mail

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Low-voltage, 8-bit I²C-bus and SMBus I/O expander with interrupt output, reset, and configuration registers

Rev. 1 — 27 September 2012

Product data sheet

1. General description

The PCA6408A is an 8-bit general purpose I/O expander that provides remote I/O expansion for most microcontroller families via the I²C-bus interface.

NXP I/O expanders provide a simple solution when additional I/Os are needed while keeping interconnections to a minimum, for example, in battery-powered mobile applications for interfacing to sensors, push buttons, keypad, etc. In addition to providing a flexible set of GPIOs, it simplifies interconnection of a processor running at one voltage level to I/O devices operating at a different (usually higher) voltage level. The PCA6408A has built-in level shifting feature that makes these devices extremely flexible in mixed signal environments where communication between incompatible I/O voltages is required. Its wide V_{DD} range of 1.65 V to 5.5 V on the dual power rail allows seamless communications with next-generation low voltage microprocessors and microcontrollers on the interface side (SDA/SCL) and peripherals at a higher voltage on the port side.

There are two supply voltages for PCA6408A: $V_{DD(I2C-bus)}$ and $V_{DD(P)}$. $V_{DD(I2C-bus)}$ provides the supply voltage for the interface at the master side (for example, a microcontroller) and the $V_{DD(P)}$ provides the supply for core circuits and Port P. The bidirectional voltage level translation in the PCA6408A is provided through $V_{DD(I2C-bus)}$. $V_{DD(I2C-bus)}$ should be connected to the V_{DD} of the external SCL/SDA lines. This indicates the V_{DD} level of the I²C-bus to the PCA6408A. The voltage level on Port P of the PCA6408A is determined by the $V_{DD(P)}$.

The PCA6408A consists of one 8-bit Configuration (input or output selection), Input, Output, and Polarity Inversion (active HIGH) register. At power-on, the I/Os are configured as inputs. However, the system master can enable the I/Os as either inputs or outputs by writing to the I/O configuration bits. The data for each input or output is kept in the corresponding Input or Output register. The polarity of the Input port register can be inverted with the Polarity Inversion register, saving interrupts.

The system master can reset the PCA6408A in the event of a time-out or other improper operation by asserting a LOW in the RESET input. The power-on reset puts the registers in their default state and initializes the I²C-bus/SMBus state machine. The RESET pin causes the same reset/initialization to occur without de-powering the part.

The PCA6408A open-drain interrupt (\overline{INT}) output is activated when any input state differs from its corresponding Input port register state and is used to indicate to the system master that an input state has changed.

INT can be connected to the interrupt input of a microcontroller. By sending an interrupt signal on this line, the remote I/O can inform the microcontroller if there is incoming data on its ports without having to communicate via the I²C-bus. Thus, the PCA6408A can remain a simple slave device.

The device Port P outputs have 25 mA sink capabilities for directly driving LEDs while consuming low device current.

One hardware pin (ADDR) can be used to program and vary the fixed I^2C -bus address and allow up to two devices to share the same I^2C -bus or SMBus.

2. Features and benefits

- I²C-bus to parallel port expander
- Operating power supply voltage range of 1.65 V to 5.5 V
- Allows bidirectional voltage-level translation and GPIO expansion between:
 - 1.8 V SCL/SDA and 1.8 V, 2.5 V, 3.3 V or 5 V Port P
 - 2.5 V SCL/SDA and 1.8 V, 2.5 V, 3.3 V or 5 V Port P
 - 3.3 V SCL/SDA and 1.8 V, 2.5 V, 3.3 V or 5 V Port P
 - 5 V SCL/SDA and 1.8 V, 2.5 V, 3.3 V or 5 V Port P
- Low standby current consumption of 1 μA
- Schmitt-trigger action allows slow input transition and better switching noise immunity at the SCL and SDA inputs
 - V_{hvs} = 0.18 V (typical) at 1.8 V
 - V_{hys} = 0.25 V (typical) at 2.5 V
 - V_{hys} = 0.33 V (typical) at 3.3 V
 - $V_{hys} = 0.5 V$ (typical) at 5 V
- 5 V tolerant I/O ports
- Active LOW reset input (RESET)
- Open-drain active LOW interrupt output (INT)
- 400 kHz Fast-mode I²C-bus
- Input/Output Configuration register
- Polarity Inversion register
- Internal power-on reset
- Power-up with all channels configured as inputs
- No glitch on power-up
- Noise filter on SCL/SDA inputs
- Latched outputs with 25 mA drive maximum capability for directly driving LEDs
- Latch-up performance exceeds 100 mA per JESD 78, Class II
- ESD protection exceeds JESD 22
 - 2000 V Human-Body Model (A114-A)
 - 1000 V Charged-Device Model (C101)
- Packages offered: HVQFN16, TSSOP16, XQFN16

