imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

SHARP

PC810

High Speed Under High Load Resistance Photocoupler

 $\label{eq:lead} \mbox{ Lead forming type (I type) and taping reel type (P type) are also available. (PC810I/PC810P)$

Features

1. High speed response under high resistance load

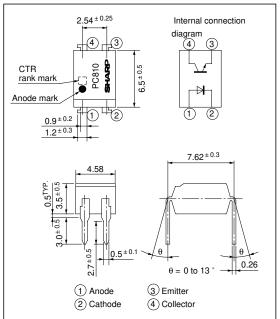
(t_{off} : MAX. 1ms at I_F = 1mA, V_{CC} = 5V,

 $R_{L} = 110k\Omega$)

2. High current transfer ratio under low input current

(CTR : MIN. 60% at I_{F} = 1mA, V_{CE} = 0.4V)

3. High isolation voltage between input and output


 $(V_{iso}: 5\ 000V_{rms})$

- 4. Compact dual-in-line package
- 5. Recognized by UL, file No. E64380

Applications

- 1. Solid state relays
- 2. Motor-control equipment
- 3. Signal transmission between circuits of different potentials and impedances

■ Outline Dimensions (Unit : mm)

Absolute Maximum Ratings

$(1_a 2_b \mathbf{C})$	$(T_a =$	25°C)
--------------------------	----------	-------

	Parameter	Symbol	Rating	Unit
	Forward current	I_F	50	mA
Input	^{*1} Peak forward current	I_{FM}	1	А
	Reverse voltage	VR	6	V
	Power dissipation	Р	70	mW
	Collector-emitter voltage	V CEO	35	V
0	Emitter-collector voltage	V ECO	6	V
Output	Collector current	Ic	50	mA
	Collector power dissipation	Pc	150	mW
	Total power dissipation	P tot	200	mW
	*2Isolation voltage		V iso 5 000	
Operating temperature		T opr	- 30 to + 100	°C
Storage temperature		T stg	- 55 to + 125	°C
	*3Soldering temperature	T sol	260	°C

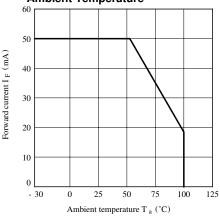
*1 Pulse width<=100µs, Duty ratio : 0.001

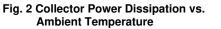
*2 40 to 60% RH, AC for 1 minute

*3 For 10 seconds

" In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's devices, shown in catalogs, data books, etc. Contact SHARP in order to obtain the latest version of the device specification sheets before using any SHARP's device. "

