mail

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

PCA85063A

Automotive tiny Real-Time Clock/calendar with alarm function and I²C-bus

Rev. 4 — 30 March 2018

Product data sheet

1. General description

The PCA85063A is a CMOS¹ Real-Time Clock (RTC) and calendar optimized for low power consumption. An offset register allows fine-tuning of the clock. All addresses and data are transferred serially via the two-line bidirectional I²C-bus. Maximum data rate is 400 kbit/s. The register address is incremented automatically after each written or read data byte.

For a selection of NXP Real-Time Clocks, see <u>Table 45 on page 50</u>

2. Features and benefits

- AEC-Q100 grade 2 compliant for automotive applications
- Provides year, month, day, weekday, hours, minutes, and seconds based on a 32.768 kHz quartz crystal
- Low current; typical 0.25 μ A at V_{DD} = 3.0 V and T_{amb} = 25 °C
- Programmable clock output for peripheral devices (32.768 kHz, 16.384 kHz, 8.192 kHz, 4.096 kHz, 2.048 kHz, 1.024 kHz, and 1 Hz)
- Alarm function
- Minute and half minute interrupt
- Internal Power-On Reset (POR)

- High temperature operation range: -40 °C to +105 °C
- Clock operating voltage: 0.9 V to 5.5 V
- 400 kHz two-line l²C-bus interface (at V_{DD} = 1.8 V to 5.5 V)
- Selectable integrated oscillator load capacitors for C_L = 7 pF or C_L = 12.5 pF
- Countdown timer
- Oscillator stop detection function
- Programmable offset register for frequency adjustment

3. Applications

- Tracking time of the day
- Dashboard
- Air condition
- Telematics

- Accurate timing
- Infotainment unit
- Center stack
- Body control and battery management

^{1.} The definition of the abbreviations and acronyms used in this data sheet can be found in <u>Section 22</u>.

4. Ordering information

1	Table 1. Ordering information									
Type number		Package								
			Name	Description	Version					
	PCA85063	ATT	TSSOP8	plastic thin shrink small outline package; 8 leads; body width 3 mm	SOT505-1					

4.1 Ordering options

Table 2. Ordering options										
Product type number	Orderable part number	Sales item (12NC)	Delivery form	IC revision						
PCA85063ATT/A	PCA85063ATT/AJ	935305541118	tape and reel, 13 inch	1						

5. Marking

Table 3. Marking codes	
Product type number	Marking code
PCA85063ATT/A	063Q

6. Block diagram

PCA85063A

7. Pinning information

7.1 Pinning

7.2 Pin description

Table 4.Pin description

Input or input/output pins must always be at a defined level (V_{SS} or V_{DD}) unless otherwise specified.

Symbol	Pin	Туре	Description			
	PCA85063ATT					
OSCI	1	input	oscillator input			
OSCO	2	output	oscillator output			
INT ^[1]	3	output	interrupt output (open-drain)			
VSS	4	supply	ground supply voltage			
SDA ^[1]	5	input/output	serial data line			
SCL ^[1]	6	input	serial clock input			
CLKOUT	7	output	clock output (push-pull)			
VDD	8	supply	supply voltage			

[1] NXP recommends tying VDD of the device and VDD of all the external pull-up resistors to the same Power Supply.

8. Functional description

The PCA85063A contains 18 8-bit registers with an auto-incrementing register address, an on-chip 32.768 kHz oscillator with integrated capacitors, a frequency divider which provides the source clock for the Real-Time Clock (RTC) and calender, and an I²C-bus interface with a maximum data rate of 400 kbit/s.

The built-in address register will increment automatically after each read or write of a data byte up to the register 11h. After register 11h, the auto-incrementing will wrap around to address 00h (see Figure 3).

All registers (see <u>Table 5</u>) are designed as addressable 8-bit parallel registers although not all bits are implemented. The first two registers (memory address 00h and 01h) are used as control and status register. The register at address 02h is an offset register allowing the fine-tuning of the clock; and at 03h is a free RAM byte. The addresses 04h through 0Ah are used as counters for the clock function (seconds up to years counters). Address locations 0Bh through 0Fh contain alarm registers which define the conditions for an alarm. The registers at 10h and 11h are for the timer function.