3. Ordering information

Table 1. Orderi	able 1. Ordering information									
Type number	Topside	Package								
	mark	Name	Description	Version						
PCA6408ABS	P8A	HVQFN16	plastic thermal enhanced very thin quad flat package; no leads; 16 terminals; body $3 \times 3 \times 0.85$ mm	SOT758-1						
PCA6408APW	PA6408A	TSSOP16	plastic thin shrink small outline package; 16 leads; body width 4.4 mm	SOT403-1						
PCA6408AHK	P8	XQFN16	plastic, extremely thin quad flat package; no leads; 16 terminals; body $1.80 \times 2.60 \times 0.50$ mm	SOT1161-1						

3.1 Ordering options

Table 2. Order	able 2. Ordering options									
Type number	Orderable part number	Package	Packing method	Minimum order quantity	Temperature					
PCA6408ABS	PCA6408ABSHP	HVQFN16	Reel pack, SMD, 13-inch, Turned	6000	$T_{amb} = -40 \ ^{\circ}C \ to \ +85 \ ^{\circ}C$					
PCA6408APW	PCA6408APW,118	TSSOP16	Reel pack, SMD, 13-inch	2500	$T_{amb} = -40 \ ^{\circ}C \ to \ +85 \ ^{\circ}C$					
PCA6408AHK	PCA6408AHKX	XQFN16	Reel pack, SMD	4000	$T_{amb} = -40 \ ^{\circ}C \ to \ +85 \ ^{\circ}C$					

4. Block diagram

Low-voltage, 8-bit I²C-bus and SMBus I/O expander

5. Pinning information

5.1 Pinning

PCA6408A

5.2 Pin description

Table 3. F	Pin descript	ion		
Symbol	Pin			Description
	TSSOP16	HVQFN16	XQFN16	
$V_{DD(I2C-bus)}$	1	15	15	Supply voltage of I^2 C-bus. Connect directly to the V _{DD} of the external I^2 C master. Provides voltage-level translation.
ADDR	2	16	16	Address input. Connect directly to $V_{\text{DD}(\text{P})}$ or ground.
RESET	3	1	1	Active LOW reset input. Connect to $V_{\text{DD(I2C-bus)}}$ through a pull-up resistor if no active connection is used.
P0[1]	4	2	2	Port P input/output 0.
P1[1]	5	3	3	Port P input/output 1.
P2[1]	6	4	4	Port P input/output 2.
P3[1]	7	5	5	Port P input/output 3.
V _{SS}	8	6	6	Ground.
P4[1]	9	7	7	Port P input/output 4.
P5[1]	10	8	8	Port P input/output 5.
P6[1]	11	9	9	Port P input/output 6.
P7[1]	12	10	10	Port P input/output 7.
INT	13	11	11	Interrupt output. Connect to $V_{\text{DD}(\text{I2C-bus})}$ through a pull-up resistor.
SCL	14	12	12	Serial clock bus. Connect to $V_{\text{DD}(\text{I2C-bus})}$ through a pull-up resistor.
SDA	15	13	13	Serial data bus. Connect to $V_{\text{DD}(\text{I2C-bus})}$ through a pull-up resistor.
V _{DD(P)}	16	14	14	Supply voltage of PCA6408A for Port P.

[1] All I/O are configured as input at power-on.

PCA6408A Product data sheet

6. Voltage translation

<u>Table 4</u> shows how to set up V_{DD} levels for the necessary voltage translation between the I²C-bus and the PCA6408A.

Table 4.	Voltage translation	
V _{DD(I2C-bu}	_{s)} (SDA and SCL of I ² C master)	V _{DD(P)} (Port P)
1.8 V		1.8 V
1.8 V		2.5 V
1.8 V		3.3 V
1.8 V		5 V
2.5 V		1.8 V
2.5 V		2.5 V
2.5 V		3.3 V
2.5 V		5 V
3.3 V		1.8 V
3.3 V		2.5 V
3.3 V		3.3 V
3.3 V		5 V
5 V		1.8 V
5 V		2.5 V
5 V		3.3 V
5 V		5 V

7. Functional description

Refer to Figure 1 "Block diagram (positive logic)".

