imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

PCA85262 Automotive 32 x 4 LCD driver for low multiplex rates Rev. 2 – 10 April 2015 Product

Product data sheet

1. General description

The PCA85262 is a peripheral device which interfaces to almost any Liquid Crystal Display (LCD)¹ with low multiplex rates. It generates the drive signals for any static or multiplexed LCD containing up to four backplanes and up to 32 segments. It can be easily cascaded for larger LCD applications. The PCA85262 is compatible with most microcontrollers and communicates via the two-line bidirectional I²C-bus. Communication overheads are minimized by a display RAM with auto-incremented addressing, by hardware subaddressing, and by display memory switching (static and duplex drive modes).

For a selection of NXP LCD segment drivers, see Table 24 on page 47

2. Features and benefits

- AEC-Q100 grade 2 compliant for automotive applications
- Single chip LCD controller and driver
- Selectable backplane drive configuration: static, 2, 3, or 4 backplane multiplexing
- Selectable display bias configuration: static, ¹/₂, or ¹/₃
- Internal LCD bias generation with voltage-follower buffers
- 32 segment drives:
 - Up to 16 7-segment numeric characters
 - Up to 8 14-segment alphanumeric characters
 - Any graphics of up to 128 segments/elements
- 32 × 4-bit RAM for display data storage
- Display memory bank switching in static and duplex drive modes
- Versatile blinking modes
- Independent supplies possible for LCD and logic voltages
- Wide power supply range: from 1.8 V to 5.5 V
- Wide logic LCD supply range:
 - From 2.5 V for low-threshold LCDs
 - ◆ Up to 8.0 V for guest-host LCDs and high-threshold twisted nematic LCDs
- Low power consumption
- Extended temperature range up to 105 °C
- 400 kHz l²C-bus interface
- No external components required

^{1.} The definition of the abbreviations and acronyms used in this data sheet can be found in Section 22.

3. Ordering information

Table 1. Ordering information						
Type number	Package					
	Name	Description	Version			
PCA85262ATT		plastic thin shrink small outline package; 48 leads; body width 6.1 mm	SOT362-1			

3.1 Ordering options

Table 2. Ordering options

Product type number	Sales item (12NC)	Orderable part number	IC revision	Delivery form
PCA85262ATT/A	935303863118	PCA85262ATT/AJ	1	tape and reel, 13 inch

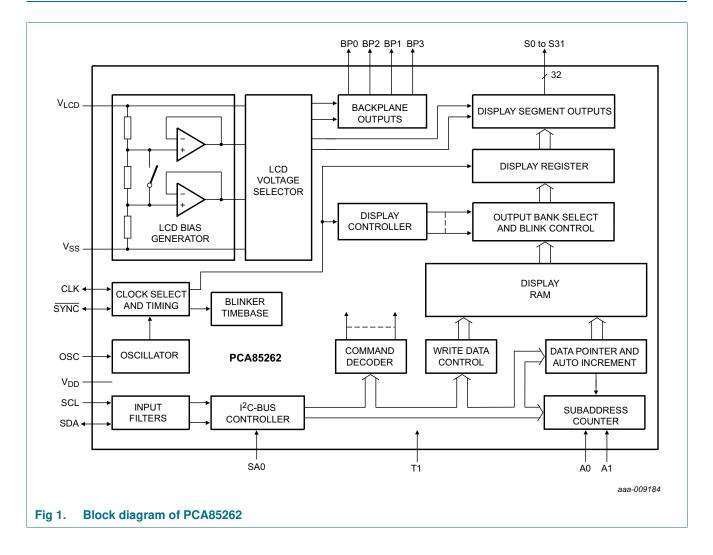
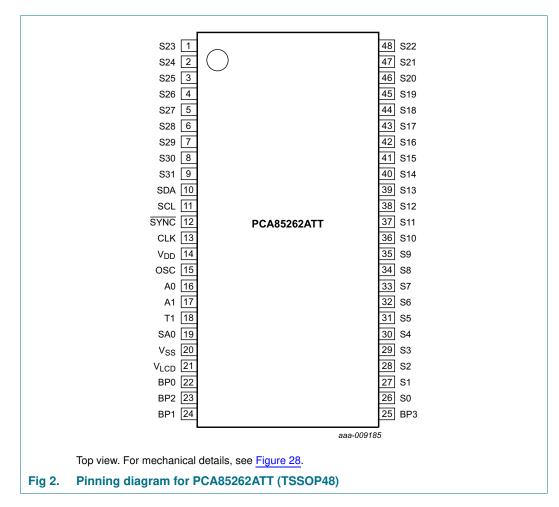

4. Marking

Table 3.Marking codes

Product type number	Marking code	
PCA85262ATT	PCA85262TT	

Automotive 32 x 4 LCD driver for low multiplex rates


5. Block diagram

Automotive 32 x 4 LCD driver for low multiplex rates

6. Pinning information

6.1 Pinning

6.2 Pin description

Table 4. Pin description of PCA85262ATT (TSSOP48)

Input or input/output pins must always be at a defined level (V_{SS} or V_{DD}) unless otherwise specified.

