mail

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Low-voltage 16-bit I²C-bus I/O port with interrupt

Rev. 1.1 — 29 May 2015

Product data sheet

1. General description

The PCA9535A is a low-voltage 16-bit General Purpose Input/Output (GPIO) expander with interrupt and reset for I²C-bus/SMBus applications. NXP I/O expanders provide a simple solution when additional I/Os are needed while keeping interconnections to a minimum, for example, in ACPI power switches, sensors, push buttons, LEDs, fan control, etc.

In addition to providing a flexible set of GPIOs, the wide V_{DD} range of 1.65 V to 5.5 V allows the PCA9535A to interface with next-generation microprocessors and microcontrollers where supply levels are dropping down to conserve power.

The PCA9535A contains the PCA9535 register set of four pairs of 8-bit Configuration, Input, Output, and Polarity Inversion registers.

The PCA9535A is a pin-to-pin replacement to the PCA9535 and other industry-standard devices. A more fully featured device, the PCAL9535A, is available with Agile I/O features. See the respective data sheet for more details.

The PCA9535A open-drain interrupt (INT) output is activated when any input state differs from its corresponding Input Port register state and is used to indicate to the system master that an input state has changed.

INT can be connected to the interrupt input of a microcontroller. By sending an interrupt signal on this line, the remote I/O can inform the microcontroller if there is incoming data on its ports without having to communicate via the I²C-bus. Thus, the PCA9535A can remain a simple slave device.

The device outputs have 25 mA sink capabilities for directly driving LEDs while consuming low device current.

The power-on reset sets the registers to their default values and initializes the device state machine.

Three hardware pins (A0, A1, A2) select the fixed I^2C -bus address and allow up to eight devices to share the same I^2C -bus/SMBus.

2. Features and benefits

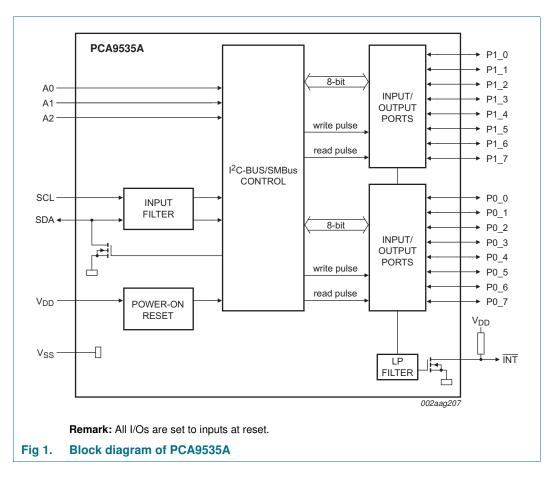
- I²C-bus to parallel port expander
- Pin and function compatible with PCA9535
- Operating power supply voltage range of 1.65 V to 5.5 V

Low-voltage 16-bit I²C-bus I/O port with interrupt

- Low standby current consumption:
 - 1.5 μA (typical at 5 V V_{DD})
 - 1.0 μ A (typical at 3.3 V V_{DD})
- Schmitt-trigger action allows slow input transition and better switching noise immunity at the SCL and SDA inputs
 - $V_{hys} = 0.10 \times V_{DD}$ (typical)
- 5 V tolerant I/Os
- Open-drain active LOW interrupt output (INT)
- 400 kHz Fast-mode I²C-bus
- Internal power-on reset
- Power-up with all channels configured as inputs
- No glitch on power-up
- Latched outputs with 25 mA drive maximum capability for directly driving LEDs
- Latch-up performance exceeds 100 mA per JESD78, Class II
- ESD protection exceeds JESD22
 - 2000 V Human Body Model (A114-A)
 - 1000 V Charged-Device Model (C101)
- Packages offered: TSSOP24, HWQFN24

