: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

PC928J000000F Series

Description

PC928J00000F Series contains an IRED optically coupled to an OPIC chip.

It is packaged in a Mini-flat, Half pitch type (14 pin).
Input-output isolation voltage(rms) is 4.0 kV .

Features

1. 14 pin Half lead pin pitch (Lead pitch=1.27 mm) package type
2. Double transfer mold package
(Ideal for Flow Soldering)
3. Built-in IGBT shortcircuit protector circuit
4. Built-in direct drive circuit for IGBT drive
(Peak output current : I lo1p, I I
5. High isolation voltage ($\mathrm{V}_{\text {iso(rms }}$: 4.0 kV)
6. Lead-free and RoHS directive compliant

Built-in Short Protection Circuit, Gate Drive SMD 14 pin *OPIC Photocoupler

Agency approvals/Compliance

1. Recognized by UL1577, file No. E64380 (as model No. PC928)
2. Approved by VDE, DIN EN60747-5-2 ${ }^{(*)}$ (as an option), file No. 94626 (as model No. PC928)
3. Package resin : UL flammability grade (94V-0)
${ }^{(*)}$ DIN EN60747-5-2 : successor standard of DIN VDE0884

Applications

1. Inverter

* "OPIC"(Optical IC) is a trademark of the SHARP Corporation. An OPIC consists of a light-detecting element and a signal-processing circuit integrated onto a single chip.

Internal Connection Diagram

(1) Anode (8) FS
(2) Anode
(9) C
(3) Cathode
(10) GND
(4) NC *
(11) O_{2}
(5) NC^{*} (12) O_{1}
(6) NC^{*} (13) V_{CC}
(7) NC* (14) GND

* No. (4) to (7) pin shall be shorted in the device.

Truth table

Input	C input-output	O_{2} output	FS output	
ON	Low level	High level	High level	
	High level	Low level	Low level	At operating protection function
OFF	Low level	Low level	High level	
	High level	Low level	High level	

Outline Dimensions

(Unit : mm)

1. SMT Gullwing Lead-Form [ex. PC928PJ0000F]

Product mass : approx. 0.47 g
2. SMT Gullwing Lead-Form (VDE option) [ex. PC928PYJ000F]

Product mass : approx. 0.47g

Plating material : SnCu (Cu : TYP. 2\%)

Date code (2 digit)

1st digit				2nd digit	
Year of production				Month of production	
A.D.	Mark	A.D	Mark	Month	Mark
1990	A	2002	P	January	1
1991	B	2003	R	February	2
1992	C	2004	S	March	3
1993	D	2005	T	April	4
1994	E	2006	U	May	5
1995	F	2007	V	June	6
1996	H	2008	W	July	7
1997	J	2009	X	August	8
1998	K	2010	A	September	9
1999	L	2011	B	October	O
2000	M	2012	C	November	N
2001	N	\vdots	\vdots	December	D

repeats in a 20 year cycle

Country of origin
Japan
Rank mark
There is no rank mark indicator.

Absolute Maximum Ratings

Parameter	Symbol	Rating	Unit
${ }^{\text {a }}{ }^{* 1}$ Forward current	I_{F}	25	mA
${ }^{* 2}$ Reverse voltage	V_{R}	6	V
Supply voltage	V_{CC}	35	V
O_{1} output current	$\mathrm{I}_{\mathrm{O} 1}$	0.1	A
${ }^{* 3} \mathrm{O}_{1}$ peak output current	$\mathrm{I}_{\text {O1P }}$	0.4	A
O_{2} output current	$\mathrm{I}_{\mathrm{O} 2}$	0.1	A
$\pm{ }^{* 3} \mathrm{O}_{2}$ peak output current	$\mathrm{I}_{\text {O2P }}$	0.4	A
O O_{1} output voltage	$\mathrm{V}_{\mathrm{O} 1}$	35	V
O ${ }^{* 4}$ Power dissipation	P_{O}	500	mW
Overcurrent detection voltage	V_{C}	V_{CC}	V
Overcurrent detection current	I_{C}	30	mA
Error signal output voltage	V_{FS}	V_{CC}	V
Error signal output current	I_{FS}	20	mA
${ }^{* 5}$ Total power dissipation	$\mathrm{P}_{\text {tot }}$	550	mW
${ }^{\text {*6 }}$ Isolation voltage	$\mathrm{V}_{\text {iso (rms) }}$	4.0	kV
Operating temperature	$\mathrm{T}_{\text {opr }}$	-25 to +80	${ }^{\circ} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\text {stg }}$	-55 to +125	${ }^{\circ} \mathrm{C}$
${ }^{\text {*7 } 7}$ Soldering temperature	$\mathrm{T}_{\text {sol }}$	260	${ }^{\circ} \mathrm{C}$