Symbol	Pin	Туре	Description
SDA	10	input/output	I ² C-bus serial data line
SCL	11	input	I ² C-bus serial clock
SYNC	12	input/output	cascade synchronization input or output; if not used it must be left open
CLK	13	input/output	clock line
V _{DD}	14	supply	supply voltage
OSC	15	input	internal oscillator enable
A0, A1	16, 17	input	subaddress inputs
T1	18	input	dedicated testing pin; to be tied to $V_{\mbox{\scriptsize SS}}$ in application mode
SA0	19	input	I ² C-bus address input
V _{SS}	20	supply	ground supply voltage
V _{LCD}	21	supply	LCD supply voltage
BP0 to BP3	22 to 25	output	LCD backplane outputs
S0 to S22, S23 to S31	26 to 48, 1 to 9	output	LCD segment outputs

7. Functional description

The PCA85262 is a versatile peripheral device designed to interface between any microcontroller to a wide variety of LCD segment or dot-matrix displays. It can directly drive any static or multiplexed LCD containing up to four backplanes and up to 32 segments.

7.1 Commands of PCA85262

The commands available to the PCA85262 are defined in Table 5.

Table 5. Definition of the PCA85262 commands

Bit position labeled as - is not used.

Command	Ope	Operation code						Reference	
Bit	7	6	5	4	3	2	1	0	
mode-set	С	1	0	-	Е	В	M[1:0)]	Table 7
load-data-pointer	С	0	0	P[4:0)]				Table 8
device-select	С	1	1	0	0	0	A[1:0]	Table 9
bank-select	С	1	1	1	1	0	I	0	Table 10
blink-select	С	1	1	1	0	AB	BF[1:	0]	Table 11

All available commands carry a continuation bit C in their most significant bit position as shown in <u>Figure 21</u>. When this bit is set logic 1, it indicates that the next byte of the transfer to arrive will also represent a command. If this bit is set logic 0, it indicates that the command byte is the last in the transfer. Further bytes are regarded as display data (see <u>Table 6</u>).

Table 6. C bit description

Bit	Symbol	Value	Description
7	С		continue bit
		0	last control byte in the transfer; next byte will be regarded as display data
		1	control bytes continue; next byte will be a command too

7.1.1 Command: mode-set

The mode-set command allows configuring the multiplex mode, the bias levels and enabling or disabling the display.

Table 7. Mode-set command bit description

Bit	Symbol	Value	Description
7	С	0, 1	see <u>Table 6</u>
6 to 5	-	10	fixed value
4	-	-	unused
3	E		display status ^[1]
		0	disabled (blank) ^[2]
		1	enabled

Symbol	Value	Description		
В		LCD bias configuration ^[3]		
	0	¹⁄₃ bias		
	1	1⁄2 bias		
M[1:0]		LCD drive mode selection		
	01	static; BP0		
	10	1:2 multiplex; BP0, BP1		
	11	1:3 multiplex; BP0, BP1, BP2		
	00	1:4 multiplex; BP0, BP1, BP2, BP3		
	В	B 0 1 M[1:0] 01 10 11		

[1] The possibility to disable the display allows implementation of blinking under external control.

- [2] The display is disabled by setting all backplane and segment outputs to V_{LCD} .
- [3] Not applicable for static drive mode.

7.1.2 Command: load-data-pointer

The load-data-pointer command defines the display RAM address where the following display data are sent to.

Table 8. Load-data-pointer command bit description See Section 7.3.1

See <u>Section 7.5.1</u> .					
Bit	Symbol	Value	Description		
7	С	0, 1	see <u>Table 6</u>		
6 to 5	-	00	fixed value		
4 to 0	P[4:0]	00000 to 11111	5-bit binary value, 0 to 31; transferred to the data pointer to define one of 32 display RAM addresses		

7.1.3 Command: device-select

The device-select command allows defining the subaddress counter value.

Table 9. Device-select command bit description

See <u>Sectio</u>	<u>n 7.3.2</u> .
-------------------	------------------

Bit	Symbol	Value	Description
7	С	0, 1	see <u>Table 6</u>
6 to 2	-	11000	fixed value
1 to 0	A[1:0]	00 to 11	2-bit binary value, 0 to 3; transferred to the subaddress counter to define one of four hardware subaddresses

7.1.4 Command: bank-select

The bank-select command controls where data is written to RAM and where it is displayed from.

Table 10.Bank-select command bit descriptionSee Section 7.3.5.

Bit	Symbol	Value	Description						
			Static	1:2 multiplex ^[1]					
7	С	0, 1	see Table 6						
6 to 2	-	11110	fixed value						
1	1		input bank selection; storage of arriving display data						
		0	RAM row 0	RAM rows 0 and 1					
		1	RAM row 2	RAM rows 2 and 3					
0	0		output bank selection; retrieval of LCD display data						
		0	RAM row 0	RAM rows 0 and 1					
		1	RAM row 2	RAM rows 2 and 3					

[1] The bank-select command has no effect in 1:3 and 1:4 multiplex drive modes.

7.1.5 Command: blink-select

The blink-select command allows configuring the blink mode and the blink frequency.

Bit	Symbol	Value	Description
7	С	0, 1	see Table 6
6 to 3	-	1110	fixed value
2	AB		blink mode selection
		0	normal blinking ^[1]
		1	alternate RAM bank blinking ^[2]
1 to 0	BF[1:0]		blink frequency selection
		00	off
		01	1
		10	2
		11	3

Table 11.Blink-select command bit descriptionSee Section 7.1.5.1.

[1] Normal blinking is assumed when the LCD multiplex drive modes 1:3 or 1:4 are selected.

[2] Alternate RAM bank blinking does not apply in 1:3 and 1:4 multiplex drive modes.