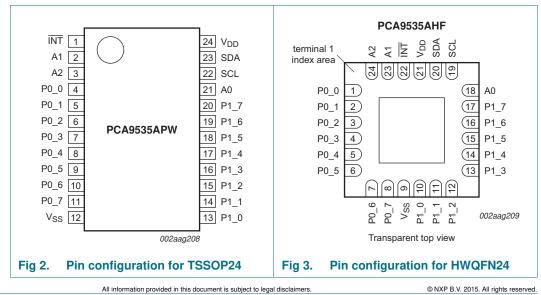
3. Ordering information

Table 1.	Ordering info	ormation
----------	---------------	----------


Type number	Package	Package								
	Name	Description	Version							
PCA9535AHF	HWQFN24	plastic thermal enhanced very very thin quad flat package; no leads; 24 terminals; body 4 \times 4 \times 0.75 mm	SOT994-1							
PCA9535APW	TSSOP24	plastic thin shrink small outline package; 24 leads; body width 4.4 mm	SOT355-1							

3.1 Ordering options

Table 2. Orde	ering options	
Type number	Topside mark	Temperature range
PCA9535AHF	535A	–40 °C to +85 °C
PCA9535APW	PCA9535A	–40 °C to +85 °C


Low-voltage 16-bit I²C-bus I/O port with interrupt

4. Block diagram

5. Pinning information

5.1 Pinning

5.2 Pin description

Table 3.	Pin descrip	otion		
Symbol	Pin		Туре	Description
	TSSOP24	HWQFN24		
INT	1	22	0	Interrupt output. Connect to V_{DD} through a pull-up resistor.
A1	2	23	I	Address input 1. Connect directly to V_{DD} or $V_{\text{SS}}.$
A2	3	24	I	Address input 2. Connect directly to V_{DD} or $V_{\text{SS}}.$
P0_0 ^[2]	4	1	I/O	Port 0 input/output 0.
P0_1 ^[2]	5	2	I/O	Port 0 input/output 1.
P0_2 ^[2]	6	3	I/O	Port 0 input/output 2.
P0_3 ^[2]	7	4	I/O	Port 0 input/output 3.
P0_4 ^[2]	8	5	I/O	Port 0 input/output 4.
P0_5 ^[2]	9	6	I/O	Port 0 input/output 5.
P0_6 ^[2]	10	7	I/O	Port 0 input/output 6.
P0_7 ^[2]	11	8	I/O	Port 0 input/output 7.
V _{SS}	12	9 <u>[1]</u>	power	Ground.
P1_0 <mark>[3]</mark>	13	10	I/O	Port 1 input/output 0.
P1_1 <mark>3]</mark>	14	11	I/O	Port 1 input/output 1.
P1_2 ^[3]	15	12	I/O	Port 1 input/output 2.
P1_3 <mark>[3]</mark>	16	13	I/O	Port 1 input/output 3.
P1_4 <mark>[3]</mark>	17	14	I/O	Port 1 input/output 4.
P1_5 <mark>^[3]</mark>	18	15	I/O	Port 1 input/output 5.
P1_6 ^[3]	19	16	I/O	Port 1 input/output 6.
P1_7 ^[3]	20	17	I/O	Port 1 input/output 7.
A0	21	18	I	Address input 0. Connect directly to V_{DD} or $V_{\text{SS}}.$
SCL	22	19	I	Serial clock bus. Connect to V_{DD} through a pull-up resistor.
SDA	23	20	I/O	Serial data bus. Connect to V _{DD} through a pull-up resistor.
V _{DD}	24	21	power	Supply voltage.

[1] HWQFN24 package die supply ground is connected to both V_{SS} pin and exposed center pad. V_{SS} pin must be connected to supply ground for proper device operation. For enhanced thermal, electrical, and board level performance, the exposed pad needs to be soldered to the board using a corresponding thermal pad on the board and for proper heat conduction through the board, thermal vias need to be incorporated in the PCB in the thermal pad region.

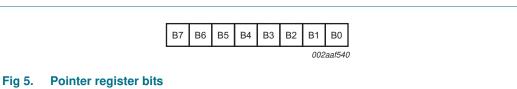

[2] Pins P0_0 to P0_7 correspond to bits P0.0 to P0.7. At power-up, all I/O are configured as high-impedance inputs.

[3] Pins P1_0 to P1_7 correspond to bits P1.0 to P1.7. At power-up, all I/O are configured as high-impedance inputs.

6. Functional description

Refer to Figure 1 "Block diagram of PCA9535A".

