

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Important notice

Dear Customer,

On 7 February 2017 the former NXP Standard Product business became a new company with the tradename **Nexperia**. Nexperia is an industry leading supplier of Discrete, Logic and PowerMOS semiconductors with its focus on the automotive, industrial, computing, consumer and wearable application markets

In data sheets and application notes which still contain NXP or Philips Semiconductors references, use the references to Nexperia, as shown below.

Instead of http://www.nxp.com, http://www.nxp.com, http://www.nexperia.com, http://www.nexperia.com)

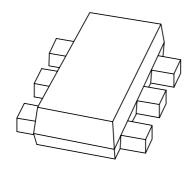
Instead of sales.addresses@www.nxp.com or sales.addresses@www.semiconductors.philips.com, use salesaddresses@nexperia.com (email)

Replace the copyright notice at the bottom of each page or elsewhere in the document, depending on the version, as shown below:

- © NXP N.V. (year). All rights reserved or © Koninklijke Philips Electronics N.V. (year). All rights reserved

Should be replaced with:

- © Nexperia B.V. (year). All rights reserved.


If you have any questions related to the data sheet, please contact our nearest sales office via e-mail or telephone (details via **salesaddresses@nexperia.com**). Thank you for your cooperation and understanding,

Kind regards,

Team Nexperia

DISCRETE SEMICONDUCTORS

DATA SHEET

PBSS2515VPN15 V low V_{CE(sat)} NPN/PNP transistor

Product data sheet Supersedes data of 2001 Nov 07 2005 Jan 11

15 V low V_{CE(sat)} NPN/PNP transistor

PBSS2515VPN

FEATURES

- 300 mW total power dissipation
- Very small 1.6 × 1.2 mm ultra thin package
- · Excellent coplanarity due to straight leads
- Low collector-emitter saturation voltage
- · High current capability
- Improved thermal behaviour due to flat lead
- Replaces two SC75/SC89 packaged low V_{CEsat} transistors on same PCB area
- · Reduces required PCB area
- · Reduced pick and place costs.

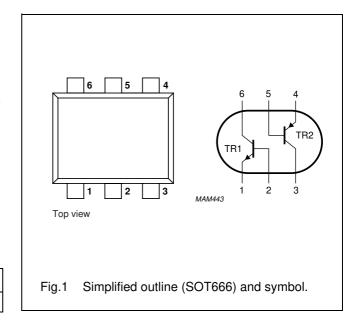
APPLICATION

- · General purpose switching and muting
- Low frequency driver circuits
- · LCD backlighting
- · Audio frequency general purpose amplifier applications
- Battery driven equipment (mobile phones, video cameras and hand-held devices).

DESCRIPTION

NPN/PNP low V_{CEsat} transistor pair in a SOT666 plastic package.

MARKING


TYPE NUMBER	MARKING CODE
PBSS2515VPN	N8

QUICK REFERENCE DATA

SYMBOL	PARAMETER	MAX.	UNIT
V _{CEO}	collector-emitter voltage	15	٧
I _{CM}	peak collector current	1	Α
R _{CEsat}	equivalent on-resistance	<500	mΩ

PINNING

PIN	DESCRIPTION		
1, 4	emitter	TR1; TR2	
2, 5	base	TR1; TR2	
6, 3	collector	TR1; TR2	

ORDERING INFORMATION

TYPE NUMBER	PACKAGE			
ITPE NUMBER	NAME DESCRIPTION VERSION			
PBSS2515VPN	_	plastic surface mounted package; 6 leads	SOT666	

15 V low $V_{CE(sat)}$ NPN/PNP transistor

PBSS2515VPN

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 60134).