The Seconds, Minutes, Hours, Days, Months, and Years as well as the corresponding alarm registers are all coded in Binary Coded Decimal (BCD) format. When one of the RTC registers is written or read, the contents of all time counters are frozen. Therefore, faulty writing or reading of the clock and calendar during a carry condition is prevented. For details on maximum access time, see Section 8.4 on page 23.

8.1 Registers organization

Registers overview Table 5.

Bit positions labeled as - are not implemented. After reset, all registers are set according to Table 8 on page 10.

Address	Register name	Bit								
		7	6	5	4	3	2	1	0	
Control a	nd status registers	S		I					I	
00h	Control_1	EXT_TEST	-	STOP	SR	-	CIE	12_24	CAP_SEL	Section 8.2.
01h	Control_2	AIE	AF	MI	НМІ	TF	COF[2:0]		Section 8.2.
02h	Offset	MODE	OFFSET[6	FSET[6:0]						
03h	RAM_byte	B[7:0]								Section 8.2.
Time and	date registers									
04h	Seconds	OS	SECOND	S (0 to 59)						Section 8.3.
05h	Minutes	-	MINUTES	(0 to 59)						Section 8.3
06h	Hours	-	-	AMPM	HOURS (1	to 12) in 12	2-hour mode			Section 8.3
				HOURS (0 t	o 23) in 24-h	our mode				
07h	Days	-	-	DAYS (1 to 3	31)					Section 8.3
08h	Weekdays	-	-	WEEKDAYS (0 to 6)						Section 8.3
09h	Months	-	-	-	MONTHS	(1 to 12)				Section 8.3
0Ah	Years	YEARS (0 to	99)	I						Section 8.3
Alarm reg	isters									
0Bh	Second_alarm	AEN_S	SECOND	_ALARM (0 to 59	9)					Section 8.5.
0Ch	Minute_alarm	AEN_M	MINUTE_	ALARM (0 to 59)						Section 8.5.
0Dh	Hour_alarm	AEN_H	-	AMPM	HOUR_AL	ARM (1 to 1	2) in 12-hour n	node		Section 8.5.
				HOUR_ALA	RM (0 to 23)	in 24-hour r	node			
0Eh	Day_alarm	AEN_D	-	DAY_ALARI	M (1 to 31)					Section 8.5
0Fh	Weekday_alarm	AEN_W	-	-	-	-	WEEKD	AY_ALARM (0 to	o 6)	Section 8.5
Timer reg	isters									
10h	Timer_value	T[7:0]								Section 8.6
11h	Timer_mode	-	-	-	TCF[1:0]		TE	TIE	TI_TP	Section 8.6

PCA85063A

8.2 Control registers

To ensure that all control registers will be set to their default values, the V_{DD} level must be at zero volts at initial power-up. If this is not possible, a reset must be initiated with the software reset command when power is stable. Refer to <u>Section 8.2.1.3</u> for details.

8.2.1 Register Control_1

Table 0. Outfor 1 - control and status register 1 (address out) bit description	Table 6.	Control 1	- control and	status register 1	l (address 00h) bit description
---	----------	-----------	---------------	-------------------	----------------	-------------------

Bit	Symbol	Value	Description	Reference
7	EXT_TEST		external clock test mode	Section 8.2.1.1
		0[1]	normal mode	
		1	external clock test mode	-
6	-	0	unused	-
5	STOP		STOP bit	Section 8.2.1.2
		0[1]	RTC clock runs	-
		1	RTC clock is stopped; all RTC divider chain flip-flops are asynchronously set logic 0	
4	SR		software reset	Section 8.2.1.3
		0[1]	no software reset	-
		1	initiate software reset ^[2] ; this bit always returns a 0 when read	
3	-	0	unused	-
2	CIE		correction interrupt enable	Section 8.2.3
		0 <u>[1]</u>	no correction interrupt generated	
		1	interrupt pulses are generated at every correction cycle	
1	12_24		12 or 24-hour mode	Section 8.3.3
		0[1]	24-hour mode is selected	Section 8.5.3
		1	12-hour mode is selected	-
0	CAP_SEL		internal oscillator capacitor selection for quartz crystals with a corresponding load capacitance	-
		0 <u>[1]</u>	7 pF	
		1	12.5 pF	

[1] Default value.

[2] For a software reset, 01011000 (58h) must be sent to register Control_1 (see Section 8.2.1.3).

