (5-5Pt) ∇

5-5P:

PAR \downarrow
$5 P 5 E L$

Setpoint
Select

SEtpoint
Action

Delay	Delay	Logic
		PAXT
Reset Action	Standby Operation	Setpoint Annunciators
ONLY		

∇ - A setpoint card must be installed in order to access this module.

Depending on the card installed, there will be two or four setpoint outputs available. For maximum input frequency, unused Setpoints should be configured for DFF action.

The setpoint assignment and the setpoint action determine certain setpoint feature availability.

SETPOINT SELECT

5P5EL		肘	5P-1	5P-z
$\stackrel{\square}{4}$	\#n		5P-3	5P-4

Enter the setpoint (alarm output) to be programmed. The \boldsymbol{n} in the following parameters will reflect the chosen setpoint number. After the chosen setpoint is completely programmed, the display will return to 5 P5EL RD . Repeat step for
 The number of setpoints available is setpoint output card dependent.

Setpoint Alarm Figures

With reverse output logic $r E_{\nu}$, the below alarm states are opposite.

 Absolute High Acting (Balanced Hys) $=\mathrm{Rb}-\mathrm{H} \mathbf{I}$	 Absolute Low Acting (Unbalanced Hys) = R $\mathrm{H}-\mathrm{La}$	
 Absolute Low Acting (Balanced Hys) $=$ R $b-$ Lo		
Absolute High Acting (Unbalanced Hys) $=$ RU-H This is also for Totalizer alarms: tot to, toth !	 Deviation Low Acting $(S P>0)=d E-L a$	Deviation Low Acting $(S P<0)=d E-L a$

SETPOINT ACTION

Rct-n		OFF	Rb-H:	Rb-LI	RU-H:	RU-L0
4	HFF	dE-H:	dE-LI	bRAd	totio	tat

Enter the action for the selected setpoint (alarm output). See Setpoint Alarm Figures for a visual detail of each action.

DFF	Setpoint always off, (returns to SPSEL NO)
Hb-H:	Absolute high, with balanced hysteresis
Rb-LD	Absolute low, with balanced hysteresis
晾-H:	Absolute high, with unbalanced hysteresis
RU-LD	Absolute low, with unbalanced hysteresis
dE-H:	Deviation high, with unbalanced hysteresis *
dE-LD	Deviation low, with unbalanced hysteresis *
bRAd	Outside band, with unbalanced hysteresis *
tatio	Lower Totalizer absolute high, unbalance hysteresis**
tath 1	Upper Totalizer absolute high, unbalance hysteresis**

* Deviation and band action setpoints are relative to the value of setpoint 1 . It is not possible to configure setpoint 1 as deviation or band actions. It is possible to use setpoint 1 for an absolute action, while its value is being used for deviation or band.
** The lower Totalizer action totio allows setpoints to function off of the lower 5 digits of the Totalizer. The upper Totalizer action tath i allows setpoints to function off of the upper 4 digits of the Totalizer. To obtain absolute low alarms for the Totalizer, program the tatio or tath t output logic as reverse.

SETPOINT VALUE

5P-n 合	
$\stackrel{1}{4}$	17, 0

- 19999 to 99999

Enter desired setpoint alarm value. These setpoint values can also be entered in the Display Mode during Program Lock-out when the setpoint is programmed as Ent in Parameter Module 3. Depending on the Setpoint Action, Rat-n, the value may be affected by the input rounding factor, 1-inp round. When a setpoint is programmed as deviation or band acting, the associated output tracks $5 P:$ as it is changed. The value entered is the offset, or difference from $5 \boldsymbol{P}$.

SETPOINT SOURCE

rEL Rb5

Selects the meter input value to be used to trigger the Setpoint Alarm. The rEL setting will cause the setpoint to trigger off of the relative (net) input value. The relative input value is the absolute input value that includes the Display
 absolute (gross) input value. The absolute input value is based on Module 1
 or tath 4 .

HYSTERESIS VALUE

1 to 65000

Enter desired hysteresis value. See Setpoint Alarm Figures for visual explanation of how setpoint alarm actions (balance and unbalance) are affected by the hysteresis. Depending on the Setpoint Action, Rct-n, the value may be affected by the input rounding factor, 1-17P round. When the setpoint is a control output, usually balance hysteresis is used. For alarm applications, usually unbalanced hysteresis is used. For unbalanced hysteresis modes, the hysteresis functions on the low side for high acting setpoints and functions on the high side for low acting setpoints.

Note: Hysteresis eliminates output chatter at the switch point, while time delay can be used to prevent false triggering during process transient events.

ON TIME DELAY

0,0 to $3275,0 \mathrm{sec}$.

Enter the time value in seconds that the alarm is delayed from turning on after the trigger point is reached. A value of 0.0 allows the meter to update the alarm status per the response time listed in the Specifications. When the output logic is $r E_{u}$, this becomes off time delay. Any time accumulated at power-off resets during power-up.

OFF TIME DELAY

0,0 to $3275,0 \mathrm{sec}$.

Enter the time value in seconds that the alarm is delayed from turning off after the trigger point is reached. A value of 0.0 allows the meter to update the alarm status per the response time listed in the Specifications. When the output logic is $r E_{u}$, this becomes on time delay. Any time accumulated at power-off resets during power-up.

OUTPUT LOGIC

nar rEu

Enter the output logic of the alarm output. The nor logic leaves the output operation as normal. The $r E_{u}$ logic reverses the output logic. In $r E_{u}$, the alarm states in the Setpoint Alarm Figures are reversed.

RESET ACTION

Enter the reset action of the alarm output.
Ruta = Automatic action; This action allows the alarm output to automatically reset off at the trigger points per the Setpoint Action shown in Setpoint Alarm Figures. The "on" alarm may be manually reset (off) immediately by a front panel function key or user input.The alarm remains reset off until the trigger point is crossed again.
LRE [$\mathbf{I}=$ Latch with immediate reset action; This action latches the alarm output on at the trigger point per the Setpoint Action shown in Setpoint Alarm Figures. Latch means that the alarm output can only be turned off by front panel function key or user input manual reset, serial reset command or meter power cycle. When the user input or function key is activated (momentary or maintained), the corresponding "on" alarm output is reset immediately and remains off until the trigger point is crossed again. (Previously latched alarms will be off if power up Display Value is lower than setpoint value.)
$\mathbf{L R E}[\boldsymbol{Z}=$ Latch with delay reset action; This action latches the alarm output on at the trigger point per the Setpoint Action shown in Setpoint Alarm Figures. Latch means that the alarm output can only be turned off by front panel function key or user input manual reset, serial reset command or meter power cycle. When the user input or function key is activated (momentary or maintained), the meter delays the event until the corresponding "on" alarm output crosses the trigger off point. (Previously latched alarms are off if power up Display Value is lower than setpoint value. During a power cycle, the meter erases a previous Latch 2 reset if it is not activated at power up.)

STANDBY OPERATION

no YE5

When $Y E 5$, the alarm is disabled (after a power up) until the trigger point is crossed. Once the alarm is on, the alarm operates normally per the Setpoint Action and Reset Mode.

[^0]: * This card is not suitable for use in older PAX models. For proper installation, a case knock-out feature must be present on the top surface of the PAX case. This feature began to be introduced to the standard PAX units in July of 2014 (2614).
 - Crimson® software is available for free download from hittp://www.redlion.net/