7.1 Device address

The address of the PCA6408A is shown in Figure 5.

ADDR is the hardware address package pin and is held to either HIGH (logic 1) or LOW (logic 0) to assign one of the two possible slave addresses. The last bit of the slave address defines the operation (read or write) to be performed. A HIGH (logic 1) selects a read operation, while a LOW (logic 0) selects a write operation.

7.2 Interface definition

Table 5. Interface definition

Byte	Bit									
	7 (MSB)	6	5	4	3	2	1	0 (LSB)		
I ² C-bus slave address	L	Н	L	L	L	L	ADDR	R/W		
I/O data bus	P7	P6	P5	P4	P3	P2	P1	P0		

7.3 Pointer register and command byte

Following the successful acknowledgement of the address byte, the bus master sends a command byte, which is stored in the Pointer register in the PCA6408A. Two bits of this data byte state the operation (read or write) and the internal registers (Input, Output, Polarity Inversion, or Configuration) that will be affected. This register is write only.

Table 6. Command byte

Pointer register bits					bits			Command byte	Register	Protocol	Power-up	
B7	B6	B5	B4	B3	B2	B1	B0	(hexadecimal)			default	
0	0	0	0	0	0	0	0	00h	Input port	read byte	xxxx xxxx ^[1]	
0	0	0	0	0	0	0	1	01h	Output port	read/write byte	1111 1111	
0	0	0	0	0	0	1	0	02h	Polarity Inversion	read/write byte	0000 0000	
0	0	0	0	0	0	1	1	03h	Configuration	read/write byte	1111 1111	

[1] Undefined.

7.4 Register descriptions

7.4.1 Input port register (00h)

The Input port register (register 0) reflects the incoming logic levels of the pins, regardless of whether the pin is defined as an input or an output by the Configuration register. The Input port register is read only; writes to this register have no effect. The default value 'X' is determined by the externally applied logic level. An Input port register read operation is performed as described in Section 8.2 "Read commands".

Table 7.	input por	t register (a	address U	Jn)					
Bit	7	6	5	4	3	2	1	0	
Symbol	17	16	15	14	13	12	1	10	
Default	Х	Х	Х	Х	Х	Х	Х	Х	

- . . -1.1

7.4.2 Output port register (01h)

The Output port register (register 1) shows the outgoing logic levels of the pins defined as outputs by the Configuration register. Bit values in these registers have no effect on pins defined as inputs. In turn, reads from this register reflect the value that was written to this register, not the actual pin value.

Output port register (address 01h) Table 8.

Bit	7	6	5	4	3	2	1	0
Symbol	07	O6	O5	O4	O3	02	O1	00
Default	1	1	1	1	1	1	1	1

7.4.3 Polarity inversion register (02h)

The Polarity inversion register (register 2) allows polarity inversion of pins defined as inputs by the Configuration register. If a bit in this register is set (written with '1'), the corresponding port pin's polarity is inverted. If a bit in this register is cleared (written with a '0'), the corresponding port pin's original polarity is retained.

Register 2: Polarity inversion register (address 02h) Table 9.

Bit	7	6	5	4	3	2	1	0
Symbol	N7	N6	N5	N4	N3	N2	N1	N0
Default	0	0	0	0	0	0	0	0

7.4.4 Configuration register (03h)

The Configuration register (register 3) configures the direction of the I/O pins. If a bit in this register is set to 1, the corresponding port pin is enabled as a high-impedance input. If a bit in this register is cleared to 0, the corresponding port pin is enabled as an output.

Bit	7	6	5	4	3	2	1	0
Symbol	C7	C6	C5	C4	C3	C2	C1	C0
Default	1	1	1	1	1	1	1	1

PCA6408A Product data sheet

7.5 I/O port

When an I/O is configured as an input, FETs Q1 and Q2 are off, which creates a high-impedance input. The input voltage may be raised above V_{DD} to a maximum of 5.5 V.

If the I/O is configured as an output, Q1 or Q2 is enabled, depending on the state of the Output port register. In this case, there are low-impedance paths between the I/O pin and either $V_{DD(P)}$ or V_{SS} . The external voltage applied to this I/O pin should not exceed the recommended levels for proper operation.

