

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

date 10/18/2016

page 1 of 9

DESCRIPTION: AC-DC POWER SUPPLY **SERIES:** PBO-3

FEATURES

- up to 3 W continuous power
- ultra-compact SIP package
- available in straight-pin and bent-pin configurations
- wide input voltage range
- over current and short circuit protections
- 3,000 Vac isolation
- UL 60950-1, CE safety approvals
- efficiency up to 80%

MODEL	output voltage	output current		output power	ripple and noise¹	efficiency ²
	(Vdc)	min (mA)	max (mA)	max (W)	max (mVp-p)	typ (%)
PBO-3-S3.3	3.3	50	500	1.65	150	63
PBO-3-S5	5	50	500	2.5	150	68
PBO-3-S9	9	33.3	333	3	150	75
PBO-3-S12	12	25	250	3	150	77
PBO-3-S15	15	20	200	3	150	78
PBO-3-S24	24	12.5	125	3	150	80

Notes:

- 1. At full load, nominal input, 20 MHz bandwidth oscilloscope, with a 1 μF ceramic and 10 μF electrolytyic capacitor on the output. 2. At 230 Vac input.
- 3. All specifications are measured at Ta=25°C, humidity <75%, 115 or 230 Vac input voltage, and rated output load unless otherwise specified.

PART NUMBER KEY

cui.com

INPUT

parameter	conditions/description	min	typ	max	units
voltage		85 70		264 400	Vac Vdc
frequency		47		440	Hz
current	at 115 Vac at 230 Vac			0.12 0.06	A A
inrush current	at 115 Vac at 230 Vac		13 23		A A
leakage current	CY0 is 1 nF/400 Vac			0.25	mA
no load power consumption	n			0.5	W

OUTPUT

parameter	conditions/description	min	typ	max	units
	3.3, 5 Vdc output models			470	μF
capacitive load	9 Vdc output models			150	μF
	all other models			100	μF
initial act point accounts.	3.3 Vdc output models			±8	%
initial set point accuracy	all other models			±5	%
line regulation	at full load		±1.5		%
load regulation	from 10~100% load		±2.5		%
hald on time	at 115 Vac		20		ms
hold-up time	at 230 Vac		80		ms
switching frequency				60	kHz
temperature coefficient			±0.15		%/°C

PROTECTIONS

parameter	conditions/description	min	typ	max	units
over current protection	auto recovery	110			%
short circuit protection	continuous, auto recovery				

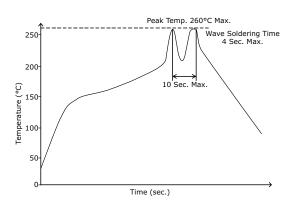
SAFETY & COMPLIANCE

parameter	conditions/description	min	typ	max	units						
isolation voltage	input to output for 1 minute	3,000			Vac						
safety approvals	UL 60950-1, EN 60950-1										
safety class	class II	class II									
conducted emissions	CISPR22/EN55022 Class A, (external circuit	required, see figure 1)								
conducted emissions	CISPR22/EN55022 Class B, (external circuit required, see figure 2)										
41-4-41-1	CISPR22/EN55022 Class A, (external circuit required, see figure 1)										
radiated emissions	CISPR22/EN55022 Class B, (external circuit	required, see figure 2)								
ESD	IEC/EN61000-4-2 Class B, ±4 kV										
radiated immunity	IEC/EN61000-4-3 Class A, 10V/m (external of	circuit required, see f	igure 2)								
CCT/bat	IEC/EN61000-4-4 Class B, ±2 kV (external circuit required, see figure 1)										
EFT/burst	IEC/EN61000-4-4 Class B, ±4 kV (external c	ircuit required, see fi	gure 2)								
	IEC/EN61000-4-5 Class B, ±1 kV (external circuit required, see figure 1)										
surge	IEC/EN61000-4-5 Class B, ±1 kV/±2 kV (ext	ernal circuit required	, see figure	2)							
conducted immunity	IEC/EN61000-4-6 Class A, 10 Vr.m.s (external circuit required, see figure 2)										
					_						

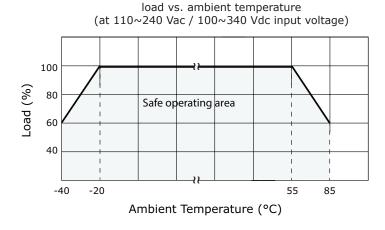
Notes: 1. The power supply is considered a component which will be installed into final equipment. The final equipment still must be tested to meet the necessary EMC directives.