*1 The derating factors of a absolute maximum ratings due to ambient temperature are shown in Fig. 15
*2 $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
*3 Pulse width $\leq 0.15 \mu \mathrm{~s}$, Duty ratio : 0.01
*4.5 The derating factors of a absolute maximum ratings due to ambient temperature are shown in Fig. 16
*6 AC for 1 minute, 40 to $60 \% \mathrm{RH}, \mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \mathrm{f}=60 \mathrm{~Hz}$
*7 For 10 s

Electro-optical Characteristics

(unless otherwise specified $\mathrm{T}_{\mathrm{a}}=\mathrm{T}_{\text {opr }}$)

Parameter		Symbol	Conditions ${ }^{* 8}$	MIN.	TYP.	MAX.	Unit
\#	Forward voltage	V_{Fl}	$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$	-	1.2	1.4	V
		$\mathrm{V}_{\mathrm{F} 2}$	$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{F}}=0.2 \mathrm{~mA}$	0.6	0.9	-	V
	Reverse current	I_{R}	$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{R}}=4 \mathrm{~V}$	-	-	10	$\mu \mathrm{A}$
	Terminal capacitance	$\mathrm{C}_{\text {t }}$	$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \mathrm{V}=0, \mathrm{f}=1 \mathrm{kHz}$	-	30	250	pF
$\begin{aligned} & \text { I } \\ & \\ & 0 \\ & 0 \end{aligned}$	Supply voltage	V_{CC}	$\mathrm{T}_{\mathrm{a}}=-10$ to $+60^{\circ} \mathrm{C}$	15	-	30	V
			-	15	-	24	V
	O_{1} Low level output voltage	$\mathrm{V}_{\text {O1L }}$	$\mathrm{V}_{\mathrm{CC} 1}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC} 2}=-12 \mathrm{~V}, \mathrm{I}_{\mathrm{O} 1}=0.1 \mathrm{~A}, \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA} * 9$	-	0.2	0.4	V
	O_{2} High level output voltage	$\mathrm{V}_{\mathrm{O} 2 \mathrm{H}}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{Ol}}=24 \mathrm{~V}, \mathrm{I}_{\mathrm{O} 2}=-0.1 \mathrm{~A}, \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA} * 9$	20	22	-	V
	O_{2} Low level output voltage	$\mathrm{V}_{\mathrm{O} 2 \mathrm{~L}}$	$\mathrm{V}_{\mathrm{CC}}=24 \mathrm{~V}, \mathrm{I}_{\mathrm{O} 2}=0.1 \mathrm{~A}, \mathrm{I}_{\mathrm{F}}=0 \quad * 9$	-	1.2	2.0	V
	O_{1} leak current	$\mathrm{I}_{\text {IIL }}$	$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{Ol}}=35 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=0 \quad * 9$	-	-	500	$\mu \mathrm{A}$
	High level supply current	$\mathrm{I}_{\mathrm{CCH}}$	$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=24 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA} \mathrm{*9}$	-	10	17	mA
			$\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{Ol}}=24 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA} \quad * 9$	-	-	19	mA
	Low level supply current	$\mathrm{I}_{\mathrm{CCL}}$	$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{OI}}=24 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=0 \quad * 9$	-	11	18	mA
			$\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{O} 1}=24 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=0 \quad * 9$	-	-	20	mA