7.6 Power-on reset

When power (from 0 V) is applied to $V_{DD(P)}$, an internal power-on reset holds the PCA6408A in a reset condition until $V_{DD(P)}$ has reached V_{POR} . At that time, the reset condition is released and the PCA6408A registers and I²C-bus/SMBus state machine initialize to their default states. After that, $V_{DD(P)}$ must be lowered to below V_{PORF} and back up to the operating voltage for a power-reset cycle. See <u>Section 9.2 "Power-on reset requirements"</u>.

7.7 Reset input (RESET)

The RESET input can be asserted to initialize the system while keeping the V_{DD(P)} at its operating level. A reset can be accomplished by holding the RESET pin LOW for a minimum of $t_{w(rst)}$. The PCA6408A registers and I²C-bus/SMBus state machine are changed to their default state once RESET is LOW (0). When RESET is HIGH (1), the I/O levels at the P port can be changed externally or through the master. This input requires a pull-up resistor to V_{DD(I2C-bus)} if no active connection is used.

7.8 Interrupt output (INT)

An interrupt is generated by any rising or falling edge of the port inputs in the Input mode. After time $t_{v(INT)}$, the signal INT is valid. Resetting the interrupt circuit is achieved when data on the port is changed to the original setting or when data is read from the port that generated the interrupt (see Figure 11). Resetting occurs in the Read mode at the acknowledge (ACK) or not acknowledge (NACK) bit after the rising edge of the SCL signal. Interrupts that occur during the ACK or NACK clock pulse can be lost (or be very short) due to the resetting of the interrupt during this pulse. Each change of the I/Os after resetting is detected and is transmitted as INT.

A pin configured as an output cannot cause an interrupt. Changing an I/O from an output to an input may cause a false interrupt to occur, if the state of the pin does not match the contents of the Input port register.

The $\overline{\text{INT}}$ output has an open-drain structure and requires a pull-up resistor to $V_{\text{DD}(P)}$ or $V_{\text{DD}(I2C-bus)}$ depending on the application. $\overline{\text{INT}}$ should be connected to the voltage source of the device that requires the interrupt information.

Low-voltage, 8-bit I²C-bus and SMBus I/O expander

8. **Bus transactions**

The PCA6408A is an I²C-bus slave device. Data is exchanged between the master and PCA6408A through write and read commands using I²C-bus. The two communication lines are a serial data line (SDA) and a serial clock line (SCL). Both lines must be connected to a positive supply via a pull-up resistor when connected to the output stages of a device. Data transfer may be initiated only when the bus is not busy.

8.1 Write commands

Data is transmitted to the PCA6408A by sending the device address and setting the Least Significant Bit (LSB) to a logic 0 (see Figure 5 for device address). The command byte is sent after the address and determines which register receives the data that follows the command byte. There is no limitation on the number of data bytes sent in one write transmission.

PCA6408A Product data sheet

8.2 Read commands

To read data from the PCA6408A, the bus master must first send the PCA6408A address with the least significant bit set to a logic 0 (see <u>Figure 5</u> for device address). The command byte is sent after the address and determines which register is to be accessed.

After a restart the device address is sent again, but this time the LSB is set to a logic 1. Data from the register defined by the command byte then is sent by the PCA6408A (see Figure 10 and Figure 11).

Data is clocked into the register on the rising edge of the ACK clock pulse. There is no limit on the number of data bytes received in one read transmission, but on the final byte received the bus master must not acknowledge the data.

Low-voltage, 8-bit I²C-bus and SMBus I/O expander

9. Application design-in information

9.1 Minimizing I_{DD} when I/Os control LEDs

When the I/Os are used to control LEDs, normally they are connected to $V_{DD(P)}$ through a resistor as shown in Figure 12. The LED acts as a diode, so when the LED is off, the I/O V_I is about 1.2 V less than $V_{DD(P)}$. The ΔI_{DD} parameter in Table 15 "Static characteristics" shows how $I_{DD(P)}$ increases as V_I becomes lower than $V_{DD(P)}$. Designs that must minimize current consumption, such as battery power applications, should consider maintaining the I/O pins greater than or equal to $V_{DD(P)}$ when the LED is off.

<u>Figure 13</u> shows a high-value resistor in parallel with the LED. <u>Figure 14</u> shows $V_{DD(P)}$ less than the LED supply voltage by at least 1.2 V. Both of these methods maintain the I/O V_I at or above $V_{DD(P)}$ and prevent additional supply current consumption when the LED is off.

Low-voltage, 8-bit I²C-bus and SMBus I/O expander

9.2 Power-on reset requirements

In the event of a glitch or data corruption, PCA6408A can be reset to its default conditions by using the power-on reset feature. Power-on reset requires that the device go through a power cycle to be completely reset. This reset also happens when the device is powered on for the first time in an application.