6.1 Device address



A2, A1 and A0 are the hardware address package pins and are held to either HIGH (logic 1) or LOW (logic 0) to assign one of the eight possible slave addresses. The last bit of the slave address (R/W) defines the operation (read or write) to be performed. A HIGH (logic 1) selects a read operation, while a LOW (logic 0) selects a write operation.

6.2 Registers

6.2.1 Pointer register and command byte

Following the successful acknowledgement of the address byte, the bus master sends a command byte, which is stored in the Pointer register in the PCA9535A. The lower three bits of this data byte state the operation (read or write) and the internal registers (Input, Output, Polarity Inversion, or Configuration) that will be affected. This register is write only.

Table 4. Command byte

	Pointer register bits							Command byte	Register	Protocol	Power-up
B7	B6	B5	B4	B3	B2	B1	B0	(hexadecimal)			default
0	0	0	0	0	0	0	0	00h	Input port 0	read byte	xxxx xxxx ^[1]
0	0	0	0	0	0	0	1	01h	Input port 1	read byte	XXXX XXXX
0	0	0	0	0	0	1	0	02h	Output port 0	read/write byte	1111 1111
0	0	0	0	0	0	1	1	03h	Output port 1	read/write byte	1111 1111
0	0	0	0	0	1	0	0	04h	Polarity Inversion port 0	read/write byte	0000 0000
0	0	0	0	0	1	0	1	05h	Polarity Inversion port 1	read/write byte	0000 0000
0	0	0	0	0	1	1	0	06h	Configuration port 0	read/write byte	1111 1111
0	0	0	0	0	1	1	1	07h	Configuration port 1	read/write byte	1111 1111

[1] Undefined.

PCA9535A

All information provided in this document is subject to legal disclaimers

6.2.2 Input port register pair (00h, 01h)

The Input port registers (registers 0 and 1) reflect the incoming logic levels of the pins, regardless of whether the pin is defined as an input or an output by the Configuration register. The Input port registers are read only; writes to these registers have no effect. The default value 'X' is determined by the externally applied logic level. An Input port register read operation is performed as described in <u>Section 7.2 "Reading the port registers"</u>.

Table 5. Input port 0 register (address 00h)

Bit	7	6	5	4	3	2	1	0
Symbol	10.7	10.6	10.5	10.4	10.3	10.2	I0.1	10.0
Default	Х	Х	Х	Х	Х	Х	Х	Х

Table 6. Input port 1 register (address 01h)

Bit	7	6	5	4	3	2	1	0
Symbol	l1.7	l1.6	l1.5	11.4	l1.3	l1.2	11.1	l1.0
Default	Х	Х	Х	Х	Х	Х	Х	Х

6.2.3 Output port register pair (02h, 03h)

The Output port registers (registers 2 and 3) show the outgoing logic levels of the pins defined as outputs by the Configuration register. Bit values in these registers have no effect on pins defined as inputs. In turn, reads from these registers reflect the value that was written to these registers, **not** the actual pin value. A register pair write is described in <u>Section 7.1</u> and a register pair read is described in <u>Section 7.2</u>.

Table 7. Output port 0 register (address 02h)

Bit	7	6	5	4	3	2	1	0
Symbol	O0.7	O0.6	O0.5	O0.4	O0.3	O0.2	O0.1	O0.0
Default	1	1	1	1	1	1	1	1

Table 8. Output port 1 register (address 03h)

Bit	7	6	5	4	3	2	1	0
Symbol	O1.7	O1.6	O1.5	O1.4	01.3	01.2	01.1	O1.0
Default	1	1	1	1	1	1	1	1

6.2.4 Polarity inversion register pair (04h, 05h)

The Polarity inversion registers (registers 4 and 5) allow polarity inversion of pins defined as inputs by the Configuration register. If a bit in these registers is set (written with '1'), the corresponding port pin's polarity is inverted in the Input register. If a bit in this register is cleared (written with a '0'), the corresponding port pin's polarity is retained. A register pair write is described in <u>Section 7.1</u> and a register pair read is described in <u>Section 7.2</u>.