*8 It shall connect a by-pass capacitor of $0.01 \mu \mathrm{~F}$ or more between $\mathrm{V}_{\mathrm{CC}}(\operatorname{pin}(13)$ and GND (pin, (10), (14)) near the device, when it measures the transfer characteristics and the output side characteristics.
*9 FS=OPEN, $\mathrm{V}_{\mathrm{C}}=0$
(unless otherwise specified $\mathrm{T}_{\mathrm{a}}=\mathrm{T}_{\text {opr }}$)

Parameter		Symbol	Conditions ${ }^{* 10}$	MIN.	TYP.	MAX.	Unit
	*11 "Low \rightarrow High" input threshold current	$\mathrm{I}_{\text {FLH }}$	$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{O} 1}=24 \mathrm{~V}, \mathrm{FS}=$ OPEN, $\mathrm{V}_{\mathrm{C}}=0$	1.0	4.0	7.0	mA
			$\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{Ol}}=24 \mathrm{~V}$, FS $=$ OPEN, $\mathrm{V}=0$	0.6	-	10	mA
	Isolation resistance	$\mathrm{R}_{\text {ISO }}$	$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \mathrm{DC}=500 \mathrm{~V}, 40$ to $60 \% \mathrm{RH}$	5×10^{10}	10^{11}	-	Ω
	.	$\mathrm{t}_{\text {PLH }}$	$\begin{gathered} \mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \\ \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{O} 1}=24 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \\ \mathrm{R}_{\mathrm{G}}=47 \Omega, \mathrm{C}_{\mathrm{G}}=3000 \mathrm{pF} \\ \mathrm{FS}=\mathrm{OPEN}, \mathrm{~V}_{\mathrm{C}}=0 \end{gathered}$	-	1.0	2.0	$\mu \mathrm{s}$
	$\stackrel{\rightharpoonup}{0}$ "High \rightarrow Low" propagation delay time	$\mathrm{t}_{\text {PHL }}$		-	1.0	2.0	$\mu \mathrm{s}$
	으․ Rise time	t_{r}		-	0.2	0.5	$\mu \mathrm{s}$
	¢	t_{f}		-	0.2	0.5	$\mu \mathrm{s}$
	Instantaneous common mode rejection voltage (High level output)	CM_{H}	$\begin{gathered} \mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{CM}}=600 \mathrm{~V}(\mathrm{p}-\mathrm{p}) \\ \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{O} 1}=24 \mathrm{~V}, \\ \Delta \mathrm{~V}_{\mathrm{O} 2 \mathrm{H}}=2.0 \mathrm{~V}, \mathrm{FS}=\mathrm{OPEN}, \mathrm{~V}_{\mathrm{C}}=0 \end{gathered}$	-1.5	-	-	kV/ $\mu \mathrm{s}$
	Instantaneous common mode rejection voltage (Low level output)	CM_{L}	$\begin{gathered} \mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{CM}}=600 \mathrm{~V}(\mathrm{p}-\mathrm{p}) \\ \mathrm{I}_{\mathrm{F}}=0, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{O}}=24 \mathrm{~V}, \\ \Delta \mathrm{~V}_{\mathrm{OL}}=2.0 \mathrm{~V}, \mathrm{FS}=\mathrm{OPEN}, \mathrm{~V}_{\mathrm{C}}=0 \end{gathered}$	1.5	-	-	kV/ $\mu \mathrm{s}$