7.1.5.1 Blinking

The display blinking capabilities of the PCA85262 are very versatile. The whole display can blink at frequencies selected by the blink-select command (see <u>Table 11</u>). The blink frequencies are derived from the clock frequency. The ratio between the clock and blink frequencies depends on the blink mode selected (see <u>Table 12</u>).

An additional feature is for an arbitrary selection of LCD segments/elements to blink. This applies to the static and 1:2 multiplex drive modes and can be implemented without any communication overheads. With the output bank selector, the displayed RAM banks are exchanged with alternate RAM banks at the blink frequency. This mode can also be specified by the blink-select command.

In the 1:3 and 1:4 multiplex modes, where no alternative RAM bank is available, groups of LCD segments/elements can blink by selectively changing the display RAM data at fixed time intervals.

The entire display can blink at a frequency other than the nominal blink frequency. This can be effectively performed by resetting and setting the display enable bit E at the required rate using the mode-set command (see Table 7).

Blink mode	Blink frequency equation ^[1]
off	-
1	$f_{blink} = \frac{f_{clk}}{768}$
2	$f_{blink} = \frac{f_{clk}}{1536}$
3	$f_{blink} = \frac{f_{clk}}{3072}$

Table 12. Blink frequencies

[1] The blink frequency is proportional to the clock frequency (f_{clk}). For the range of the clock frequency, see Table 20.

7.2 Clock and frame frequency

7.2.1 Internal clock

The internal logic of the PCA85262 and its LCD drive signals are timed either by its internal oscillator or by an external clock. The internal oscillator is enabled by connecting pin OSC to pin V_{SS}. If the internal oscillator is used, the output from pin CLK can be used as the clock signal for several PCA85262 in the system that are connected in cascade.

7.2.2 External clock

Pin CLK is enabled as an external clock input by connecting pin OSC to V_{DD}. The LCD frame frequency is determined by the clock frequency (f_{clk}).

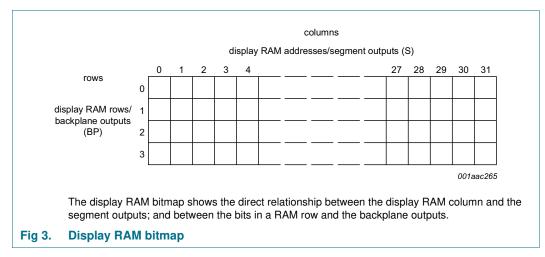
Remark: A clock signal must always be supplied to the device; removing the clock may freeze the LCD in a DC state, which is not suitable for the liquid crystal.

7.2.3 Timing

The PCA85262 timing controls the internal data flow of the device. This includes the transfer of display data from the display RAM to the display segment outputs. In cascaded applications, the correct timing relationship between each PCA85262 in the system is maintained by the synchronization signal at pin SYNC. The timing also generates the LCD frame frequency signal. The frame frequency signal is a fixed division of the clock

frequency from either the internal or an external clock: $f_{fr} = \frac{t_{clk}}{24}$

7.3 Display RAM

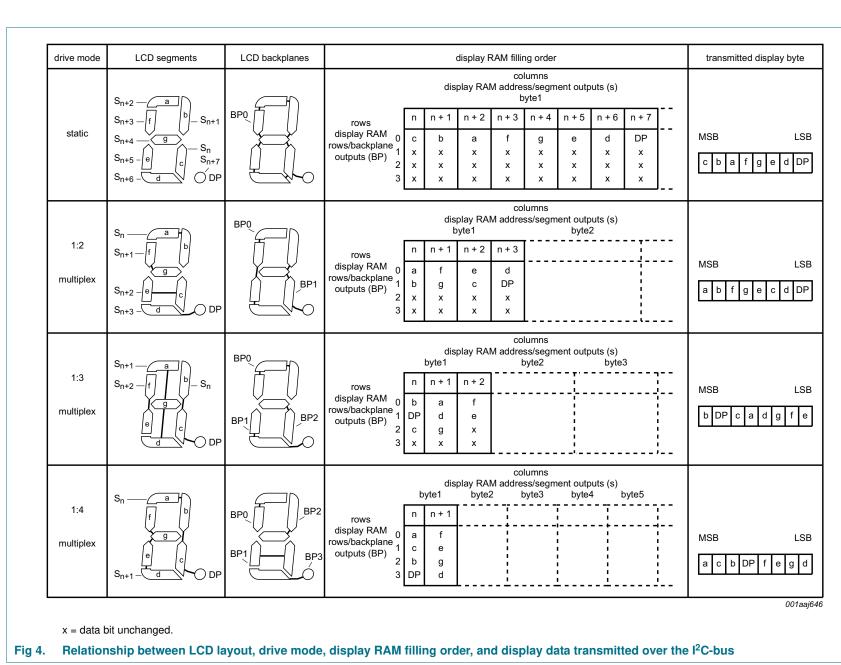

The display RAM is a static 32×4 -bit RAM which stores LCD data.

There is a one-to-one correspondence between

- the bits in the RAM bitmap and the LCD segments/elements
- · the RAM columns and the segment outputs
- the RAM rows and the backplane outputs.

A logic 1 in the RAM bitmap indicates the on-state of the corresponding LCD element; similarly, a logic 0 indicates the off-state.

The display RAM bitmap, Figure 3, shows the rows 0 to 3 which correspond with the backplane outputs BP0 to BP3, and the columns 0 to 31 which correspond with the segment outputs S0 to S31. In multiplexed LCD applications the segment data of the first, second, third, and fourth row of the display RAM are time-multiplexed with BP0, BP1, BP2, and BP3 respectively.