Electro-optical Characteristics


 $(Ta = 25^{\circ}C)$


	e optioal ella act	01101100					(14	20 0)
Parameter				Conditions	MIN.	TYP.	MAX.	Unit
	Forward voltage		VF	$I_F = 20mA$	-	1.2	1.4	V
Input Output Transfer charac- teristics	Peak forward voltage		V FM	$I_{FM} = 0.5A$	-	-	3.0	V
Input	$\begin{array}{ c c c c c c c } \hline Forward voltage & V_F & I_F = 20mA & - & 1.2 & 1.2 \\ \hline Peak forward voltage & V_{FM} & I_{FM} = 0.5A & - & - & 3.2 \\ \hline Reverse current & I_R & V_R = 4V & - & - & 1.2 \\ \hline Terminal capacitance & C_t & V = 0, f = 1 \text{ HHz} & - & 30 & 25 \\ \hline \text{out} & Collector dark current & I_{CEO} & V_{CE} = 20V, I_F = 0 & - & - & 10 \\ \hline & $^{*5}\text{Current transfer ratio} & CTR & I_F = 1mA, V_{CE} = 0.4V & 60 & - & 20 \\ \hline & Collector-emitter saturation voltage & V_{CE} (sat) & I_F = 20mA, I_C = 1mA & - & 0.1 & 0.1 \\ \hline & Isolation resistance & R_{1SO} & DC500V, 40 to 60\% \text{ RH} & 5 x 10^{10} & 10^{11} & - \\ \hline & \text{Floating capacitance} & C_f & V = 0, f = 1 \text{ MHz} & - & 0.6 & 1.4 \\ \hline & \text{Cut-off frequency} & f_c & V_{CE} = 5V, I_C = 2mA, R_L = 1k\Omega & - & 10 \\ \hline & \text{Fall time} & t_f & V_{CE} = 2V, I_C = 2mA, R_L = 1k\Omega & - & 10 \\ \hline & \text{Foll time} & t_f & V_{CE} = 2V, I_C = 2mA, R_L = 1k\Omega & - & 10 \\ \hline & \text{Foll time} & t_f & V_{CE} = 2V, I_C = 2mA, R_L = 1k\Omega & - & 10 \\ \hline & \text{Foll time} & t_f & V_{CE} = 2V, I_C = 2mA, R_L = 1k\Omega & - & 10 \\ \hline & \text{Foll time} & t_f & V_{CE} = 2V, I_C = 2mA, R_L = 1k\Omega & - & 10 \\ \hline & \text{Foll time} & t_f & V_{CE} = 2V, I_C = 2mA, R_L = 1k\Omega & - & 10 \\ \hline & \text{Foll time} & t_f & V_{CE} = 2V, I_C = 2mA, R_L = 1k\Omega & - & 10 \\ \hline & \text{Foll time} & t_f & V_{CE} = 2V, I_C = 2mA, R_L = 1k\Omega & - & 10 \\ \hline & \text{Foll time} & \text{Foll time} & t_f & V_{CE} = 2V, I_C = 2mA, R_L = 1k\Omega & - & 10 \\ \hline & \text{Foll time} & \text{Foll time} & t_f & V_{CE} = 2V, I_C = 2mA, R_L = 1k\Omega & - & 10 \\ \hline & \text{Foll time} & $	10	μA					
	Terminal capacitance		Ct	V = 0, $f = 1$ kHz	-	30	250	pF
Output	ut Collector dark current		ICEO	$V_{CE} = 20V, I_F = 0$	-	-	10 - 7	А
	*5Current transfer ratio		CTR	$I_F = 1 m A, V_{CE} = 0.4 V$	60	-	200	%
	Collector-emitter saturation voltage		V CE (sat)	$I_F = 20mA, I_C = 1mA$	-	0.1	0.2	V
	Isolation resistance		R ISO	DC500V, 40 to 60% RH	5 x 10 ¹⁰	1011	-	Ω
Transfer	Floating capacitance		Cf	V = 0, f = 1MHz	-	0.6	1.0	pF
charac-	Cut-off frequency		fc	$V_{CE} = 5V, I_C = 2mA, R_L = 1k\Omega, -3dB$	6	60	-	kHz
teristics	*5 D	Rise time	tr	V IV I DEAD ILO	-	10	50	μs
	⁹ Response time	Fall time	tf	$v_{CE} = 2v, 1_C = 2mA, K_L = 1K\Omega$	-	10	50	μs
	*5Turn-off time		t off	$V_{CC} = 5V, I_F = 1mA, R_L = 110k\Omega$	-	0.5	1.0	ms

*5 Classification table of current transfer ratio and response time is shown below

Model	Rank	CTR (%)	$t_r (\mu s)$		t_{f} (μ s)		$t_{\text{off}}\left(\mus\right)$	
No.	mark	CIK (70)	TYP.	MAX.	TYP.	MAX.	TYP.	MAX.
PC810A	Α	60 to 120	4	15	3	15	350	500
PC810B B		100 to 200	10	50	10	50	500	1 000
PC810 A or B, or no marking		60 to 200	-	50	-	50	-	1 000
Measurement		$I_{F} = 1mA$ $V_{CE} = 0.4V$ $T_{a} = 25^{\circ}C$		$V_{CE} = 2$ $I_C = 2$ $R_L = 2$ $T_a = 2$	mA lkΩ		$I_{F} = 1mA$ $V_{CC} = 5V$ $R_{L} = 110k \Omega$ $T_{a} = 25^{\circ}C$	

Fig. 1 Forward Current vs. Ambient Temperature

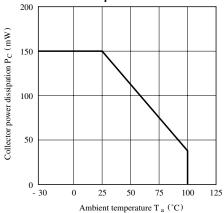
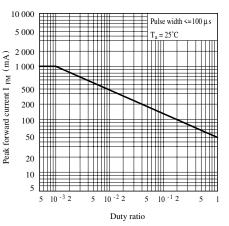
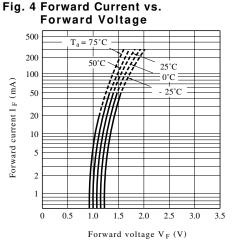
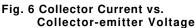
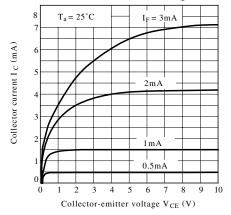