SYMBOL	PARAMETER	PARAMETER CONDITIONS		MAX.	UNIT	
Per transis	Per transistor; for the PNP transistor with negative polarity					
V _{CBO}	collector-base voltage	open emitter	_	15	V	
V _{CEO}	collector-emitter voltage	open base	-	15	٧	
V _{EBO}	emitter-base voltage	open collector	-	6	٧	
Ic	collector current (DC)		-	500	mA	
I _{CM}	peak collector current		-	1	Α	
I _{BM}	peak base current		-	100	mA	
P _{tot}	total power dissipation	T _{amb} ≤ 25 °C; note 1	_	200	mW	
T _{stg}	storage temperature		-65	+150	°C	
Tj	junction temperature		_	150	°C	
T _{amb}	operating ambient temperature		-65	+150	°C	
Per device	Per device					
P _{tot}	total power dissipation	T _{amb} ≤ 25 °C; note 1	_	300	mW	

Note

1. Transistor mounted on an FR4 printed-circuit board.

THERMAL CHARACTERISTICS

SYMBOL	PARAMETER	CONDITIONS	VALUE	UNIT
R _{th(j-a)}	thermal resistance from junction to ambient	notes 1 and 2	416	K/W

Notes

- 1. Transistor mounted on an FR4 printed-circuit board.
- 2. The only recommended soldering method is reflow soldering.

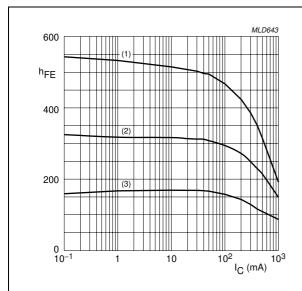
15 V low $V_{\text{CE(sat)}}$ NPN/PNP transistor

PBSS2515VPN

CHARACTERISTICS

 T_{amb} = 25 °C unless otherwise specified.

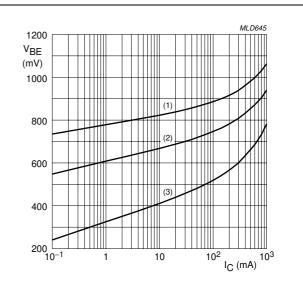
SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT	
Per transis	Per transistor; for the PNP transistor with negative polarity						
I _{CBO}	collector-base cut-off current	V _{CB} = 15 V; I _E = 0 A	_	_	100	nA	
		V _{CB} = 15 V; I _E = 0 A; T _j = 150 °C	_	_	50	μΑ	
I _{EBO}	emitter-base cut-off current	V _{EB} = 5 V; I _C = 0 A	_	_	100	nA	
h _{FE}	DC current gain	V _{CE} = 2 V; I _C = 10 mA	200	_	-		
		V _{CE} = 2 V; I _C = 100 mA; note 1	150	-	-		
		V _{CE} = 2 V; I _C = 500 mA; note 1	90	_	_		
V _{CEsat}	collector-emitter saturation	$I_C = 10 \text{ mA}; I_B = 0.5 \text{ mA}$	_	_	25	mV	
voltage	I _C = 200 mA; I _B = 10 mA	_	_	150	mV		
	$I_C = 500 \text{ mA}$; $I_B = 50 \text{ mA}$; note 1	_	_	250	mV		
R _{CEsat}	equivalent on-resistance	$I_C = 500 \text{ mA}$; $I_B = 50 \text{ mA}$; note 1	-	300	<500	mΩ	
V _{BEsat}	base-emitter saturation voltage	$I_C = 500 \text{ mA}$; $I_B = 50 \text{ mA}$; note 1	_	_	1.1	V	
V_{BE}	base-emitter turn-on voltage	V _{CE} = 2 V; I _C = 100 mA; note 1	-	_	0.9	٧	
NPN trans	istor						
f _T	transition frequency	I _C = 100 mA; V _{CE} = 5 V; f = 100 MHz	250	420	_	MHz	
C _c	collector capacitance	$V_{CB} = 10 \text{ V}; I_E = I_e = 0 \text{ A}; f = 1 \text{MHz}$	_	4.4	6	pF	
PNP trans	PNP transistor						
f _T	transition frequency	$I_C = -100 \text{ mA}; V_{CE} = -5 \text{ V};$ f = 100 MHz	100	280	_	MHz	
C _c	collector capacitance	$V_{CB} = -10 \text{ V}; I_E = I_e = 0 \text{ A}; f = 1 \text{MHz}$	-	-	10	pF	