When display data is transmitted to the PCA85262, the display bytes received are stored in the display RAM in accordance with the selected LCD drive mode. The data is stored as it arrives and depending on the current multiplex drive mode the bits are stored singularly, in pairs, triples or quadruples. To illustrate the filling order, an example of a 7-segment numeric display showing all drive modes is given in Figure 4; the RAM filling organization depicted applies equally to other LCD types.

- · In static drive mode the eight transmitted data bits are placed into row 0 as one byte
- In 1:2 multiplex drive mode the eight transmitted data bits are placed in pairs into row 0 and 1 as four successive 2-bit RAM words
- In 1:3 multiplex drive mode the eight bits are placed in triples into row 0, 1, and 2 as three successive 3-bit RAM words, with bit 3 of the third address left unchanged. It is not recommended to use this bit in a display because of the difficult addressing. This last bit may, if necessary, be controlled by an additional transfer to this address, but care should be taken to avoid overwriting adjacent data because always full bytes are transmitted (see Section 7.3.4)
- In 1:4 multiplex drive mode, the eight transmitted data bits are placed in quadruples into row 0, 1, 2, and 3 as two successive 4-bit RAM words

PCA85262 Product data sheet

All information provided in this document is subject to legal disclaimers
Rev. 2 — 10 April 2015

© NXP Semiconductors N.V. 2015. All rights reserved. 11 of 56

NXP Semiconductors

PCA85262
Automotive 32 x 4 LCD driver for low multiplex rates

7.3.1 Data pointer

The addressing mechanism for the display RAM is realized using the data pointer. This allows the loading of an individual display data byte, or a series of display data bytes, into any location of the display RAM. The sequence commences with the initialization of the data pointer by the load-data-pointer command (see <u>Table 8</u>). Following this command, an arriving data byte is stored at the display RAM address indicated by the data pointer. The filling order is shown in Figure 4.

After each byte is stored, the content of the data pointer is automatically incremented by a value dependent on the selected LCD drive mode:

- · In static drive mode by eight
- In 1:2 multiplex drive mode by four
- In 1:3 multiplex drive mode by three
- · In 1:4 multiplex drive mode by two

If an I²C-bus data access terminates early, then the state of the data pointer is unknown. Consequently, the data pointer must be rewritten prior to further RAM accesses.

7.3.2 Subaddress counter

The storage of display data is determined by the contents of the subaddress counter. Storage is allowed only when the content of the subaddress counter matches with the hardware subaddress applied to A0 and A1. The subaddress counter value is defined by the device-select command (see <u>Table 9</u>). If the content of the subaddress counter and the hardware subaddress do not match, then data storage is inhibited but the data pointer is incremented as if data storage had taken place. The subaddress counter is also incremented when the data pointer overflows.

7.3.3 RAM addressing in cascaded applications

In cascaded applications each PCA85262 in the cascade must be addressed separately. Initially, the first PCA85262 is selected by sending the device-select command matching the first device's hardware subaddress. Then the data pointer is set to the preferred display RAM address by sending the load-data-pointer command.

Once the display RAM of the first PCA85262 has been written, the second PCA85262 is selected by sending the device-select command again. This time however the command matches the second device's hardware subaddress. Next the load-data-pointer command is sent to select the preferred display RAM address of the second PCA85262.

This last step is very important because during writing data to the first PCA85262, the data pointer of the second PCA85262 is incremented. In addition, the hardware subaddress should not be changed while the device is being accessed on the I²C-bus interface.

7.3.4 RAM writing in 1:3 multiplex drive mode

In 1:3 multiplex drive mode, the RAM is written as shown in <u>Table 13</u> (see <u>Figure 4</u> as well).

Table 13. Standard RAM filling in 1:3 multiplex drive mode

Assumption: BP2/S2, BP2/S5, BP2/S8 etc. **are not connected** to any segments/elements on the display.

Display RAM	Display RAM addresses (columns)/segment outputs (Sn)										
bits (rows)/ backplane outputs (BPn)	0	1	2	3	4	5	6	7	8	9	:
0	a7	a4	a1	b7	b4	b1	c7	c4	c1	d7	:
1	a6	a3	a0	b6	b3	b0	c6	сЗ	c0	d6	:
2	a5	a2	-	b5	b2	-	c5	c2	-	d5	:
3	-	-	-	-	-	-	-	-	-	-	:

If the bit at position BP2/S2 would be written by a second byte transmitted, then the mapping of the segment bits would change as illustrated in Table 14.

Table 14.Entire RAM filling by rewriting in 1:3 multiplex drive modeAssumption: BP2/S2, BP2/S5, BP2/S8 etc. are connected to segments/elements on the display.