8.2.1.1 EXT_TEST: external clock test mode

A test mode is available which allows for on-board testing. In this mode, it is possible to set up test conditions and control the operation of the RTC.

The test mode is entered by setting bit EXT_TEST in register Control_1. Then pin CLKOUT becomes an input. The test mode replaces the internal clock signal with the signal applied to pin CLKOUT.

The signal applied to pin CLKOUT should have a minimum pulse width of 300 ns and a maximum period of 1000 ns. The internal clock, now sourced from CLKOUT, is divided down to 1 Hz by a 2⁶ divide chain called a prescaler. The prescaler can be set into a known state by using bit STOP. When bit STOP is set, the prescaler is reset to 0. (STOP must be cleared before the prescaler can operate again.)

From a stop condition, the first 1 second increment will take place after 32 positive edges on pin CLKOUT. Thereafter, every 64 positive edges cause a 1 second increment.

Remark: Entry into test mode is not synchronized to the internal 64 Hz clock. When entering the test mode, no assumption as to the state of the prescaler can be made.

Operation example:

- 1. Set EXT_TEST test mode (register Control_1, bit EXT_TEST = 1).
- 2. Set STOP (register Control_1, bit STOP = 1).
- 3. Clear STOP (register Control_1, bit STOP = 0).
- 4. Set time registers to desired value.
- 5. Apply 32 clock pulses to pin CLKOUT.
- 6. Read time registers to see the first change.
- 7. Apply 64 clock pulses to pin CLKOUT.
- 8. Read time registers to see the second change.

Repeat 7 and 8 for additional increments.

8.2.1.2 STOP: STOP bit function

The function of the STOP bit (see Figure 4) is to allow for accurate starting of the time circuits. The STOP bit function causes the upper part of the prescaler (F_2 to F_{14}) to be held in reset and thus no 1 Hz ticks are generated. It also stops the output of clock frequencies below 8 kHz on pin CLKOUT.

The time circuits can then be set and do not increment until the STOP bit is released (see Figure 5 and Table 7).

Table 7.	e 7. First increment of time circuits after STOP bit release			
Bit	Prescaler bits	1 Hz tick	Time	Comment
STOP	F_0F_1 - F_2 to F_{14}		hh:mm:ss	
Clock is r	unning normally			
0	01-0 0001 1101 0100		12:45:12	prescaler counting normally
STOP bit is activated by user. F ₀ F ₁ are not			and values can	not be predicted externally
1	XX-0 0000 0000 0000		12:45:12	prescaler is reset; time circuits are frozen
New time	is set by user			
1	XX-0 0000 0000 0000		08:00:00	prescaler is reset; time circuits are frozen
STOP bit	is released by user			
0	XX-0 0000 0000 0000	1	08:00:00	prescaler is now running
	XX-1 0000 0000 0000		08:00:00	-
	XX-0 1000 0000 0000	0.507813	08:00:00	-
	XX-1 1000 0000 0000	to	08:00:00	-
	:		:	:
	11-1 1111 1111 1110		08:00:00	-
	00-0 0000 0000 0001		08:00:01	0 to 1 transition of F_{14} increments the time circuits
	10-0 0000 0000 0001		08:00:01	-
	:		:	:
	11-1 1111 1111 1111	1.000000 s	08:00:01	-
	00-0 0000 0000 0000		08:00:01	-
	10-0 0000 0000 0000		08:00:01	-
	:		:	:
	11-1 1111 1111 1110		08:00:01	-
	00-0 0000 0000 0001		08:00:02	0 to 1 transition of F_{14} increments the time circuits
		aaa-004416		

[1] F_0 is clocked at 32.768 kHz.

The lower two stages of the prescaler (F_0 and F_1) are not reset. And because the I²C-bus is asynchronous to the crystal oscillator, the accuracy of restarting the time circuits is between zero and one 8.192 kHz cycle (see Figure 5).

The first increment of the time circuits is between 0.507813 s and 0.507935 s after STOP bit is released. The uncertainty is caused by the prescaler bits F_0 and F_1 not being reset (see Table 7) and the unknown state of the 32 kHz clock.