$\begin{aligned} & \overrightarrow{0} \\ & 0.0 \\ & 0 \\ & 0.0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	*12 Overcurrent detection voltage	$\mathrm{V}_{\text {CTH }}$	$\begin{gathered} \mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{OI}}=24 \mathrm{~V} \\ \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{R}_{\mathrm{G}}=47 \Omega \\ \mathrm{C}_{\mathrm{G}}=3000 \mathrm{pF}, \mathrm{FS}=\mathrm{OPEN} \end{gathered}$	$\mathrm{V}_{\mathrm{CC}}-6.5$	$\mathrm{V}_{\mathrm{CC}}-6$	$\mathrm{V}_{\mathrm{CC}}-5.5$	V
	Overcurrent detection voltage hysteresis width	$\mathrm{V}_{\text {CHIS }}$		1	2	3	V
	O_{2} "High \rightarrow Low" propagation delay time at overcurrent protection	$\mathrm{t}_{\text {PCOHL }}$	$\begin{gathered} \mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{O}}=24 \mathrm{~V} \\ \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \\ \mathrm{R}_{\mathrm{G}}=47 \Omega, \mathrm{C}_{\mathrm{G}}=3000 \mathrm{pF}, \\ \mathrm{R}_{\mathrm{C}}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{P}}=1000 \mathrm{pF} \\ \mathrm{FS}=\mathrm{OPEN} \end{gathered}$	-	4	10	$\mu \mathrm{s}$
	O_{2} Fall time at overcurrent protection	$\mathrm{t}_{\text {PCOff }}$		2	5	-	$\mu \mathrm{s}$
	O_{2} "High \rightarrow Low" output voltage at overcurrent protection	$\mathrm{V}_{\text {OE }}$		-	-	2	V
	Low level error signal voltage	$\mathrm{V}_{\text {FSL }}$	$\begin{gathered} \mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA} \\ \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{O}=}=24 \mathrm{~V} \\ \mathrm{I}_{\mathrm{FS}}=10 \mathrm{~mA}, \mathrm{R}_{\mathrm{G}}=47 \Omega \\ \mathrm{C}_{\mathrm{G}}=3000 \mathrm{pF}, \mathrm{C}=\mathrm{OPEN} \end{gathered}$	-	0.2	0.4	V
	High level error signal current	$\mathrm{I}_{\text {FSH }}$	$\begin{gathered} \mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{OI}}=24 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA} \\ \mathrm{~V}_{\mathrm{FS}}=24 \mathrm{~V}, \mathrm{R}_{\mathrm{G}}=47 \Omega \\ \mathrm{C}_{\mathrm{G}}=3000 \mathrm{pF}, \mathrm{~V}_{\mathrm{C}}=0 \end{gathered}$	-	-	100	$\mu \mathrm{A}$
	Error signal "High \rightarrow Low" propagation delay time	$\mathrm{t}_{\text {PCFHL }}$	$\begin{gathered} \mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{OI}}=24 \mathrm{~V} \\ \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{R}_{\mathrm{FS}}=1.8 \mathrm{k} \Omega \end{gathered}$	-	1	5	$\mu \mathrm{s}$
	Error signal output pulse width	$\Delta \mathrm{t}_{\mathrm{FS}}$	$\begin{gathered} \mathrm{R}_{\mathrm{G}}=47 \Omega, \mathrm{R}_{\mathrm{C}}=1 \mathrm{k} \Omega \\ \mathrm{C}_{\mathrm{G}}=3000 \mathrm{pF}, \mathrm{C}_{\mathrm{P}}=1000 \mathrm{pF} \end{gathered}$	20	35	-	$\mu \mathrm{s}$