Note

1. Pulse test: $t_p \leq 300~\mu s;~\delta \leq 0.02.$

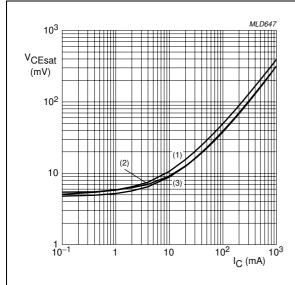
2005 Jan 11

15 V low $V_{CE(sat)}$ NPN/PNP transistor


PBSS2515VPN

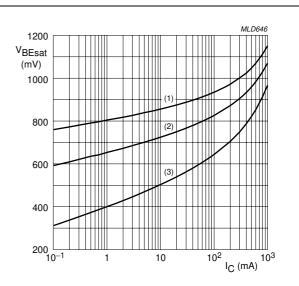
TR1 (NPN) $V_{CE} = 2 V$.

- (1) $T_{amb} = 150 \, ^{\circ}C$.
- (2) $T_{amb} = 25 \, ^{\circ}C$.
- (3) $T_{amb} = -55$ °C.


Fig.2 DC current gain as a function of collector current; typical values.

TR1 (NPN) $V_{CE} = 2 V$.

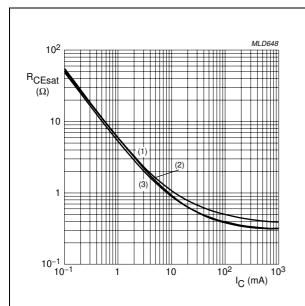
- (1) $T_{amb} = -55 \, ^{\circ}C.$
- (2) $T_{amb} = 25 \, ^{\circ}C$.
- (3) $T_{amb} = 150 \, ^{\circ}C$.


Fig.3 Base-emitter voltage as a function of collector current; typical values.

TR1 (NPN) $I_C/I_B = 20$.

- (1) $T_{amb} = 150 \, ^{\circ}C.$
- (2) $T_{amb} = 25 \, ^{\circ}C$.
- (3) $T_{amb} = -55 \, ^{\circ}C$.

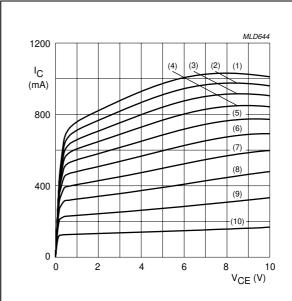
Fig.4 Collector-emitter saturation voltage as a function of collector current; typical values.


TR1 (NPN) $I_C/I_B = 20$.

- (1) $T_{amb} = 150 \, ^{\circ}C$.
- (2) $T_{amb} = 25 \, ^{\circ}C$.
- (3) $T_{amb} = -55 \, ^{\circ}C$.

Fig.5 Base-emitter saturation voltage as a function of collector current; typical values.

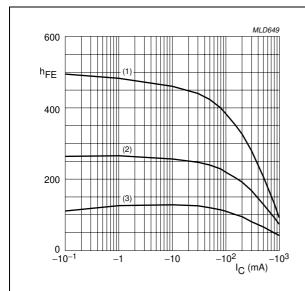
15 V low $V_{CE(sat)}$ NPN/PNP transistor


PBSS2515VPN

TR1 (NPN) $I_C/I_B = 20$.

- (1) $T_{amb} = 150 \, ^{\circ}C$.
- (2) $T_{amb} = 25 \, ^{\circ}C.$
- (3) $T_{amb} = -55$ °C.

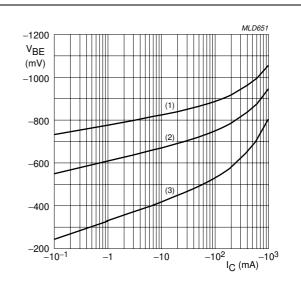
Fig.6 Equivalent on-resistance as a function of collector current; typical values.