PCA85063A

8.2.1.3 Software reset

A reset is automatically generated at power-on. There is a low probability that some devices will have corruption of the registers after the automatic power-on reset if the device is powered up with a residual V_{DD} level. It is required that the V_{DD} starts at zero volts at power up or upon power cycling to ensure that there is no corruption of the registers. If this is not possible, a reset must be initiated after power-up (i.e. when power is stable) with the software reset command. Software reset command means setting bits 6, 4, and 3 in register Control_1 (00h) logic 1 and all other bits logic 0 by sending the bit sequence 01011000 (58h), see Figure 6.

In reset state, all registers are set according to <u>Table 8</u> and the address pointer returns to address 00h.

Address	Register name	name Bit							
		7	6	5	4	3	2	1	0
00h	Control_1	0	0	0	0	0	0	0	0
01h	Control_2	0	0	0	0	0	0	0	0
02h	Offset	0	0	0	0	0	0	0	0
03h	RAM_byte	0	0	0	0	0	0	0	0
04h	Seconds	1	0	0	0	0	0	0	0
05h	Minutes	0	0	0	0	0	0	0	0
06h	Hours	0	0	0	0	0	0	0	0
07h	Days	0	0	0	0	0	0	0	1
08h	Weekdays	0	0	0	0	0	1	1	0
09h	Months	0	0	0	0	0	0	0	1
0Ah	Years	0	0	0	0	0	0	0	0
0Bh	Second_alarm	1	0	0	0	0	0	0	0
0Ch	Minute_alarm	1	0	0	0	0	0	0	0
0Dh	Hour_alarm	1	0	0	0	0	0	0	0
0Eh	Day_alarm	1	0	0	0	0	0	0	0

Table 8. Registers reset values

Table 8. Registers reset values conti	nued
---------------------------------------	------

Address	Register name	Bit							
		7	6	5	4	3	2	1	0
0Fh	Weekday_alarm	1	0	0	0	0	0	0	0
10h	Timer_value	0	0	0	0	0	0	0	0
11h	Timer_mode	0	0	0	1	1	0	0	0

The PCA85063A resets to:

Time — 00:00:00

Date — 20000101

Weekday — Saturday

8.2.2 Register Control_2

Table 9. Control_2 - control and status register 2 (address 01h) bit description

Bit	Symbol	Value	Description	Reference
7	AIE		alarm interrupt	Section 8.2.2.1
		0[1]	disabled	Section 8.5.6
		1	enabled	-
6	AF		alarm flag	Section 8.2.2.1
		0[1]	read: alarm flag inactive	Section 8.5.6
			write: alarm flag is cleared	-
		1	read: alarm flag active	-
			write: alarm flag remains unchanged	-
5	MI minute interrupt		minute interrupt	Section 8.2.2.2
		0[1]	disabled	Section 8.2.2.3
		1	enabled	-
4	НМІ		half minute interrupt	Section 8.2.2.2
		0[1]	disabled	Section 8.2.2.3
		1	enabled	-
3	TF timer flag		timer flag	Section 8.2.2.1
		0[1]	no timer interrupt generated	Section 8.2.2.3
		1	flag set when timer interrupt generated	
2 to 0	COF[2:0]	see Table 11	CLKOUT control	Section 8.2.2.4

[1] Default value.

AIE: This bit activates or deactivates the generation of an interrupt when AF is asserted, respectively.

AF: When an alarm occurs, AF is set logic 1. This bit maintains its value until overwritten by command. To prevent one flag being overwritten while clearing another, a logic AND is performed during a write access.

8.2.2.2 MI and HMI: minute and half minute interrupt

The minute interrupt (bit MI) and half minute interrupt (bit HMI) are pre-defined timers for generating interrupt pulses on pin INT; see <u>Figure 8</u>. The timers are running in sync with the seconds counter (see Table 19 on page 19).

The minute and half minute interrupts must only be used when the frequency offset is set to normal mode (MODE = 0), see Section 8.2.3. In normal mode, the interrupt pulses on pin \overline{INT} are $\frac{1}{64}$ s wide.

When starting MI, the first interrupt will be generated after 1 second to 59 seconds. When starting HMI, the first interrupt will be generated after 1 second to 29 seconds.

Subsequent periods do not have such a delay. The timers can be enabled independently from one another. However, a minute interrupt enabled on top of a half minute interrupt is not distinguishable.

Table 10. Effect of bits MI and HMI on INT generation

Minute interrupt (bit MI)	Half minute interrupt (bit HMI)	Result
0	0	no interrupt generated
1	0	an interrupt every minute
0	1	an interrupt every 30 s
1	1	an interrupt every 30 s

The duration of the timer is affected by the register Offset (see <u>Section 8.2.3</u>). Only when OFFSET[6:0] has the value 00h the periods are consistent.