Display RAM	Display RAM addresses (columns)/segment outputs (Sn)										
bits (rows)/ backplane outputs (BPn)	0	1	2	3	4	5	6	7	8	9	:
0	a7	a4	a1/b7	b4	b1/c7	c4	c1/d7	d4	d1/e7	e4	:
1	a6	a3	a0/b6	b3	b0/c6	c3	c0/d6	d3	d0/e6	e3	:
2	a5	a2	b5	b2	c5	c2	d5	d2	e5	e2	:
3	-	-	-	-	-	-	-	-	-	-	:

In the case described in <u>Table 14</u> the RAM has to be written entirely and BP2/S2, BP2/S5, BP2/S8 etc. have to be connected to segments/elements on the display. This can be achieved by a combination of writing and rewriting the RAM like follows:

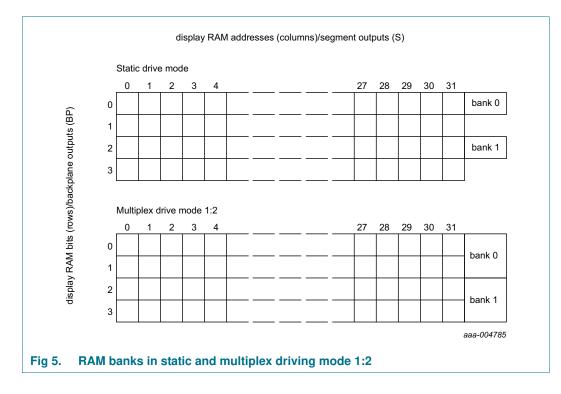
- In the first write to the RAM, bits a7 to a0 are written
- The data-pointer (see Section 7.3.1 on page 12) has to be set to the address of bit a1
- In the second write, bits b7 to b0 are written, overwriting bits a1 and a0 with bits b7 and b6
- The data-pointer has to be set to the address of bit b1
- In the third write, bits c7 to c0 are written, overwriting bits b1 and b0 with bits c7 and c6

Depending on the method of writing to the RAM (standard or entire filling by rewriting), some segments/elements remain unused or can be used, but it has to be considered in the module layout process as well as in the driver software design.

7.3.5 Bank selection

7.3.5.1 Output bank selector

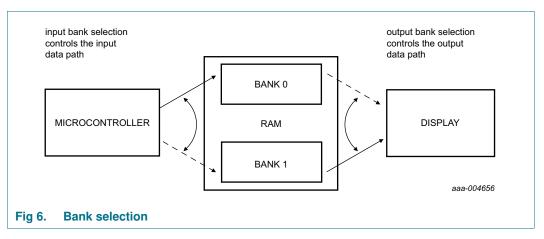
The output bank selector (see <u>Table 10</u>) selects one of the four rows per display RAM address for transfer to the display register. The actual row selected depends on the particular LCD drive mode in operation and on the instant in the multiplex sequence.


- In 1:4 multiplex mode, all RAM addresses of row 0 are selected, these are followed by the contents of row 1, 2, and then 3
- In 1:3 multiplex mode, rows 0, 1, and 2 are selected sequentially
- In 1:2 multiplex mode, rows 0 and 1 are selected
- In static mode, row 0 is selected

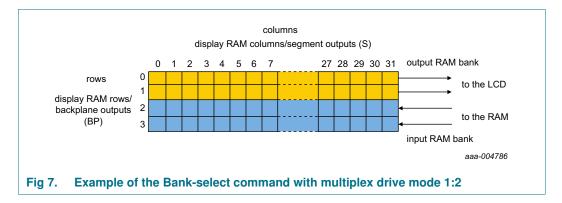
7.3.5.2 Input bank selector

The input bank selector loads display data into the display RAM in accordance with the selected LCD drive configuration. Display data can be loaded in row 2 in static drive mode or in rows 2 and 3 in 1:2 multiplex drive mode by using the bank-select command (see Table 10). The input bank selector functions independently to the output bank selector.

7.3.5.3 RAM bank switching


The PCA85262 includes a RAM bank switching feature in the static and 1:2 multiplex drive modes. A bank can be thought of as one RAM row or a collection of RAM rows (see <u>Figure 5</u>). The RAM bank switching gives the provision for preparing display information in an alternative bank and to be able to switch to it once it is complete.

PCA85262 Product data sheet


Automotive 32 x 4 LCD driver for low multiplex rates

There are two banks; bank 0 and bank 1. <u>Figure 5</u> shows the location of these banks relative to the RAM map. Input and output banks can be set independently from one another with the Bank-select command (see <u>Table 10 on page 8</u>). <u>Figure 6</u> shows the concept.

In the static drive mode, the bank-select command may request the contents of row 2 to be selected for display instead of the contents of row 0. In the 1:2 multiplex mode, the contents of rows 2 and 3 may be selected instead of rows 0 and 1. This gives the provision for preparing display information in an alternative bank and to be able to switch to it once it is assembled.

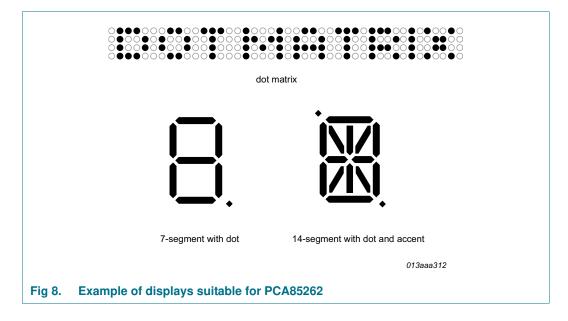
In <u>Figure 7</u> an example is shown for 1:2 multiplex drive mode where the displayed data is read from the first two rows of the memory (bank 0), while the transmitted data is stored in the second two rows of the memory (bank 1).

7.4 Initialization

At power-on the status of the I²C-bus and the registers of the PCA85262 is undefined. Therefore the PCA85262 should be initialized as quickly as possible after power-on to ensure a proper bus communication and to avoid display artifacts. The following instructions should be accomplished for initialization:

- I²C-bus (see <u>Section 8</u>) initialization
 - generating a START condition
 - sending 0h (1 byte) and ignoring the acknowledge
 - generating a STOP condition

All information provided in this document is subject to legal disclaimers.