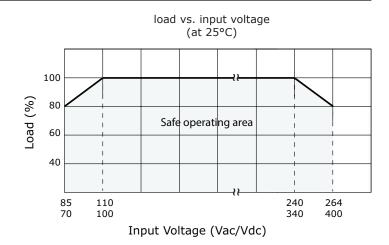
SAFETY & COMPLIANCE (CONTINUED)

parameter	conditions/description	min	typ	max	units			
PFM	IEC/EN61000-4-8 Class A, 10 A/m (external circuit required, see figure 2)							
voltage dips & interruptions	IEC/EN61000-4-11 Class B, 0%-70% (exte	IEC/EN61000-4-11 Class B, 0%-70% (external circuit required, see figure 2)						
MTBF	as per MIL-HDBK-217F at 25 °C 300,000				hours			
RoHS	2011/65/EU							

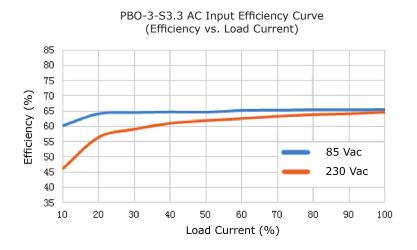

1. The power supply is considered a component which will be installed into final equipment. The final equipment still must be tested to meet the necessary EMC directives.

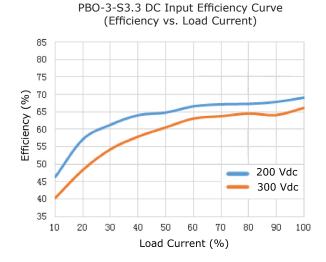
ENVIRONMENTAL

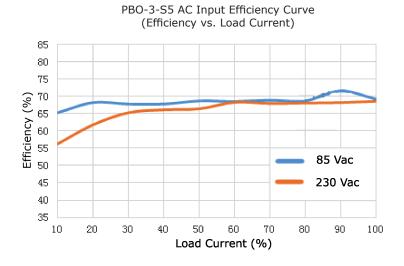

parameter conditions/description		min	typ	max	units
operating temperature	see derating curves	-40		85	°C
storage temperature		-40		105	°C
storage humidity	non-condensing			85	%

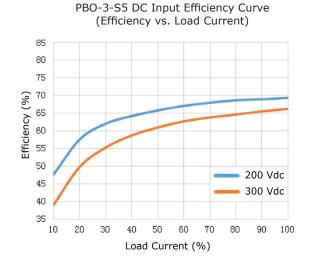

SOLDERABILITY

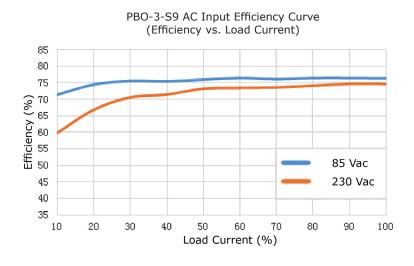
parameter	conditions/description	min	typ	max	units
hand soldering	for 3~5 seconds	350	360	370	°C
wave soldering	for 5~10 seconds	255	260	265	°C