8.2.2.3 TF: timer flag

The timer flag (bit TF) is set logic 1 on the first trigger of MI, HMI, or the countdown timer. The purpose of the flag is to allow the controlling system to interrogate what caused the interrupt: timer or alarm. The flag can be read and cleared by command.

The status of the timer flag TF can affect the INT pulse generation depending on the setting of TI_TP (see Section 8.6.2 "Register Timer_mode" on page 28):

- When TI_TP is set logic 1
 - an INT pulse is generated independent of the status of the timer flag TF
 - TF stays set until it is cleared
 - TF does not affect INT

Product data sheet

- the countdown timer runs in a repetitive loop and keeps generating timed periods
- When TI_TP is set logic 0
 - the INT generation follows the TF flag
 - TF stays set until it is cleared
 - If TF is not cleared before the next coming interrupt, no INT is generated
 - the countdown timer stops after the first countdown

8.2.2.4 COF[2:0]: Clock output frequency

A programmable square wave is available at pin CLKOUT. Operation is controlled by the COF[2:0] bits in the register Control_2. Frequencies of 32.768 kHz (default) down to 1 Hz can be generated for use as a system clock, microcontroller clock, input to a charge pump, or for calibration of the oscillator.

Pin CLKOUT is a push-pull output and enabled at power-on. CLKOUT can be disabled by setting COF[2:0] to 111. When disabled, the CLKOUT is LOW.

The duty cycle of the selected clock is not controlled. However, due to the nature of the clock generation, all clock frequencies except 32.768 kHz have a duty cycle of 50 : 50.

The STOP bit function can also affect the CLKOUT signal, depending on the selected frequency. When the STOP bit is set logic 1, the CLKOUT pin generates a continuous LOW for those frequencies that can be stopped. For more details of the STOP bit function, see <u>Section 8.2.1.2</u>.

COF[2:0]	CLKOUT frequency (Hz)	Typical duty cycle ^[1]	Effect of STOP bit
000[2]	32768	60 : 40 to 40 : 60	no effect
001	16384	50 : 50	no effect
010	8192	50 : 50	no effect
011	4096	50 : 50	CLKOUT = LOW
100	2048	50 : 50	CLKOUT = LOW
101	1024	50 : 50	CLKOUT = LOW
110	1 <u>[3]</u>	50 : 50	CLKOUT = LOW
111	CLKOUT = LOW	-	-

Table 11. CLKOUT frequency selection

[1] Duty cycle definition: % HIGH-level time : % LOW-level time.

[2] Default value.

[3] 1 Hz clock pulses are affected by offset correction pulses.

Product data sheet

8.2.3 Register Offset

The PCA85063A incorporates an offset register (address 02h) which can be used to implement several functions, such as:

- Accuracy tuning
- Aging adjustment
- Temperature compensation

Table 12. Offset - offset register (address 02h) bit description

Bit	Symbol	Value	Description
7	MODE		offset mode
		0[1]	normal mode: offset is made once every two hours
		1	course mode: offset is made every 4 minutes
6 to 0	OFFSET[6:0]	see Table 13	offset value

[1] Default value.

For MODE = 0, each LSB introduces an offset of 4.34 ppm. For MODE = 1, each LSB introduces an offset of 4.069 ppm. The offset value is coded in two's complement giving a range of +63 LSB to -64 LSB.

Table 13.Offset values

OFFSET[6:0]	Offset value in	Offset value in ppm			
	decimal	Normal mode MODE = 0	Fast mode MODE = 1		
0111111	+63	+273.420	+256.347		
0111110	+62	+269.080	+252.278		
:	:	:	:		
0000010	+2	+8.680	+8.138		
0000001	+1	+4.340	+4.069		
0000000[1]	0	0[1]	0[1]		
1111111	-1	-4.340	-4.069		
1111110	-2	-8.680	-8.138		
:	•	:	:		
1000001	-63	-273.420	-256.347		
1000000	-64	-277.760	-260.416		

[1] Default value.

The correction is made by adding or subtracting clock correction pulses, thereby changing the period of a single second but not by changing the oscillator frequency.