Table 9. Polarity inversion port 0 register (address 04h)

					,			
Bit	7	6	5	4	3	2	1	0
Symbol	N0.7	N0.6	N0.5	N0.4	N0.3	N0.2	N0.1	N0.0
Default	0	0	0	0	0	0	0	0

Table 10. Polarity inversion port 1 register (address 05h)

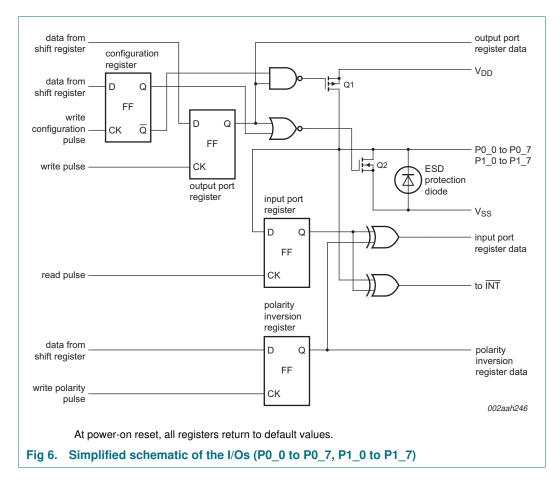
Bit	7	6	5	4	3	2	1	0
Symbol	N1.7	N1.6	N1.5	N1.4	N1.3	N1.2	N1.1	N1.0
Default	0	0	0	0	0	0	0	0

6.2.5 Configuration register pair (06h, 07h)

The Configuration registers (registers 6 and 7) configure the direction of the I/O pins. If a bit in these registers is set to 1, the corresponding port pin is enabled as a high-impedance input. If a bit in these registers is cleared to 0, the corresponding port pin is enabled as an output. A register pair write is described in <u>Section 7.1</u> and a register pair read is described in <u>Section 7.2</u>.

Table 11. Configuration port 0 register (address 06h)

Bit	7	6	5	4	3	2	1	0
Symbol	C0.7	C0.6	C0.5	C0.4	C0.3	C0.2	C0.1	C0.0
Default	1	1	1	1	1	1	1	1


Table 12. Configuration port 1 register (address 07h)

	<u> </u>		<u> </u>		/			
Bit	7	6	5	4	3	2	1	0
Symbol	C1.7	C1.6	C1.5	C1.4	C1.3	C1.2	C1.1	C1.0
Default	1	1	1	1	1	1	1	1

6.3 I/O port

When an I/O is configured as an input, FETs Q1 and Q2 are off, which creates a high-impedance input. The input voltage may be raised above V_{DD} to a maximum of 5.5 V.

If the I/O is configured as an output, Q1 or Q2 is enabled, depending on the state of the Output port register. In this case, there are low-impedance paths between the I/O pin and either V_{DD} or V_{SS} . The external voltage applied to this I/O pin should not exceed the recommended levels for proper operation.