PCA85262

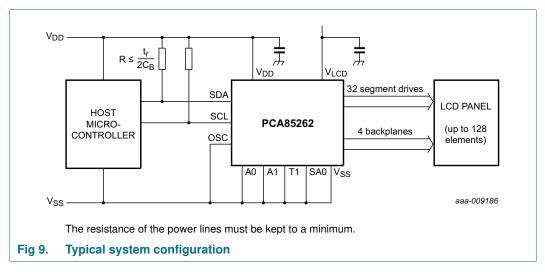
- Mode-set command (see <u>Table 7</u>), setting
 - bit E = 0
 - bit B to the required LCD bias configuration
 - bits M[1:0] to the required LCD drive mode
- Load-data-pointer command (see <u>Table 8</u>), setting
 - bits P[4:0] to 0h (or any other required address)
- Device-select command (see Table 9), setting
 - bits A[1:0] to the required hardware subaddress (for example, 0h)
- Bank-select command (see <u>Table 10</u>), setting
 - bit I to 0
 - bit O to 0
- Blink-select command (see Table 11), setting
 - bit AB to 0 or 1
 - bits BF[1:0] to 00 (or to a desired blinking mode)
- writing meaningful information (for example, a logo) into the display RAM

After the initialization, the display can be switched on by setting bit E = 1 with the mode-set command.

7.5 Possible display configurations

The possible display configurations of the PCA85262 depend on the number of active backplane outputs required. A selection of display configurations is shown in <u>Table 15</u>. All of these configurations can be implemented in the typical system shown in <u>Figure 9</u>.

PCA85262


Automotive 32 x 4 LCD driver for low multiplex rates

Number of								
Backplanes	Icons	Digits/Character	Dot matrix:					
		7-segment ^[1]	14-segment ^[2]	segments/ elements				
4	128	16	8	128 dots (4 × 32)				
3	96	12	6	96 dots (3 × 32)				
2	64	8	4	64 dots (2 × 32)				
1	32	4	2	32 dots (1 × 32)				

 Table 15.
 Selection of possible display configurations

[1] 7 segment display has 8 segments/elements including the decimal point.

[2] 14 segment display has 16 segments/elements including decimal point and accent dot.

The host microcontroller maintains the 2-line I²C-bus communication channel with the PCA85262. The internal oscillator is enabled by connecting pin OSC to pin V_{SS}. The appropriate biasing voltages for the multiplexed LCD waveforms are generated internally. The only other connections required to complete the system are the power supplies (V_{DD}, V_{SS}, and V_{LCD}) and the LCD panel chosen for the application.

7.6 LCD bias generator

Fractional LCD biasing voltages are obtained from an internal voltage divider consisting of three impedances connected in series between V_{LCD} and V_{SS}. The center impedance is bypassed by switch if the $1/_{2}$ bias voltage level for the 1:2 multiplex drive mode configuration is selected. The LCD voltage can be temperature compensated externally, using the supply to pin V_{LCD}.

7.7 LCD voltage selector

The LCD voltage selector coordinates the multiplexing of the LCD in accordance with the selected LCD drive configuration. The operation of the voltage selector is controlled by the mode-set command from the command decoder. The biasing configurations that apply to the preferred modes of operation, together with the biasing characteristics as functions of V_{LCD} and the resulting discrimination ratios (D) are given in <u>Table 16</u>.

Discrimination is a term which is defined as the ratio of the on and off RMS voltage across a segment. It can be thought of as a measurement of contrast.

Table 16.	Biasing characteristics
-----------	-------------------------

LCD drive	Number of:		LCD bias	$V_{off(RMS)}$	V _{on(RMS)}	$D = \frac{V_{on(RMS)}}{V_{off(RMS)}}$	
mode	Backplanes	Levels	configuration	V _{LCD}	V _{LCD}		
static	1	2	static	0	1	x	
1:2 multiplex	2	3	1/2	0.354	0.791	2.236	
1:2 multiplex	2	4	1/3	0.333	0.745	2.236	
1:3 multiplex	3	4	1/3	0.333	0.638	1.915	
1:4 multiplex	4	4	1/3	0.333	0.577	1.732	

A practical value for V_{LCD} is determined by equating V_{off(RMS)} with a defined LCD threshold voltage (V_{th(off)}), typically when the LCD exhibits approximately 10 % contrast. In the static drive mode, a suitable choice is V_{LCD} > $3V_{th(off)}$.

Multiplex drive modes of 1:3 and 1:4 with $\frac{1}{2}$ bias are possible but the discrimination and hence the contrast ratios are smaller.

Bias is calculated by $\frac{1}{1+a}$, where the values for a are

a = 1 for $\frac{1}{2}$ bias

a = 2 for $\frac{1}{3}$ bias

The RMS on-state voltage (Von(RMS)) for the LCD is calculated with Equation 1:

$$V_{on(RMS)} = v_{LCD} \sqrt{\frac{a^2 + 2a + n}{n \times (1 + a)^2}}$$
(1)

where the values for n are

n = 1 for static drive mode

n = 2 for 1:2 multiplex drive mode

n = 3 for 1:3 multiplex drive mode

n = 4 for 1:4 multiplex drive mode

The RMS off-state voltage (V_{off(RMS)}) for the LCD is calculated with Equation 2:

$$V_{off(RMS)} = v_{LCD} \sqrt{\frac{a^2 - 2a + n}{n \times (1 + a)^2}}$$
(2)

Discrimination is the ratio of $V_{on(RMS)}$ to $V_{off(RMS)}$ and is determined from Equation 3:

$$D = \frac{V_{on(RMS)}}{V_{off(RMS)}} = \sqrt{\frac{a^2 + 2a + n}{a^2 - 2a + n}}$$
(3)

Automotive 32 x 4 LCD driver for low multiplex rates

Using Equation 3, the discrimination for an LCD drive mode of 1:3 multiplex with $\frac{1}{2}$ bias is $\sqrt{3} = 1.732$ and the discrimination for an LCD drive mode of 1:4 multiplex with $\frac{1}{2}$ bias is $\frac{\sqrt{21}}{3} = 1.528$.