It is possible to monitor when correction pulses are applied. To enable correction interrupt generation, bit CIE (register Control_1) has to be set logic 1. At every correction cycle, a pulse is generated on pin INT. The pulse width depends on the correction mode. If multiple correction pulses are applied, an interrupt pulse is generated for each correction pulse applied.

8.2.3.1 Correction when MODE = 0

The correction is triggered once every two hours and then correction pulses are applied once per minute until the programmed correction values have been implemented.

Correction value	Update every n th hour	Minute	Correction pulses on INT per minute ^[1]
+1 or -1	2	00	1
+2 or –2	2	00 and 01	1
+3 or –3	2	00, 01, and 02	1
:	:	:	:
+59 or –59	2	00 to 58	1
+60 or -60	2	00 to 59	1
+61 or –61	2	00 to 59	1
	2nd and next hour	00	1
+62 or -62	2	00 to 59	1
	2nd and next hour	00 and 01	1
+63 or -63	02	00 to 59	1
	2nd and next hour	00, 01, and 02	1
-64	02	00 to 59	1
	2nd and next hour	00, 01, 02, and 03	1

[1] The correction pulses on pin $\overline{\text{INT}}$ are $\frac{1}{64}$ s wide.

In MODE = 0, any timer or clock output using a frequency below 64 Hz is affected by the clock correction (see <u>Table 15</u>).

Table 15.	Effect of	correction	pulses on	frequencies	for MODE = 0
-----------	-----------	------------	-----------	-------------	--------------

Frequency (Hz)	Effect of correction
CLKOUT	
32768	no effect
16384	no effect
8192	no effect
4096	no effect
2048	no effect
1024	no effect
1	affected
Timer source clock	
4096	no effect
64	no effect
1	affected
1⁄60	affected

8.2.3.2 Correction when MODE = 1

The correction is triggered once every four minutes and then correction pulses are applied once per second up to a maximum of 60 pulses. When correction values greater than 60 pulses are used, additional correction pulses are made in the 59th second.

Clock correction is made more frequently in MODE = 1; however, this can result in higher power consumption.

Correction value	Update every n th minute	Second	Correction pulses on INT per second ^[1]		
+1 or –1	2	00	1		
+2 or –2	2	00 and 01	1		
+3 or –3	2	00, 01, and 02	1		
:	:	:	:		
+59 or –59	2	00 to 58	1		
+60 or -60	2	00 to 59	1		
+61 or –61	2	00 to 58	1		
	2	59	2		
+62 or -62	2	00 to 58	1		
	2	59	3		
+63 or -63	2	00 to 58	1		
	2	59	4		
-64	2	00 to 58	1		
	2	59	5		

Table 16. Correction pulses for MODE = 1

[1] The correction pulses on pin \overline{INT} are $\frac{1}{1024}$ s wide. For multiple pulses, they are repeated at an interval of $\frac{1}{512}$ s.

In MODE = 1, any timer source clock using a frequency below 1.024 kHz is also affected by the clock correction (see Table 17).

Frequency (Hz)	Effect of correction
CLKOUT	
32768	no effect
16384	no effect
8192	no effect
4096	no effect
2048	no effect
1024	no effect
1	affected
Timer source clock	
4096	no effect
64	affected
1	affected
1/60	affected

Table 17. Effect of correction pulses on frequencies for MODE = 1

8.2.3.3 Offset calibration workflow

The calibration offset has to be calculated based on the time. <u>Figure 9</u> shows the workflow how the offset register values can be calculated:

Fig 10. Result of offset calibration

8.2.4 Register RAM_byte

The PCA85063A provides a free RAM byte, which can be used for any purpose, for example, status byte of the system.

Table 18. RAM_byte - 8-bit RAM register (address 03h) bit description

Bit	Symbol	Value	Description
7 to 0	B[7:0]	00000000[^{1]} to 11111111	RAM content

[1] Default value.

8.3 Time and date registers

Most of the registers are coded in the BCD format to simplify application use.

8.3.1 Register Seconds

Table 19.	Seconds -	seconds	register	(address	04h)	bit	description
-----------	-----------	---------	----------	----------	------	-----	-------------

Bit	Symbol	Value	Place value	Description
7	OS			oscillator stop
		0	-	clock integrity is guaranteed
	1[1]	-	clock integrity is not guaranteed; oscillator has stopped or has been interrupted	
6 to 4	SECONDS	0 <u>[1]</u> to 5	ten's place	actual seconds coded in BCD
3 to 0		0 <u>[1]</u> to 9	unit place	format, see <u>Table 20</u>

[1] Default value.