PCA9535A Product data sheet

6.4 Power-on reset

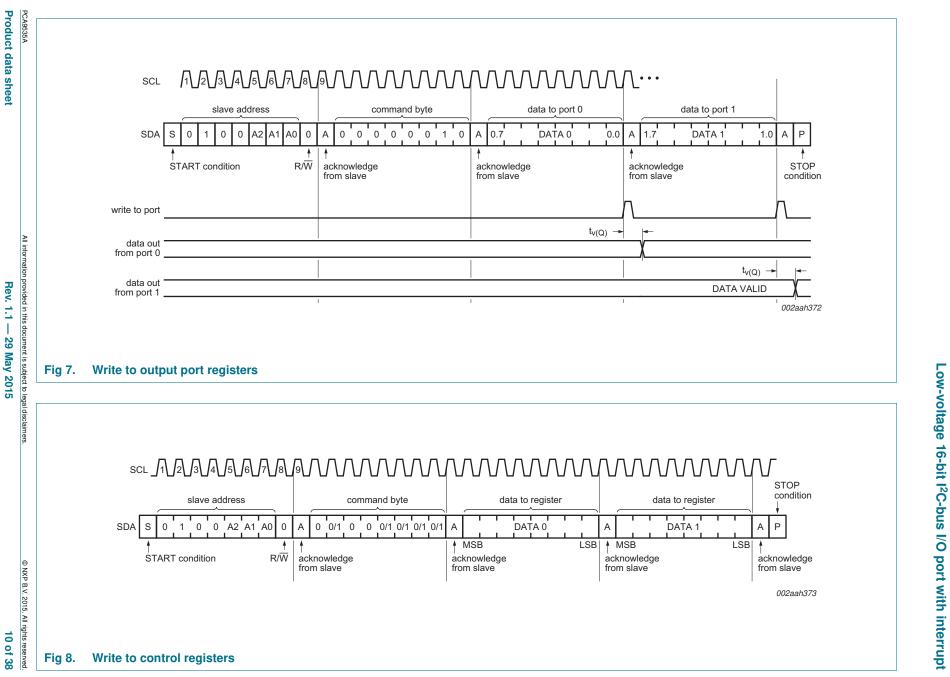
When power (from 0 V) is applied to V_{DD}, an internal power-on reset holds the PCA9535A in a reset condition until V_{DD} has reached V_{POR}. At that time, the reset condition is released and the PCA9535A registers and I²C-bus/SMBus state machine initializes to their default states. After that, V_{DD} must be lowered to below V_{PORF} and back up to the operating voltage for a power-reset cycle. See Section 8.2 "Power-on reset requirements".

6.5 Interrupt output

An interrupt is generated by any rising or falling edge of the port inputs in the Input mode. After time $t_{v(INT)}$, the signal INT is valid. The interrupt is reset when data on the port changes back to the original value or when data is read form the port that generated the interrupt (see Figure 10 and Figure 11). Resetting occurs in the Read mode at the acknowledge (ACK) or not acknowledge (NACK) bit after the rising edge of the SCL signal. Interrupts that occur during the ACK or NACK clock pulse can be lost (or be very short) due to the resetting of the interrupt during this pulse. Any change of the I/Os after resetting is detected and is transmitted as INT.

A pin configured as an output cannot cause an interrupt. Changing an I/O from an output to an input may cause a false interrupt to occur, if the state of the pin does not match the contents of the Input Port register.

7. Bus transactions

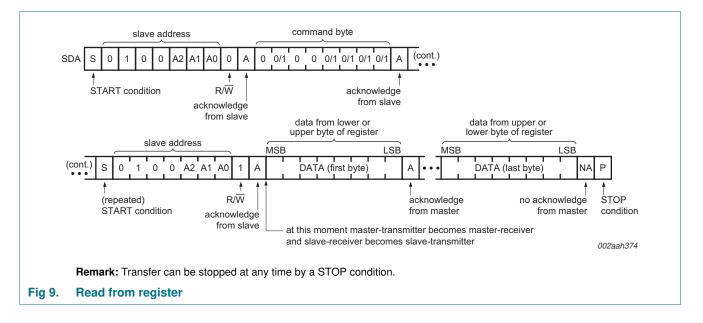

The PCA9535A is an I²C-bus slave device. Data is exchanged between the master and PCA9535A through write and read commands using I²C-bus. The two communication lines are a serial data line (SDA) and a serial clock line (SCL). Both lines must be connected to a positive supply via a pull-up resistor when connected to the output stages of a device. Data transfer may be initiated only when the bus is not busy.