TR1 (NPN) $T_{amb} = 25 \, ^{\circ}C$.

- (1) $I_B = 4.6 \text{ mA}.$
- (6) $I_B = 2.3 \text{ mA}.$
- (2) $I_B = 4.14 \text{ mA}.$
- (7) $I_B = 1.84 \text{ mA}.$
- (3) $I_B = 3.68 \text{ mA}.$
- (8) $I_B = 1.38 \text{ mA}.$
- (4) $I_B = 3.22 \text{ mA}.$
- (9) $I_B = 0.92 \text{ mA}.$
- (5) $I_B = 2.76 \text{ mA}.$
- (10) $I_B = 0.46 \text{ mA}$.

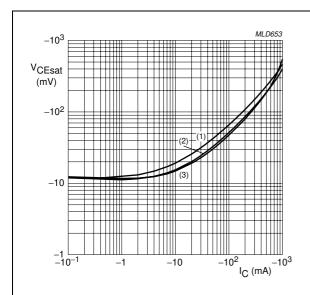
Fig.7 Collector current as a function of collector-emitter voltage; typical values.

15 V low $V_{CE(sat)}$ NPN/PNP transistor


PBSS2515VPN

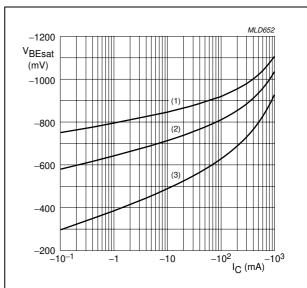
TR2 (PNP) $V_{CE} = -2 \text{ V}.$

- (1) $T_{amb} = 150 \, ^{\circ}C$.
- (2) $T_{amb} = 25 \, ^{\circ}C$.
- (3) $T_{amb} = -55$ °C.


Fig.8 DC current gain as a function of collector current; typical values.

TR2 (PNP) $V_{CE} = -2 V$.

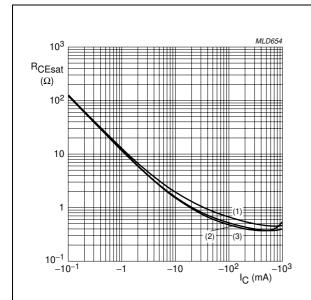
- (1) $T_{amb} = -55 \, ^{\circ}C$.
- (2) $T_{amb} = 25 \, ^{\circ}C$.
- (3) $T_{amb} = 150 \, ^{\circ}C$.


Fig.9 Base-emitter voltage as a function of collector current; typical values.

TR2 (PNP) $I_C/I_B = 20$.

- (1) $T_{amb} = 150 \, ^{\circ}C$.
- (2) $T_{amb} = 25 \, ^{\circ}C$.
- (3) $T_{amb} = -55 \, ^{\circ}C$.

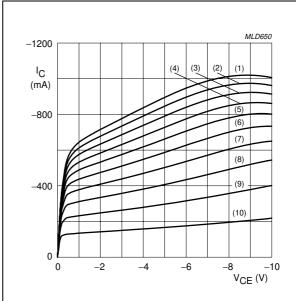
Fig.10 Collector-emitter saturation voltage as a function of collector current; typical values.


TR2 (PNP) $I_C/I_B = 20$.

- (1) $T_{amb} = 150 \, ^{\circ}C$.
- (2) $T_{amb} = 25 \, ^{\circ}C$.
- (3) $T_{amb} = -55 \, ^{\circ}C$.

Fig.11 Base-emitter saturation voltage as a function of collector current; typical values.

15 V low $V_{CE(sat)}$ NPN/PNP transistor


PBSS2515VPN

TR2 (PNP) $I_C/I_B = 20$.