PCA85063A

Seconds value in	Upper-digit (ten's place)			Digit (u	Digit (unit place)		
decimal	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
00[1]	0	0	0	0	0	0	0
01	0	0	0	0	0	0	1
02	0	0	0	0	0	1	0
:	:	:	:	:	:	:	:
09	0	0	0	1	0	0	1
10	0	0	1	0	0	0	0
:	:	:	:	:	:	:	:
58	1	0	1	1	0	0	0
59	1	0	1	1	0	0	1

Table 20. Seconds coded in BCD format

[1] Default value.

8.3.1.1 OS: Oscillator stop

When the oscillator of the PCA85063A is stopped, the OS flag is set. The oscillator can be stopped, for example, by connecting one of the oscillator pins OSCI or OSCO to ground. The oscillator is considered to be stopped during the time between power-on and stable crystal resonance. This time can be in the range of 200 ms to 2 s depending on crystal type, temperature, and supply voltage.

The flag remains set until cleared by command (see Figure 11). If the flag cannot be cleared, then the oscillator is not running. This method can be used to monitor the oscillator and to determine if the supply voltage has reduced to the point where oscillation fails.

8.3.2 Register Minutes

Table 21. Minutes - minutes register (address 05h) bit description

Bit	Symbol	Value	Place value	Description
7	-	0	-	unused
6 to 4	MINUTES	0 ^[1] to 5	ten's place	actual minutes coded in BCD
3 to 0	-	0 <mark>11</mark> to 9	unit place	format

[1] Default value.

8.3.3 Register Hours

Table 22. Hours - hours register (address 06h) bit description

Bit	Symbol	Value	Place value	Description		
7 to 6	-	00	-	unused		
12-hour mode ^[1]						
5	AMPM			AM/PM indicator		
		0[2]	-	AM		
		1	-	РМ		
4	HOURS	0 ^[2] to 1	ten's place	actual hours in 12-hour mode		
3 to 0		0 ^[2] to 9	unit place	coded in BCD format		
24-hour	mode ^[1]					
5 to 4	HOURS	0 ^[2] to 2	ten's place	actual hours in 24-hour mode		
3 to 0		0 <mark>[2]</mark> to 9	unit place	coded in BCD format		

[1] Hour mode is set by the 12_24 bit in register Control_1.

[2] Default value.

8.3.4 Register Days

Table 23. Days - days register (address 07h) bit description

Bit	Symbol	Value	Place value	Description
7 to 6	-	00	-	unused
5 to 4	DAYS ^[1]	0 ^[2] to 3	ten's place	actual day coded in BCD format
3 to 0		0 <mark>3]</mark> to 9	unit place	

[1] If the year counter contains a value, which is exactly divisible by 4 (including the year 00), the PCA85063A compensates for leap years by adding a 29th day to February.

- [2] Default value.
- [3] Default value is 1.

8.3.5 Register Weekdays

Table 24. Weekdays - weekdays register (address 08h) bit description

Bit	Symbol	Value	Description
7 to 3	-	00000	unused
2 to 0	WEEKDAYS	0 to 6	actual weekday values, see Table 25

Table 25. Weekday assignments

Day ^[1]	Bit					
	2	1	0			
Sunday	0	0	0			
Monday	0	0	1			
Tuesday	0	1	0			
Wednesday	0	1	1			
Thursday	1	0	0			
Friday	1	0	1			
Saturday ^[2]	1	1	0			

[1] Definition may be reassigned by the user.

[2] Default value.

8.3.6 Register Months

Table 26. Months - months register (address 09h) bit description

Bit	Symbol	Value	Place value	Description
7 to 5	-	000	-	unused
4	MONTHS	0 to 1	ten's place	actual month coded in BCD
3 to 0		0 to 9	unit place	format, see <u>Table 27</u>

Table 27. Month assignments in BCD format

Month	Upper-digit (ten's place)	Digit (unit place)					
	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
January ^[1]	0	0	0	0	1		
February	0	0	0	1	0		
March	0	0	0	1	1		
April	0	0	1	0	0		
Мау	0	0	1	0	1		
June	0	0	1	1	0		
July	0	0	1	1	1		
August	0	1	0	0	0		
September	0	1	0	0	1		
October	1	0	0	0	0		
November	1	0	0	0	1		
December	1	0	0	1	0		

[1] Default value.