*10 It shall connect a by-pass capacitor of $0.01 \mu \mathrm{~F}$ or more between V_{CC} (pin (13)) and GND (pin (10), (14)) near the device, when it measures the device, when it measures the overcurrent characteristics, Protection output characteristics, and Error signal output characteristics.

* $11 \mathrm{I}_{\mathrm{FLH}}$ represents forward current when output goes from "Low" to "High"
* $12 \mathrm{~V}_{\mathrm{CTH}}$ is the value of $\mathrm{C}(\operatorname{pin}(9)$) voltage when output becomes from "High" to "Low"

Model Line-up

Lead Form	SMT Gullwing			
Package	Sleeve		Taping	
	50pcs/sleeve		$1000 \mathrm{pcs} / \mathrm{reel}$	
DIN EN60747-5-2	-	Approved	-	Approved
Model No.	PC928J00000F	PC928YJ0000F	PC928PJ0000F	PC928PYJ000F

Please contact a local SHARP sales representative to inquire about production status.

Fig. 1 Test Circuit for O_{1} Low Level Output Voltage

Fig. 3 Test Circuit for O_{2} Low Level Output Voltage

Fig. 5 Test Circuit for "Low \rightarrow High" Input Threshold Current

Fig. 2 Test Circuit for O_{2} High Level Output Voltage

Fig. 4 Test Circuit for O_{1} Leak Current

Fig. 6 Test Circuit for High Level / Low Level Supply Current

Fig. 7 Test Circuit for Instantaneous Common Mode Rejection Voltage

Fig. 8 Test Circuit for Response Time

Fig. 10 Test Circuit for O_{2} Output Voltage at Overcurrent Protection

Fig. 11 Test Circuit for O_{1} Low Level Error Signal Voltage

Fig. 13 Test Circuit for O_{2} "High \rightarrow Low" Propagation Delay Time at Overcurrent Protection, O_{2} Fall Time at Overcurrent Protection

Fig. 12 Test Circuit for High Level Error Signal Current

Fig. 14 Error Signal "High \rightarrow Low" propagation Delay Time, Error Signal Output Pulse Width

Fig. 15 Forward Current vs. Ambient Temperature

Fig. 17 Forward Current vs. Forward Voltage

Fig. 19 "Low \rightarrow High" Relative Input Threshold Current vs. Ambient Temperature

Fig. 16 Power Dissipation vs. Ambient Temperature

Fig. 18 "Low \rightarrow High" Relative Input Threshold Current vs. Supply Voltage

Fig. 200_{1} Low Level Output Voltage vs. O_{1} Output Current

Fig. $21 \mathrm{O}_{1}$ Low Level Output Voltage vs. Ambient Temperature

Fig. $23 \mathrm{O}_{2}$ High Level Output Voltage vs. Supply Voltage

Fig. $25 \mathrm{O}_{2}$ Low Level Output Voltage vs. Output Current

Fig. 22 O 1 Leak Current vs. Ambient Temperature

Fig. $24 \mathrm{O}_{2}$ High Level Output Voltage vs. Ambient Temperature

Fig. $26 \mathrm{O}_{2}$ Low Level Output Voltage vs. Ambient Temperature

Fig. 27 High Level Supply Current vs. Supply Voltage

Fig. 29 Propagation Delay Time vs. Forward Current

Fig. 31 Overcurrent Detecting Voltage vs. Ambient Temperature

Fig. 28 Low Level Supply Current vs. Supply Voltage

Fig. 30 Propagation Delay Time vs. Ambient Temperature

Fig. $32 \mathrm{O}_{2}$ Output Fall Time at Protection from Overcurrent O_{2} "High-Low" Propagation Delay Time at Protection from Overcurrent vs. Ambient Temperature

Fig. 33 Error Signal "High-Low" Propagation Delay Time vs. Ambient Temperature

Fig. 35 Low Level Error Signal Voltage vs. Ambient Temperature

Fig. 37 Error Signal Output Pulse Width vs. Ambient Temperature

Fig. $34 \mathrm{O}_{2}$ Output Voltage at Protection from Overcurrent vs. Ambient Temperature

Fig. 36 High Level Error Signal Current vs. Ambient Temperature

Fig. 38 Overcurrent Detecting Voltage vs. Supply Voltage

Fig. 39 Overcurrent Detecting Voltage - Supply Voltage Characteristics Test Circuit

Fig. 40 Example of The Application Circuit (IGBT Drive for Inverter)

- In order to stabilize the power supply line, we recommend to locate a bypass capacitor C_{B} ($0.01 \mu \mathrm{~F}$ or more) between V_{cc} and GND near photocoupler.
- In order to stabilize the detecting voltage of pin- C , we recommend to locate a capacitor C_{P} (approximately 1000 pF) between pin-C and GND, and a resistor Rc (approximately $1.0 \mathrm{k} \Omega$) between V_{cc} and pin-C. However, the rise time of the detection voltage at Pin-C varies along with the time constants of C_{P} and R_{c}. So, please make sure the device works properly in actual conditions.
- For the diode D, which is located between pin-C and collector of IGBT, we recommend to use a diode that has the withstand voltage characteristic equivalent to IGBT and also has little leak current.
- In order to prevent the failure mode or breakdown of pin-C from $\mathrm{V}_{\text {CE }}$ variation of IGBT, we recommend to locate a resistor R_{2} (approximately $10 \mathrm{k} \Omega$) and a diode D1 at near pin-C, and a resistor R_{3} (approximately $50 \mathrm{k} \Omega$) and a diode D_{2} at between pin-C and GND.