The two types of power-on reset are shown in Figure 15 and Figure 16.

<u>Table 11</u> specifies the performance of the power-on reset feature for PCA6408A for both types of power-on reset.

Low-voltage, 8-bit I²C-bus and SMBus I/O expander

$T_{amb} = 25$ °	C (unless otherwise noted). Not test	ed; specified by design.				
Symbol	Parameter	Condition	Min	Тур	Max	Unit
(dV/dt) _f	fall rate of change of voltage	Figure 15	0.1	-	2000	ms
(dV/dt) _r	rise rate of change of voltage	Figure 15	0.1	-	2000	ms
t _{d(rst)}	reset delay time	$\frac{Figure 15}{V_{DD(P)}} \text{ drops to } V_{SS}$	1	-	-	μS
		$\frac{Figure \ 16}{V_{DD(P)}} \text{ drops to } V_{POR(min)} - 50 \ mV$	1	-	-	μS
$\Delta V_{\text{DD(gl)}}$	glitch supply voltage difference	Figure 17	<u>[1]</u> -	-	1.0	V
t _{w(gl)VDD}	supply voltage glitch pulse width	Figure 17	[2] _	-	10	μs
V _{POR(trip)}	power-on reset trip voltage	falling $V_{DD(P)}$	0.7	-	-	V
		rising $V_{DD(P)}$	-	-	1.4	V

Table 11. Recommended supply sequencing and ramp rates

[1] Level that $V_{DD(P)}$ can glitch down to with a ramp rate of 0.4 μ s/V, but not cause a functional disruption when $t_{w(ql)VDD} < 1 \mu$ s.

[2] Glitch width that will not cause a functional disruption when $\Delta V_{DD(ql)} = 0.5 \times V_{DD(P)}$.

Glitches in the power supply can also affect the power-on reset performance of this device. The glitch width $(t_{w(gl)VDD})$ and glitch height $(\Delta V_{DD(gl)})$ are dependent on each other. The bypass capacitance, source impedance, and device impedance are factors that affect power-on reset performance. Figure 17 and Table 11 provide more information on how to measure these specifications.

 V_{POR} is critical to the power-on reset. V_{POR} is the voltage level at which the reset condition is released and all the registers and the I²C-bus/SMBus state machine are initialized to their default states. The value of V_{POR} differs based on the $V_{DD(P)}$ being lowered to or from 0 V. Figure 18 and Table 11 provide more details on this specification.

10. Limiting values

Table 12. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
V _{DD(I2C-bus)}	I ² C-bus supply voltage		-0.5	+6.5	V
V _{DD(P)}	supply voltage port P		-0.5	+6.5	V
VI	input voltage		<u>[1]</u> –0.5	+6.5	V
Vo	output voltage		<u>[1]</u> –0.5	+6.5	V
I _{IK}	input clamping current	ADDR, $\overline{\text{RESET}}$, SCL; V _I < 0 V	-	±20	mA
I _{OK}	output clamping current	INT ; V _O < 0 V	-	±20	mA
I _{IOK}	input/output clamping current	P port; $V_O < 0$ V or $V_O > V_{DD(P)}$	-	±20	mA
		SDA; $V_O < 0$ V or $V_O > V_{DD(I2C-bus)}$	-	±20	mA
I _{OL}	LOW-level output current	continuous; P port; $V_O = 0 V$ to $V_{DD(P)}$	-	50	mA
		continuous; SDA, $\overline{\text{INT}}; V_O = 0 \text{ V to } V_{\text{DD(I2C-bus)}}$	-	25	mA
I _{OH}	HIGH-level output current	continuous; P port; $V_O = 0 V$ to $V_{DD(P)}$	-	25	mA
I _{DD}	supply current	continuous through V _{SS}	-	200	mA
I _{DD(P)}	supply current port P	continuous through V _{DD(P)}	-	160	mA
I _{DD(I2C-bus)}	I ² C-bus supply current	continuous through V _{DD(I2C-bus)}	-	10	mA
T _{stg}	storage temperature		-65	+150	°C
T _{j(max)}	maximum junction temperature		-	125	°C