8.3.7 Register Years

 Table 28.
 Years - years register (0Ah) bit description

Bit	Symbol	Value	Place value	Description
7 to 4	YEARS	0[1] to 9	ten's place	actual year coded in BCD format
3 to 0	-	0[1] to 9	unit place	

[1] Default value.

8.4 Setting and reading the time

Figure 12 shows the data flow and data dependencies starting from the 1 Hz clock tick.

During read/write operations, the time counting circuits (memory locations 04h through 0Ah) are blocked.

The blocking prevents

- Faulty reading of the clock and calendar during a carry condition
- · Incrementing the time registers during the read cycle

After this read/write access is completed, the time circuit is released again and any pending request to increment the time counters that occurred during the read/write access is serviced. A maximum of 1 request can be stored; therefore, all accesses must be completed within 1 second (see Figure 13).

Because of this method, it is very important to make a read or write access in one go, that is, setting or reading seconds through to years should be made in one single access. Failing to comply with this method could result in the time becoming corrupted.

As an example, if the time (seconds through to hours) is set in one access and then in a second access the date is set, it is possible that the time will increment between the two accesses. A similar problem exists when reading. A roll-over may occur between reads thus giving the minutes from one moment and the hours from the next.

Recommended method for reading the time:

- 1. Send a START condition and the slave address (see <u>Table 39 on page 33</u>) for write (A2h)
- 2. Set the address pointer to 4 (Seconds) by sending 04h
- 3. Send a RESTART condition or STOP followed by START
- 4. Send the slave address for read (A3h)
- 5. Read Seconds
- 6. Read Minutes
- 7. Read Hours
- 8. Read Days
- 9. Read Weekdays
- 10. Read Months
- 11. Read Years
- 12. Send a STOP condition

8.5 Alarm registers

8.5.1 Register Second_alarm

Table 29. Second_alarm - second alarm register (address 0Bh) bit description

Bit	Symbol	Value	Place value	Description	
7	AEN_S			second alarm	
		0	-	enabled	
		1[1]	-	disabled	
6 to 4	SECOND_ALARM	0 ^[1] to 5	ten's place	second alarm information	
3 to 0		0 <mark>[1]</mark> to 9	unit place	coded in BCD format	

[1] Default value.

PCA85063A

8.5.2 Register Minute_alarm

Table 30. Minute_alarm - minute alarm register (address 0Ch) bit description

Bit	Symbol	Value	Place value	Description
7	AEN_M			minute alarm
		0	-	enabled
		1[1]	-	disabled
6 to 4	MINUTE_ALARM	0 <mark>11</mark> to 5	ten's place	minute alarm information coded
3 to 0		0 <mark>11</mark> to 9	unit place	in BCD format

[1] Default value.

8.5.3 Register Hour_alarm

Table 31. Hour_alarm - hour alarm register (address 0Dh) bit description

Bit	Symbol	Value	Place value	Description				
7	AEN_H			hour alarm				
		0	-	enabled				
		1[1]	-	disabled				
6	-	0	-	unused				
12-hour mode ^[2]								
5	АМРМ			AM/PM indicator				
		0[1]	-	AM				
		1	-	РМ				
4	HOUR_ALARM	0 <mark>11</mark> to 1	ten's place	hour alarm information in 12-hour mode coded in BCD format				
3 to 0		0 <mark>11</mark> to 9	unit place					
24-hour mode ^[2]								
5 to 4	HOUR_ALARM	0[1] to 2	ten's place	hour alarm information in 24-hour mode coded in BCD format				
3 to 0		0[1] to 9	unit place					

[1] Default value.

[2] Hour mode is set by the 12_24 bit in register Control_1.

8.5.4 Register Day_alarm

Table 32. Day_alarm - day alarm register (address 0Eh) bit description

Bit	Symbol	Value	Place value	Description
7	AEN_D			day alarm
		0	-	enabled
		1[1]	-	disabled
6	-	0	-	unused
5 to 4	DAY_ALARM	0 ^[1] to 3	ten's place	day alarm information coded in BCD format
3 to 0		0 ^[1] to 9	unit place	

[1] Default value.