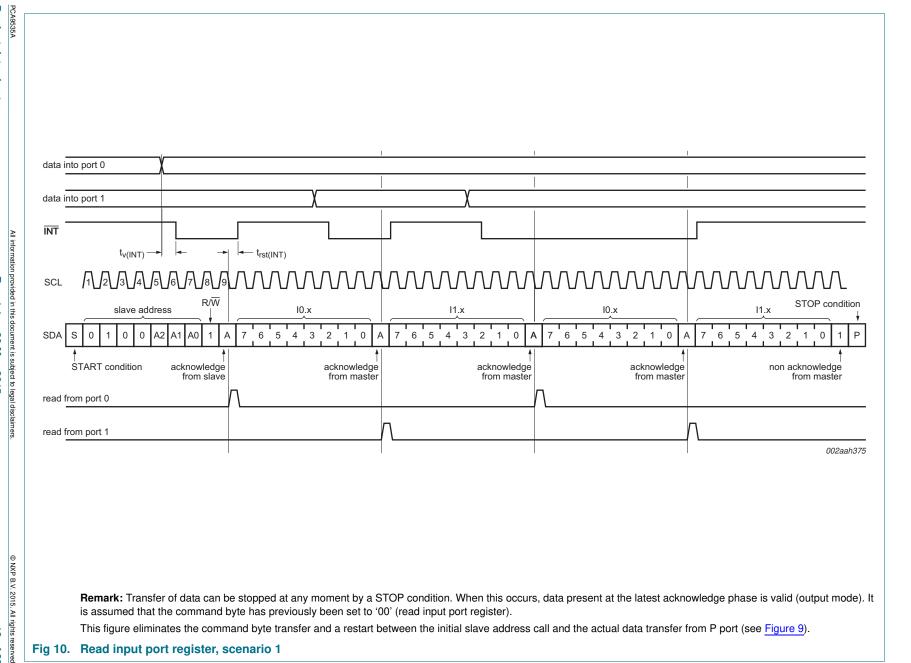
7.1 Writing to the port registers

Data is transmitted to the PCA9535A by sending the device address and setting the least significant bit to a logic 0 (see Figure 4 "PCA9535A device address"). The command byte is sent after the address and determines which register will receive the data following the command byte.

Eight registers within the PCA9535A are configured to operate as four register pairs. The four pairs are input port, output port, polarity inversion, configuration registers. After sending data to one register, the next data byte is sent to the other register in the pair (see <u>Figure 7</u> and <u>Figure 8</u>). For example, if the first byte is sent to Output Port 1 (register 3), the next byte is stored in Output Port 0 (register 2).

There is no limitation on the number of data bytes sent in one write transmission. In this way, the host can continuously update a register pair independently of the other registers, or the host can simply update a single register.


τ


Low-voltage 16-bit I²C-bus I/O port with interrupt

7.2 Reading the port registers

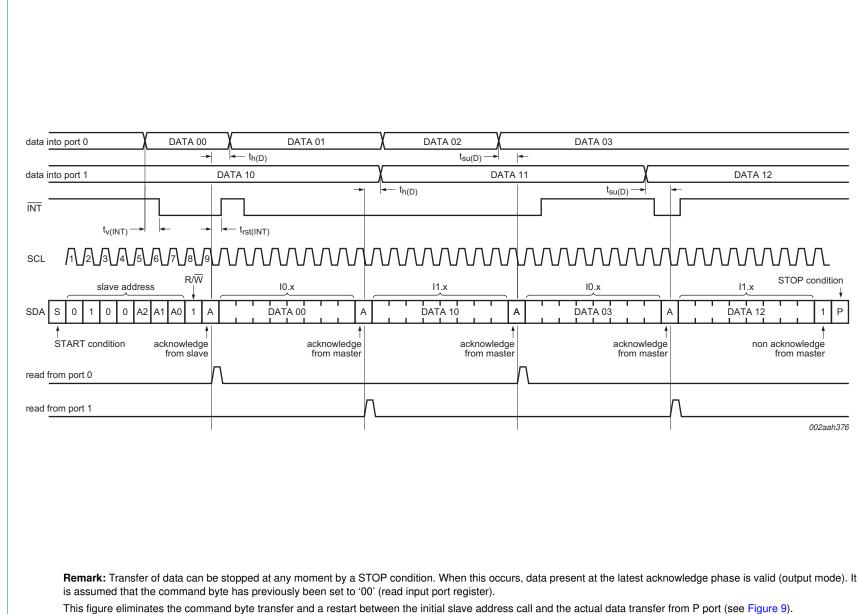
In order to read data from the PCA9535A, the bus master must first send the PCA9535A address with the least significant bit set to a logic 0 (see Figure 4 "PCA9535A device address"). The command byte is sent after the address and determines which register will be accessed. After a restart, the device address is sent again, but this time the least significant bit is set to a logic 1. Data from the register defined by the command byte is sent by the PCA9535A (see Figure 9, Figure 10 and Figure 11). Data is clocked into the register on the falling edge of the acknowledge clock pulse. After the first byte is read, additional bytes may be read but the data now reflects the information in the other register in the pair. For example, if Input Port 1 is read, the next byte read is Input Port 0. There is no limit on the number of data bytes received in one read transmission, but on the final byte received the bus master must not acknowledge the data.