[1] The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

11. Recommended operating conditions

Table 13. Operating conditions

Symbol	Parameter	Conditions	Min	Max	Unit
V _{DD(I2C-bus)}	I ² C-bus supply voltage		1.65	5.5	V
V _{DD(P)}	supply voltage port P		1.65	5.5	V
V _{IH}	HIGH-level input voltage	SCL, SDA, RESET	$0.7 \times V_{DD(I2C\text{-}bus)}$	5.5	V
		ADDR, P7 to P0	$0.7\times V_{DD(P)}$	5.5	V
V _{IL}	LOW-level input voltage	SCL, SDA, RESET	-0.5	$0.3 \times V_{DD(I2C\text{-}bus)}$	V
		ADDR, P7 to P0	-0.5	$0.3\times V_{\text{DD}(\text{P})}$	V
I _{OH}	HIGH-level output current	P7 to P0	-	10	mA
I _{OL}	LOW-level output current	P7 to P0	-	25	mA
T _{amb}	ambient temperature	operating in free air	-40	+85	°C

12. Thermal characteristics

Table 14.	Thermal characteristics			
Symbol	Parameter	Conditions	Max	Unit
Z _{th(j-a)}	transient thermal impedance from junction to ambient	TSSOP16 package	^[1] 108	K/W
		HVQFN16 package	<u>[1]</u> 53	K/W
		XQFN16 package	<u>[1]</u> 184	K/W

[1] The package thermal impedance is calculated in accordance with JESD 51-7.

13. Static characteristics

Table 15. Static characteristics

 $T_{amb} = -40 \text{ °C to } +85 \text{ °C}; V_{DD(l2C-bus)} = 1.65 \text{ V to } 5.5 \text{ V}; unless otherwise specified.}$

Symbol	Parameter	Conditions		Min	Typ <mark>[1]</mark>	Max	Unit
V _{IK}	input clamping voltage	I _I = -18 mA		-1.2	-	-	V
V _{POR}	power-on reset voltage	$V_I = V_{DD(P)}$ or V_{SS} ; $I_O = 0$ mA		-	1.1	1.4	V
V _{OH}	HIGH-level output	P port					
	voltage	$I_{OH} = -8 \text{ mA}; V_{DD(P)} = 1.65 \text{ V}$	[2]	1.2	-	-	V
		$I_{OH} = -10 \text{ mA}; V_{DD(P)} = 1.65 \text{ V}$	[2]	1.1	-	-	V
		$I_{OH} = -8 \text{ mA}; V_{DD(P)} = 2.3 \text{V}$	[2]	1.8	-	-	V
		$I_{OH} = -10 \text{ mA}; V_{DD(P)} = 2.3 \text{ V}$	[2]	1.7	-	-	V
		$I_{OH} = -8 \text{ mA}; V_{DD(P)} = 3.0 \text{ V}$	[2]	2.6	-	-	V
		$I_{OH} = -10 \text{ mA}; V_{DD(P)} = 3.0 \text{ V}$	[2]	2.5	-	-	V
		$I_{OH} = -8 \text{ mA}; V_{DD(P)} = 4.5 \text{ V}$	[2]	4.1	-	-	V
		$I_{OH} = -10 \text{ mA}; V_{DD(P)} = 4.5 \text{ V}$	[2]	4.0	-	-	V
V _{OL}	LOW-level output voltage	P port; I _{OL} = 8 mA					
		$V_{DD(P)} = 1.65 \text{ V}$	[2]	-	-	0.45	V
		$V_{DD(P)} = 2.3 V$	[2]	-	-	0.25	V
		$V_{DD(P)} = 3 V$	[2]	-	-	0.25	V
		$V_{DD(P)} = 4.5 V$	[2]	-	-	0.2	V
I _{OL}	LOW-level output current	V_{OL} = 0.4 V; $V_{DD(P)}$ = 1.65 V to 5.5 V					
		SDA	[3]	3	-	-	mA
		ĪNT	[3]	3	15 <mark>[4]</mark>	-	mA
		P port					
		$V_{OL} = 0.5 \text{ V}; V_{DD(P)} = 1.65 \text{ V}$	[3]	8	10	-	mA
		$V_{OL} = 0.7 \text{ V}; V_{DD(P)} = 1.65 \text{ V}$	[3]	10	13	-	mA
		$V_{OL} = 0.5 \text{ V}; V_{DD(P)} = 2.3 \text{ V}$	[3]	8	10	-	mA
		$V_{OL} = 0.7 \text{ V}; V_{DD(P)} = 2.3 \text{ V}$	[3]	10	13	-	mA
		$V_{OL} = 0.5 \text{ V}; V_{DD(P)} = 3.0 \text{ V}$	[3]	8	14	-	mA
		$V_{OL} = 0.7 \text{ V}; V_{DD(P)} = 3.0 \text{ V}$	[3]	10	19	-	mA
		$V_{OL} = 0.5 \text{ V}; V_{DD(P)} = 4.5 \text{ V}$	[3]	8	17	-	mA
		$V_{OL} = 0.7 \text{ V}; V_{DD(P)} = 4.5 \text{ V}$	[3]	10	24	-	mA