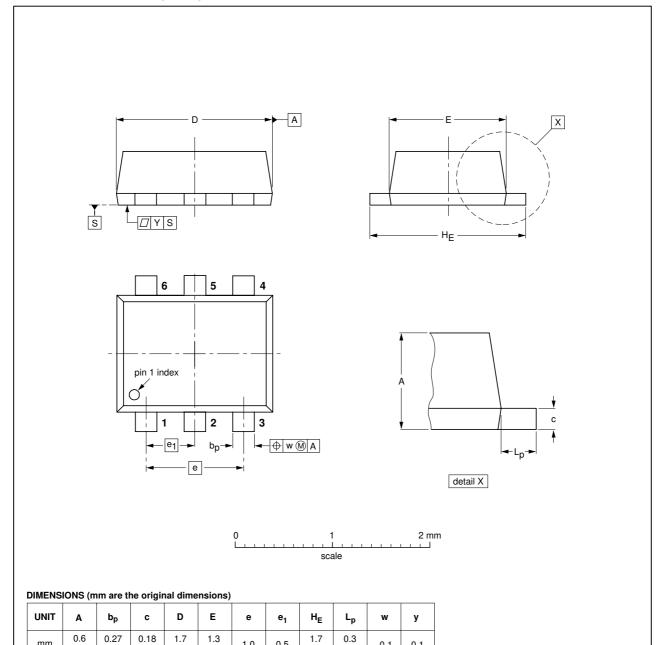
- (1) $T_{amb} = 150 \, ^{\circ}C$.
- (2) $T_{amb} = 25 \, ^{\circ}C.$
- (3) $T_{amb} = -55$ °C.

Fig.12 Equivalent on-resistance as a function of collector current; typical values.

TR2 (PNP) $T_{amb} = 25 \, ^{\circ}C$.

- (1) $I_B = -7 \text{ mA}$.
- (6) $I_B = -3.5 \text{ mA}.$
- (2) $I_B = -6.3 \text{ mA}.$
- (7) $I_B = -2.8 \text{ mA}.$
- (3) $I_B = -5.6 \text{ mA}.$
- (8) $I_B = -2.1 \text{ mA}.$ (9) $I_B = -1.4 \text{ mA}.$
- (4) $I_B = -4.9 \text{ mA}.$ (5) $I_B = -4.2 \text{ mA}.$
- (10) $I_B = -0.7 \text{ mA}$.

Fig.13 Collector current as a function of collector-emitter voltage; typical values.


15 V low $V_{CE(sat)}$ NPN/PNP transistor

PBSS2515VPN

PACKAGE OUTLINE

Plastic surface-mounted package; 6 leads

SOT666

OUTLINE	REFERENCES			EUROPEAN	ICOUE DATE	
VERSION	IEC	JEDEC	JEITA		PROJECTION ISSUE DA	
SOT666						-04-11-08- 06-03-16

0.1

0.1

1.0

1.1

0.5

2005 Jan 11 9

15 V low $V_{CE(sat)}$ NPN/PNP transistor

PBSS2515VPN

DATA SHEET STATUS

DOCUMENT STATUS(1)	PRODUCT STATUS ⁽²⁾	DEFINITION
Objective data sheet	Development	This document contains data from the objective specification for product development.
Preliminary data sheet	Qualification	This document contains data from the preliminary specification.
Product data sheet	Production	This document contains the product specification.

Notes

- 1. Please consult the most recently issued document before initiating or completing a design.
- 2. The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

DISCLAIMERS

General — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions

above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Terms and conditions of sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

NXP Semiconductors

Customer notification

This data sheet was changed to reflect the new company name NXP Semiconductors, including new legal definitions and disclaimers. No changes were made to the technical content, except for package outline drawings which were updated to the latest version.

Contact information

For additional information please visit: http://www.nxp.com

For sales offices addresses send e-mail to: salesaddresses@nxp.com

© NXP B.V. 2009

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.

The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

 Printed in The Netherlands
 R75/03/pp11
 Date of release: 2005 Jan 11
 Document order number: 9397 750 14429