The advantage of these LCD drive modes is a reduction of the LCD full scale voltage V_{LCD} as follows:

- 1:3 multiplex ($\frac{1}{2}$ bias): $V_{LCD} = \sqrt{6} \times V_{off(RMS)} = 2.449 V_{off(RMS)}$
- 1:4 multiplex (¹/₂ bias): $V_{LCD} = \left[\frac{(4 \times \sqrt{3})}{3}\right] = 2.309 V_{off(RMS)}$

These compare with $V_{LCD} = 3V_{off(RMS)}$ when $\frac{1}{3}$ bias is used.

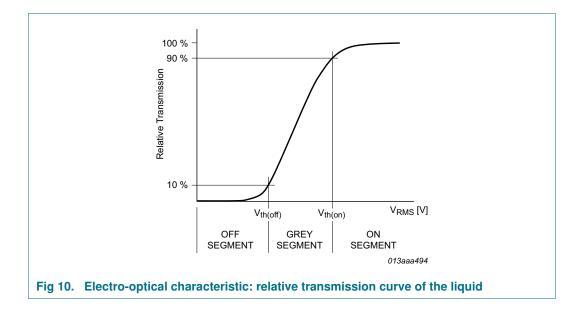
V_{LCD} is sometimes referred as the LCD operating voltage.

7.7.1 Electro-optical performance

Suitable values for $V_{\text{on}(\text{RMS})}$ and $V_{\text{off}(\text{RMS})}$ are dependent on the LCD liquid used. The RMS voltage, at which a pixel will be switched on or off, determine the transmissibility of the pixel.

For any given liquid, there are two threshold values defined. One point is at 10 % relative transmission (at $V_{th(off)}$) and the other at 90 % relative transmission (at $V_{th(on)}$), see Figure 10. For a good contrast performance, the following rules should be followed:

$$V_{on(RMS)} \ge V_{th(on)} \tag{4}$$

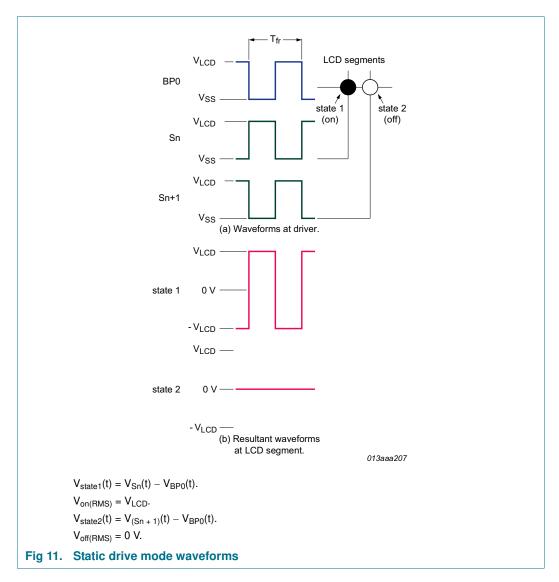

$$V_{off(RMS)} \le V_{th(off)} \tag{5}$$

 $V_{on(RMS)}$ and $V_{off(RMS)}$ are properties of the display driver and are affected by the selection of a, n (see <u>Equation 1</u> to <u>Equation 3</u>) and the V_{LCD} voltage.

 $V_{th(off)}$ and $V_{th(on)}$ are properties of the LCD liquid and can be provided by the module manufacturer. $V_{th(off)}$ is sometimes just named V_{th} . $V_{th(on)}$ is sometimes named saturation voltage V_{sat} .

It is important to match the module properties to those of the driver in order to achieve optimum performance.

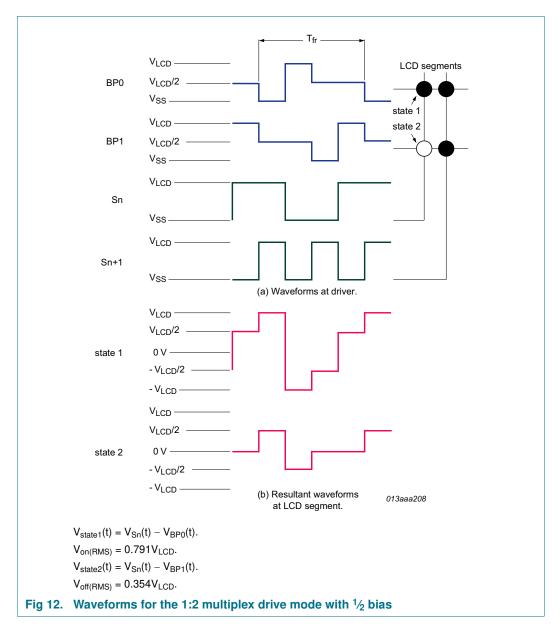
Automotive 32 x 4 LCD driver for low multiplex rates