Low-voltage, 8-bit I²C-bus and SMBus I/O expander

Symbol Parameter Conditions Min Typ[1] Max Unit input current $V_{DD(P)} = 1.65 \text{ V to } 5.5 \text{ V}$ I_I SCL, SDA, $\overline{\text{RESET}}$; $V_I = V_{DD(I2C-bus)}$ or V_{SS} _ _ ±1 μΑ ADDR; $V_I = V_{DD(P)}$ or V_{SS} ±1 μA _ _ μA HIGH-level input current P port; V_I = V_{DD(P)}; V_{DD(P)} = 1.65 V to 5.5 V 1 I_{H} --LOW-level input current P port; $V_I = V_{SS}$; $V_{DD(P)} = 1.65$ V to 5.5 V 1 μA _ _ Ι_{ΙL} supply current I_{DD} $I_{DD(I2C-bus)} + I_{DD(P)};$ SDA, P port, ADDR, RESET; V_{I} on SDA and $\overline{RESET} = V_{DD(I2C-bus)}$ or V_{SS} ; V_{I} on P port and ADDR = $V_{DD(P)}$; $I_O = 0 \text{ mA}$; I/O = inputs; $f_{SCL} = 400 \text{ kHz}$ $V_{DD(P)} = 3.6 \text{ V to } 5.5 \text{ V}$ 10 25 μA μA $V_{DD(P)} = 2.3 \text{ V to } 3.6 \text{ V}$ 6.5 15 _ 4 9 V_{DD(P)} = 1.65 V to 2.3 V μA _ $I_{DD(I2C-bus)} + I_{DD(P)};$ SCL, SDA, P port, ADDR, RESET; V_{I} on SCL, SDA and $\overline{RESET} = V_{DD(I2C-bus)}$ or V_{SS} ; V_I on P port and ADDR = $V_{DD(P)}$; $I_O = 0 \text{ mA}$; I/O = inputs; $f_{SCL} = 0 \text{ kHz}$ $V_{DD(P)} = 3.6 \text{ V to } 5.5 \text{ V}$ 1.5 7 μA $V_{DD(P)} = 2.3 \text{ V to } 3.6 \text{ V}$ 1 3.2 μA -V_{DD(P)} = 1.65 V to 2.3 V 0.5 1.7 μΑ _ Active mode; $I_{DD(I2C-bus)} + I_{DD(P)}$; P port, ADDR, RESET; V_{I} on $\overline{RESET} = V_{DD(I2C-bus)};$ V_I on P port and ADDR = $V_{DD(P)}$; $I_{O} = 0 \text{ mA}; I/O = \text{inputs};$ f_{SCL} = 400 kHz, continuous register read $V_{DD(P)} = 3.6 \text{ V to } 5.5 \text{ V}$ _ 60 125 μA $V_{DD(P)} = 2.3 \text{ V to } 3.6 \text{ V}$ 40 75 μA _ V_{DD(P)} = 1.65 V to 2.3 V 20 45 μA _ SCL, SDA, RESET; ΔI_{DD} additional quiescent 25 μA one input at V_{DD(I2C-bus)} - 0.6 V, supply current other inputs at $V_{DD(I2C-bus)}$ or V_{SS} ; $V_{DD(P)} = 1.65 \text{ V to } 5.5 \text{ V}$ P port, ADDR; one input at $V_{DD(P)} - 0.6 V$, 80 μA _ other inputs at V_{DD(P)} or V_{SS}; $V_{DD(P)} = 1.65 \text{ V to } 5.5 \text{ V}$ Ci input capacitance $V_{I} = V_{DD(I2C-bus)}$ or V_{SS} ; $V_{DD(P)} = 1.65$ V to 5.5 V 6 7 pF -7 input/output capacitance $V_{I/O} = V_{DD(I2C-bus)}$ or V_{SS} ; $V_{DD(P)} = 1.65$ V to 5.5 V 8 pF Cio _ $V_{I/O} = V_{DD(P)}$ or V_{SS} ; $V_{DD(P)} = 1.65$ V to 5.5 V 7.5 8.5 _ pF

Table 15. Static characteristics ... continued

 $T_{amb} = -40 \ ^{\circ}C$ to +85 $^{\circ}C$; $V_{DD(I2C-bus)} = 1.65 \ V$ to 5.5 V; unless otherwise specified.