This application circuit shows the general example of a circuit, and is not a design guarantee for right operation.

Fig. 41 Operations of Shortcircuit Protector Circuit

1. Detection of increase in $\mathrm{V}_{C E(\text { sat) }}$ of IGBT due to overcurrent by means of C terminal (pin (9)
2. Reduction of the IGBT gate voltage, and suppression of the collector current
3. Simultaneous output of signals to indicate the shortcircuit condition (FS signal) from FS terminal (pin (8) to the microcomputer
4. Judgement and processing by the microcomputer \longrightarrow In the case of instantaneous shortcircuit, run continues. \rightarrow At fault, input to the photocoupler is cut off, and IGBT is turned OFF.

Remarks : Please be aware that all data in the graph are just for reference and not for guarantee.

Design Considerations

- Notes about static electricity

Transistor of detector side in bipolar configuration may be damaged by static electricity due to its minute design.
When handling these devices, general countermeasure against static electricity should be taken to avoid breakdown of devices or degradation of characteristics.

- Design guide

In order to stabilize power supply line, we should certainly recommend to connect a by-pass capacitor of $0.01 \mu \mathrm{~F}$ or more between V_{CC} and GND near the device.

We recommend to use approximately 1000 pF of capacitor between C-pin and GND in order to prevent miss operation by noise.
In the case that capacitor is used approximately $1 \mathrm{k} \Omega$ of resistance shall be recommended to use between V_{cc} and C -pin However, the rise time of C-pin shall be changed by time constant of added CR, so that please use this device after confirmation.

In case that some sudden big noise caused by voltage variation is provided between primary and secondary terminals of photocoupler some current caused by it is floating capacitance may be generated and result in false operation since current may go through IRED or current may change.
If the photocoupler may be used under the circumstances where noise will be generated we recommend to use the bypass capacitors at the both ends of IRED.

The detector which is used in this device, has parasitic diode between each pins and GND.
There are cases that miss operation or destruction possibly may be occurred if electric potential of any pin becomes below GND level even for instant.
Therefore it shall be recommended to design the circuit that electric potential of any pin does not become below GND level.

This product is not designed against irradiation and incorporates non-coherent IRED.

- Degradation

In general, the emission of the IRED used in photocouplers will degrade over time.
In the case of long term operation, please take the general IRED degradation (50\% degradation over 5 years) into the design consideration.
Please decide the input current which become 2 times of MAX. IfLL.

- Recommended Foot Print (reference)

(Unit : mm)

Manufacturing Guidelines

- Soldering Method

Reflow Soldering:

Reflow soldering should follow the temperature profile shown below.
Soldering should not exceed the curve of temperature profile and time.
Please don't solder more than twice.

Flow Soldering :

Due to SHARP's double transfer mold construction submersion in flow solder bath is allowed under the below listed guidelines.

Flow soldering should be completed below $260^{\circ} \mathrm{C}$ and within 10 s.
Preheating is within the bounds of 100 to $150^{\circ} \mathrm{C}$ and 30 to 80 s .
Please don't solder more than twice.

Hand soldering

Hand soldering should be completed within 3 s when the point of solder iron is below $400^{\circ} \mathrm{C}$.
Please don't solder more than twice.

Other notices

Please test the soldering method in actual condition and make sure the soldering works fine, since the impact on the junction between the device and PCB varies depending on the tooling and soldering conditions.

Cleaning instructions

Solvent cleaning:

Solvent temperature should be $45^{\circ} \mathrm{C}$ or below Immersion time should be 3 minutes or less

Ultrasonic cleaning:

The impact on the device varies depending on the size of the cleaning bath, ultrasonic output, cleaning time, size of PCB and mounting method of the device.
Therefore, please make sure the device withstands the ultrasonic cleaning in actual conditions in advance of mass production.

Recommended solvent materials:
Ethyl alcohol, Methyl alcohol and Isopropyl alcohol
In case the other type of solvent materials are intended to be used, please make sure they work fine in actual using conditions since some materials may erode the packaging resin.