Automotive 32 x 4 LCD driver for low multiplex rates

7.8 LCD drive mode waveforms

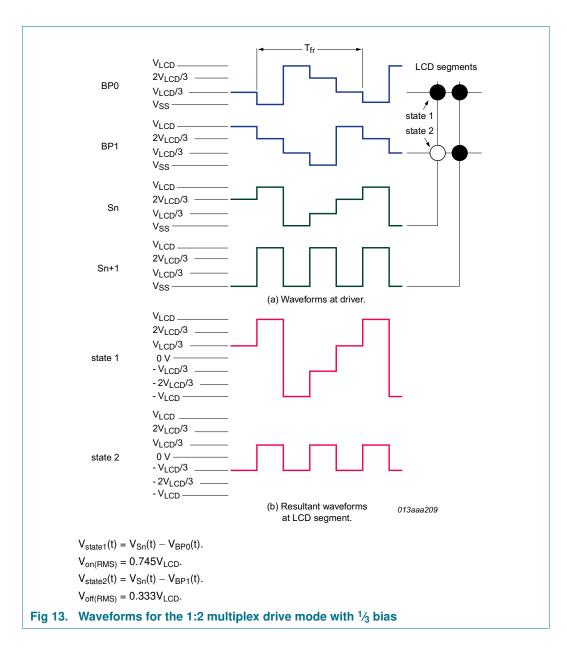
7.8.1 Static drive mode


The static LCD drive mode is used when a single backplane is provided in the LCD. The backplane (BPn) and segment (Sn) drive waveforms for this mode are shown in Figure 11.

Automotive 32 x 4 LCD driver for low multiplex rates

7.8.2 1:2 Multiplex drive mode

When two backplanes are provided in the LCD, the 1:2 multiplex mode applies. The PCA85262 allows the use of $\frac{1}{2}$ bias or $\frac{1}{3}$ bias in this mode as shown in Figure 12 and Figure 13.

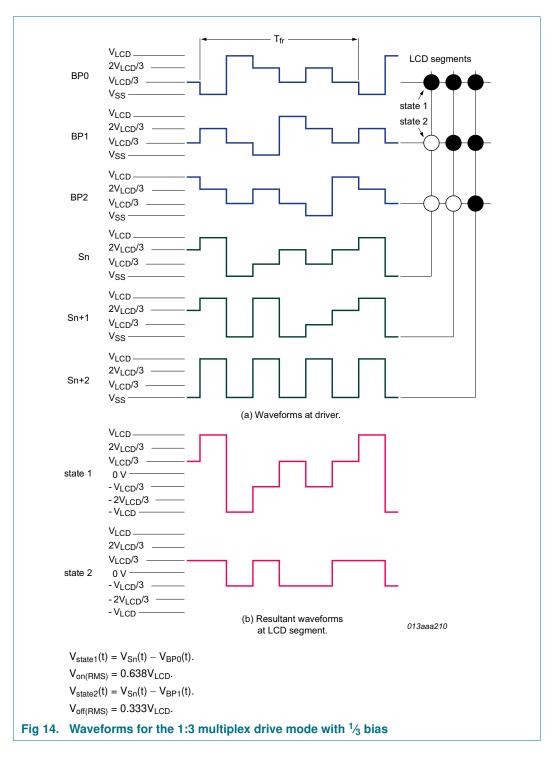


PCA85262

NXP Semiconductors

PCA85262

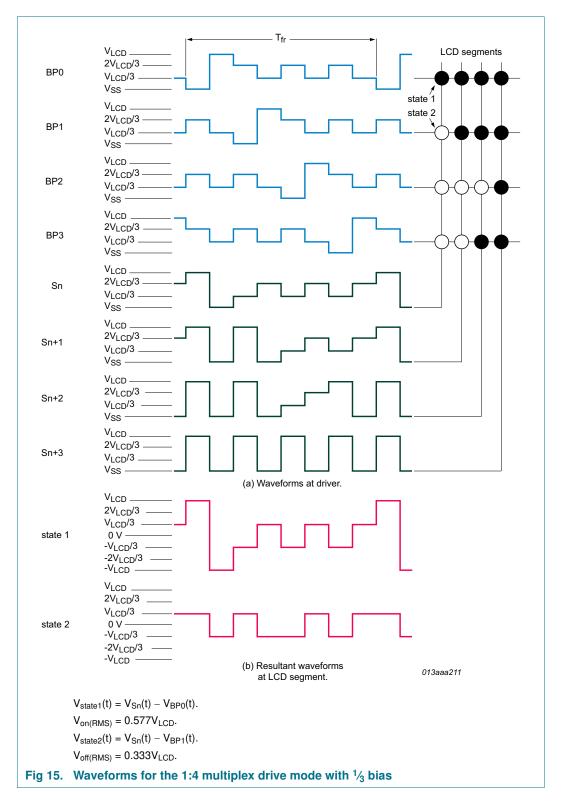
Automotive 32 x 4 LCD driver for low multiplex rates



PCA85262 Product data sheet

Automotive 32 x 4 LCD driver for low multiplex rates

7.8.3 1:3 Multiplex drive mode


When three backplanes are provided in the LCD, the 1:3 multiplex drive mode applies, as shown in Figure 14.

Automotive 32 x 4 LCD driver for low multiplex rates

7.8.4 1:4 Multiplex drive mode

When four backplanes are provided in the LCD, the 1:4 multiplex drive mode applies as shown in Figure 15.

PCA85262