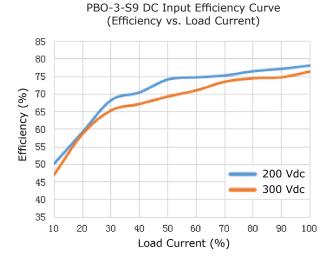



DERATING CURVES

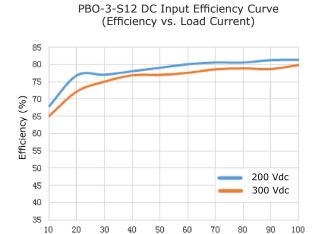


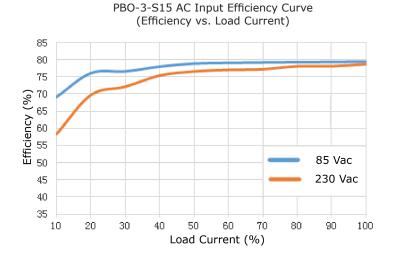


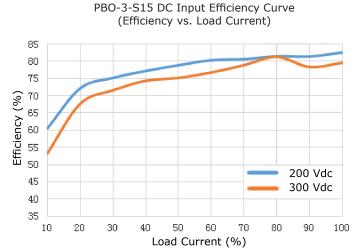

EFFICIENCY CURVES










EFFICIENCY CURVES (CONTINUED)



Load Current (%)

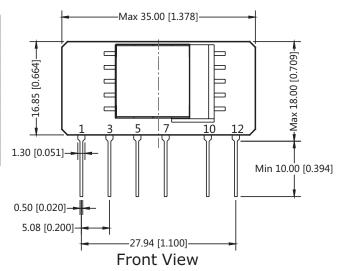
PBO-3-S24 DC Input Efficiency Curve

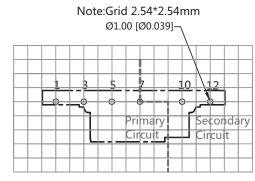
MECHANICAL

parameter	conditions/description	min	typ	max	units
dimensions	vertical models: $35.00 \times 11.00 \times 18.00 (1.38 \times 0.43 \times 0.71 \text{ inches})$ right-angle models: $35.00 \times 18.00 \times 11.00 (1.38 \times 0.71 \times 0.43 \text{ inches})$				
weight			6		g

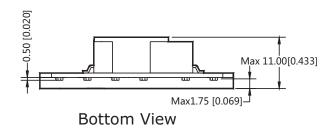
MECHANICAL DRAWING

Vertical Orientation


units: mm[inch]


tolerance: $\pm 0.50[\pm 0.020]$

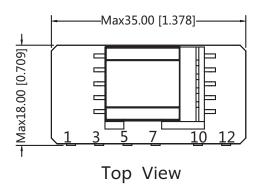
pin section tolerance: $\pm 0.10[\pm 0.004]$

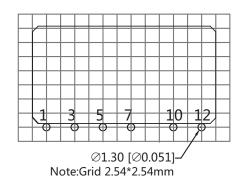

PIN CONNECTIONS					
PIN	Function				
1	AC (N)				
3	AC (L)				
5	+V(CAP)				
7	-V(CAP)				
10	-Vo				
12	+Vo				

Note: 1. It is required to add C1 between pins 5 & 7 (see application circuits).

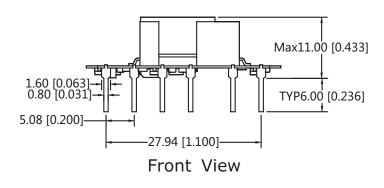
Top View PCB Layout

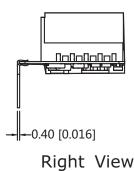
MECHANICAL DRAWING (CONTINUED)

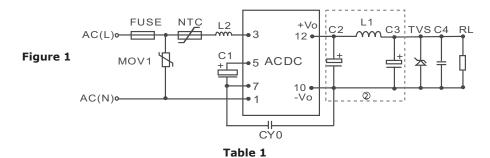

Right-angle Orientation units: mm[inch]


tolerance: $\pm 0.50[\pm 0.020]$

pin section tolerance: $\pm 0.10[\pm 0.004]$


PIN CONNECTIONS					
PIN	Function				
1	AC (N)				
3	AC (L)				
5	+V(CAP)				
7	-V(CAP)				
10	-Vo				
12	+Vo				


Note: 1. It is required to add C1 between pins 5 & 7 (see application circuits).