- Presence of ODC

This product shall not contain the following materials.
And they are not used in the production process for this product.
Regulation substances: CFCs, Halon, Carbon tetrachloride, 1.1.1-Trichloroethane (Methylchloroform)
Specific brominated flame retardants such as the PBBOs and PBBs are not used in this product at all.
This product shall not contain the following materials banned in the RoHS Directive (2002/95/EC).
-Lead, Mercury, Cadmium, Hexavalent chromium, Polybrominated biphenyls (PBB), Polybrominated diphenyl ethers (PBDE).

Package specification

- Sleeve package

Package materials

Sleeve : HIPS (with anti-static material)
Stopper: Styrene-Elastomer

Package method

MAX. 50 pcs. of products shall be packaged in a sleeve.
Both ends shall be closed by tabbed and tabless stoppers.
The product shall be arranged in the sleeve with its primary side mark on the tabless stopper side.
MAX. 20 sleeves in one case.
Sleeve outline dimensions

- Tape and Reel package

Package materials
Carrier tape : A-PET (with anti-static material)
Cover tape : PET (three layer system)
Reel: PS
Carrier tape structure and Dimensions

Dimensions List						
A	B	C	D	E	F	G
$16.0^{ \pm 0.3}$	$7.5^{ \pm 0.1}$	$1.75^{ \pm 0.1}$	$12.0^{ \pm 0.1}$	$2.0^{ \pm 0.1}$	$4.0^{ \pm 0.1}$	$\phi 1.5^{+0.1}$
H	I	J	K			
$10.4^{ \pm 0.1}$	$0.4^{ \pm 0.05}$	$4.2^{ \pm 0.1}$	$9.7^{ \pm 0.1}$			

Reel structure and Dimensions

Dimensions List		(Unit : mm)	
a	b	c	d
330	$17.5^{ \pm 1.5}$	$100^{ \pm 1.0}$	$13^{ \pm 0.5}$
e	f	g	
$23^{ \pm 1.0}$	$2.0^{ \pm 0.5}$	$2.0^{ \pm 0.5}$	

Direction of product insertion

Pull-out direction

\square Important Notices

- The circuit application examples in this publication are provided to explain representative applications of SHARP devices and are not intended to guarantee any circuit design or license any intellectual property rights. SHARP takes no responsibility for any problems related to any intellectual property right of a third party resulting from the use of SHARP's devices.
- Contact SHARP in order to obtain the latest device specification sheets before using any SHARP device. SHARP reserves the right to make changes in the specifications, characteristics, data, materials, structure, and other contents described herein at any time without notice in order to improve design or reliability. Manufacturing locations are also subject to change without notice.
- Observe the following points when using any devices in this publication. SHARP takes no responsibility for damage caused by improper use of the devices which does not meet the conditions and absolute maximum ratings to be used specified in the relevant specification sheet nor meet the following conditions:
(i) The devices in this publication are designed for use in general electronic equipment designs such as:
--- Personal computers
--- Office automation equipment
--- Telecommunication equipment [terminal]
--- Test and measurement equipment
--- Industrial control
--- Audio visual equipment
--- Consumer electronics
(ii) Measures such as fail-safe function and redundant design should be taken to ensure reliability and safety when SHARP devices are used for or in connection
with equipment that requires higher reliability such as:
--- Transportation control and safety equipment (i.e., aircraft, trains, automobiles, etc.)
--- Traffic signals
--- Gas leakage sensor breakers
--- Alarm equipment
--- Various safety devices, etc.
(iii) SHARP devices shall not be used for or in connection with equipment that requires an extremely high level of reliability and safety such as:
--- Space applications
--- Telecommunication equipment [trunk lines]
--- Nuclear power control equipment
--- Medical and other life support equipment (e.g., scuba).
- If the SHARP devices listed in this publication fall within the scope of strategic products described in the Foreign Exchange and Foreign Trade Law of Japan, it is necessary to obtain approval to export such SHARP devices.
- This publication is the proprietary product of SHARP and is copyrighted, with all rights reserved. Under the copyright laws, no part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, in whole or in part, without the express written permission of SHARP. Express written permission is also required before any use of this publication may be made by a third party.
- Contact and consult with a SHARP representative if there are any questions about the contents of this publication.