Fig. 3 Paek Foward Current vs. Duty Ratio

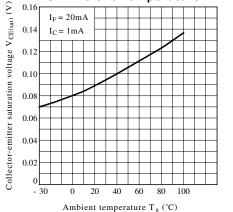


Fig. 5 Current Transfer Ratio vs. Forward Current

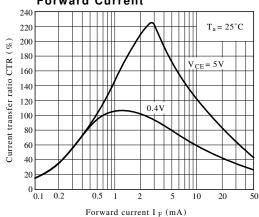


Fig. 7 Relative Current Transfer Ratio vs. Ambient Temperature

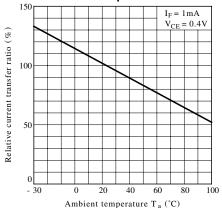
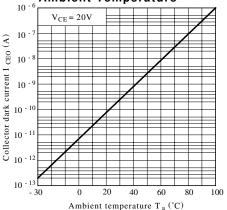
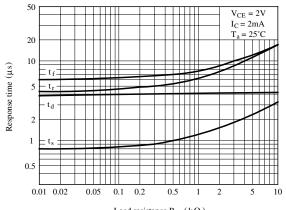
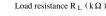





Fig. 9 Collector Dark Current vs. Ambient Temperature

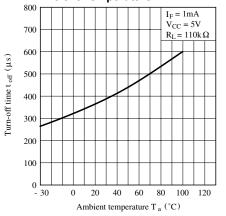
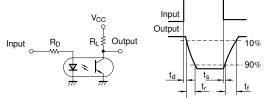
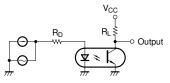


Fig.10 Response Time vs. Load Resistance





Test Circuit for Response Time

Test Circuit for Frepuency Response

• Please refer to the chapter "Precautions for Use"

Fig.11 Turn-off Time vs. Load Resistance

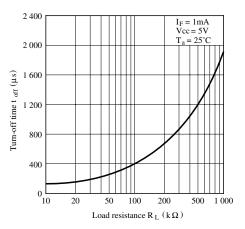
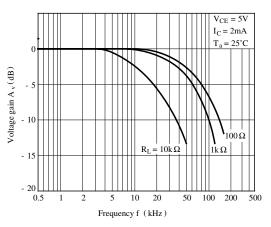
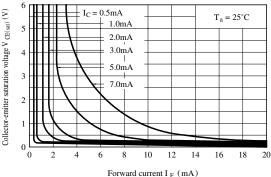




Fig.13 Frequency Response

NOTICE

- •The circuit application examples in this publication are provided to explain representative applications of SHARP devices and are not intended to guarantee any circuit design or license any intellectual property rights. SHARP takes no responsibility for any problems related to any intellectual property right of a third party resulting from the use of SHARP's devices.
- •Contact SHARP in order to obtain the latest device specification sheets before using any SHARP device. SHARP reserves the right to make changes in the specifications, characteristics, data, materials, structure, and other contents described herein at any time without notice in order to improve design or reliability. Manufacturing locations are also subject to change without notice.
- •Observe the following points when using any devices in this publication. SHARP takes no responsibility for damage caused by improper use of the devices which does not meet the conditions and absolute maximum ratings to be used specified in the relevant specification sheet nor meet the following conditions:
 - (i) The devices in this publication are designed for use in general electronic equipment designs such as:
 - Personal computers
 - Office automation equipment
 - Telecommunication equipment [terminal]
 - Test and measurement equipment
 - Industrial control
 - Audio visual equipment
 - Consumer electronics

(ii)Measures such as fail-safe function and redundant design should be taken to ensure reliability and safety when SHARP devices are used for or in connection with equipment that requires higher reliability such as:

- Transportation control and safety equipment (i.e., aircraft, trains, automobiles, etc.)
- Traffic signals
- Gas leakage sensor breakers
- Alarm equipment
- Various safety devices, etc.

(iii)SHARP devices shall not be used for or in connection with equipment that requires an extremely high level of reliability and safety such as:

- Space applications
- Telecommunication equipment [trunk lines]
- Nuclear power control equipment
- Medical and other life support equipment (e.g., scuba).
- •Contact a SHARP representative in advance when intending to use SHARP devices for any "specific" applications other than those recommended by SHARP or when it is unclear which category mentioned above controls the intended use.
- •If the SHARP devices listed in this publication fall within the scope of strategic products described in the Foreign Exchange and Foreign Trade Control Law of Japan, it is necessary to obtain approval to export such SHARP devices.
- •This publication is the proprietary product of SHARP and is copyrighted, with all rights reserved. Under the copyright laws, no part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, in whole or in part, without the express written permission of SHARP. Express written permission is also required before any use of this publication may be made by a third party.
- •Contact and consult with a SHARP representative if there are any questions about the contents of this publication.