Top View **PCB** Layout

APPLICATION CIRCUIT

	Recommended External Circuit Components										
Vo (Vdc)	FUSE ¹	MOV1	NTC	L2	C1 ¹	CY0	C2 ¹	L1¹	C3 ¹	TVS	C4
3.3	1A/250V	S14K320	13D-5	4.7mH	10μF/400V	1nF/400Vac	330µF/25V	2.2µH	120µF/25V	SMBJ7.0A	0.1µF/50V
5	1A/250V	S14K320	13D-5	4.7mH	10μF/400V	1nF/400Vac	330µF/25V	2.2µH	68µF/35V	SMBJ7.0A	0.1μF/50V
9	1A/250V	S14K320	13D-5	4.7mH	10μF/400V	1nF/400Vac	330µF/25V	2.2µH	68µF/35V	SMBJ12A	0.1µF/50V
12	1A/250V	S14K320	13D-5	4.7mH	10μF/400V	1nF/400Vac	150µF/35V	2.2µH	68µF/35V	SMBJ20A	0.1µF/50V
15	1A/250V	S14K320	13D-5	4.7mH	10μF/400V	1nF/400Vac	150µF/35V	2.2µH	68µF/35V	SMBJ20A	0.1µF/50V
24	1A/250V	S14K320	13D-5	4.7mH	10µF/400V	1nF/400Vac	100µF/35V	2.2µH	68µF/35V	SMBJ30A	0.1µF/50V

- 1. Required components.
- 2. C2, C3, & L1 form pi-type filter circuit.

EMC RECOMMENDED CIRCUIT

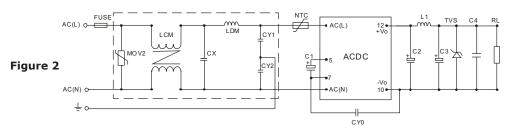


Table 2

Recommended External Circuit Components		
FUSE	1A/250V, slow fusing	
MOV2	S14K320	
LCM	3.5mH	
CX	0.1μF/275 Vac	
LDM	0.33mH	
CY1, CY2	1nF/400 Vac	
NTC	13D-5	
C1	10μF/400V	
CY0	1nF/400Vac	

Note: Also refer to Table 1.

Notes:

- 1. C1 is required for both AC and DC inputs. For input voltages greater than 370 Vdc, the recommended value is 10 µF / 450 V.

 2. It is required to add pi-type filter circuit (C2, C3, & L1) to the output. The capacitors are recommended to be high frequency and low impedance electrolytic capacitors. For capacitance and rated ripple current of capacitors, refer to the datasheets provided by the manufacturers. Voltage derating of capacitors should be 80% or above.
- 3. When operating in the -40~-20°C and 55~85°C temperature ranges, the 3.3 and 5 Vdc output models should use a 270 µF / 16 V solid-state capacitor for C2. 4. C4 is a ceramic capacitor used to filter high frequency noise.

 5. For current of L1 & L2 refer to the datasheets provided by the manufacturers. Current derating should be 80% or above.

- 6. TVS is a recommended component to protect post-circuits (if converter fails).
- 7. It is required to have a distance ≥6.4 mm for safety between external components in primary and secondary circuit.
- 8. It is recommended to add an insulation sheet between the bottom of the right-angle versions and the PCB when mounting.

REVISION HISTORY

rev.	description	date
1.0	initial release	10/18/2016

The revision history provided is for informational purposes only and is believed to be accurate.

Headquarters 20050 SW 112th Ave. Tualatin, OR 97062 **800.275.4899**

Fax 503.612.2383 **cui**.com techsupport@cui.com

CUI offers a two (2) year limited warranty. Complete warranty information is listed on our website.

CUI reserves the right to make changes to the product at any time without notice. Information provided by CUI is believed to be accurate and reliable. However, no responsibility is assumed by CUI for its use, nor for any infringements of patents or other rights of third parties which may result from its use.

CUI products are not authorized or warranted for use as critical components in equipment that requires an extremely high level of reliability. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.