For I_{DD}, all typical values are at nominal supply voltage (1.8 V, 2.5 V, 3.3 V, 3.6 V or 5 V V_{DD}) and T_{amb} = 25 °C. Except for I_{DD}, the [1] typical values are at $V_{DD(P)} = V_{DD(I2C-bus)} = 3.3 \text{ V}$ and $T_{amb} = 25 \text{ °C}$.

The total current sourced by all I/Os must be limited to 80 mA. [2]

Each I/O must be externally limited to a maximum of 25 mA, for a device total of 200 mA. [3]

[4] Typical value for T_{amb} = 25 °C. V_{OL} = 0.4 V and V_{DD} = 3.3 V. Typical value for V_{DD} < 2.5 V, V_{OL} = 0.6 V.

All information provided in this document is subject to legal disclaimers.

PCA6408A

Low-voltage, 8-bit I²C-bus and SMBus I/O expander

13.1 Typical characteristics

PCA6408A **Product data sheet**

NXP Semiconductors

PCA6408A

14. Dynamic characteristics

Table 16. I²C-bus interface timing requirements

Over recommended operating free air temperature range, unless otherwise specified. See Figure 26.

Symbol	Parameter	Conditions	Standard-mode I ² C-bus		Fast-mode I ² C-bus		Unit
			Min	Max	Min	Max	
f _{SCL}	SCL clock frequency		0	100	0	400	kHz
t _{HIGH}	HIGH period of the SCL clock		4	-	0.6	-	μS
t _{LOW}	LOW period of the SCL clock		4.7	-	1.3	-	μS
t _{SP}	pulse width of spikes that must be suppressed by the input filter		0	50	0	50	ns
t _{SU;DAT}	data set-up time		250	-	100	-	ns
t _{HD;DAT}	data hold time		0	-	0	-	ns
t _r	rise time of both SDA and SCL signals		-	1000	20	300	ns
t _f	fall time of both SDA and SCL signals		-	300	$\begin{array}{c} 20 \times \\ (V_{DD} / 5.5 \; V) \end{array}$	300	ns
t _{BUF}	bus free time between a STOP and START condition		4.7	-	1.3	-	μS
t _{SU;STA}	set-up time for a repeated START condition		4.7	-	0.6	-	μS
t _{HD;STA}	hold time (repeated) START condition		4	-	0.6	-	μS
t _{SU;STO}	set-up time for STOP condition		4	-	0.6	-	μS
t _{VD;DAT}	data valid time	SCL LOW to SDA output valid	-	3.45	-	0.9	μS
t _{VD;ACK}	data valid acknowledge time	ACK signal from SCL LOW to SDA (out) LOW	-	3.45	-	0.9	μS

Table 17. Reset timing requirements

Over recommended operating free air temperature range, unless otherwise specified. See Figure 29.

Symbol	Parameter	Conditions	Standard-mode I ² C-bus		Fast- I ² C-	mode ·bus	Unit
			Min	Max	Min	Max	
t _{w(rst)}	reset pulse width		30	-	30	-	ns
t _{rec(rst)}	reset recovery time		200	-	200	-	ns
t _{rst}	reset time		600	-	600	-	ns

Low-voltage, 8-bit I²C-bus and SMBus I/O expander

Table 18. Switching characteristics

Over recommended operating free air temperature range; $C_L \le 100 \text{ pF}$; unless otherwise specified. See <u>Figure 28</u>.

Symbol	Parameter	Conditions	Standar I ² C·	Standard-mode I ² C-bus		Fast-mode I ² C-bus	
			Min	Max	Min	Max	
t _{v(INT)}	valid time on pin INT	from P port to INT	-	1	-	1	μs
t _{rst(INT)}	reset time on pin INT	from SCL to INT	-	1	-	1	μS
t _{v(Q)}	data output valid time	from SCL to P port	-	400	-	400	ns
t _{su(D)}	data input set-up time	from P port to SCL	0	-	0	-	ns
t _{h(D)}	data input hold time	from P port to SCL	300	-	300	-	ns

15. Parameter measurement information

NXP Semiconductors

PCA6408A