After a subsequent restart, the command byte contains the value of the next register to be read in the pair. For example, if Input Port 1 was read last before the restart, the register that is read after the restart is the Input Port 0.

NXP

Semiconductors

Low-voltage 16-bit I²C-bus I/O port with interrupt


τ

CA9535A

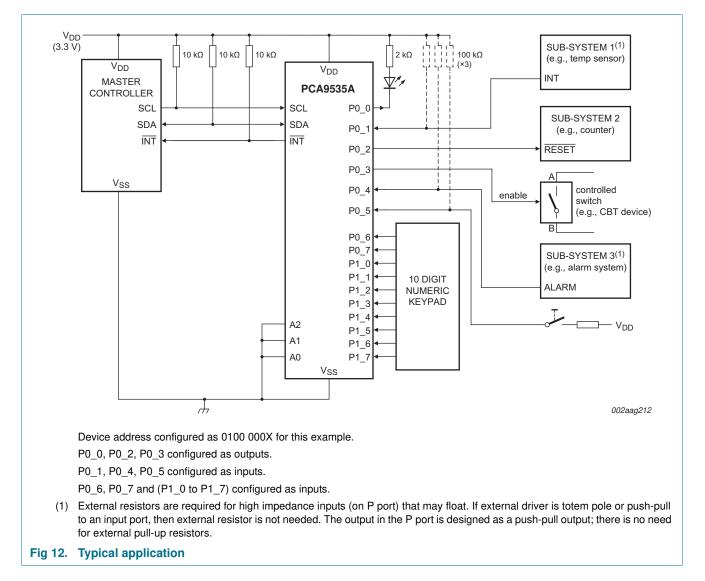
Product data sheet

Rev. 1 29 May 2015

12 of 38

This figure eliminates the command byte transfer and a restart between the initial slav Fig 11. Read input port register, scenario 2

Product data sheet

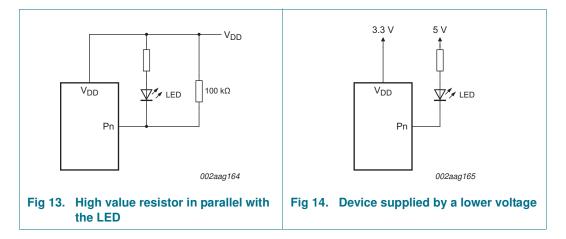

All information provided in this document is subject to legal disclaimer Rev. 1.1 — 29 May 2015

© NXP B.V. 2015. All rights reserved. 13 of 38 NXP Semiconductors

Low-voltage 16-bit I²C-bus I/O port with interrupt

τ

Low-voltage 16-bit I²C-bus I/O port with interrupt



8. Application design-in information

8.1 Minimizing I_{DD} when the I/Os are used to control LEDs

When the I/Os are used to control LEDs, they are normally connected to V_{DD} through a resistor as shown in <u>Figure 12</u>. Since the LED acts as a diode, when the LED is off the I/O V_I is about 1.2 V less than V_{DD}. The supply current, I_{DD}, increases as V_I becomes lower than V_{DD}.

Designs needing to minimize current consumption, such as battery power applications, should consider maintaining the I/O pins greater than or equal to V_{DD} when the LED is off. Figure 13 shows a high value resistor in parallel with the LED. Figure 14 shows V_{DD} less than the LED supply voltage by at least 1.2 V. Both of these methods maintain the I/O V_I at or above V_{DD} and prevents additional supply current consumption when the LED is off.

8.2 Power-on reset requirements

In the event of a glitch or data corruption, PCA9535A can be reset to its default conditions by using the power-on reset feature. Power-on reset requires that the device go through a power cycle to be completely reset. This reset also happens when the device is powered on for the first time in an application.

The two types of power-on reset are shown in Figure 15 and Figure 16.

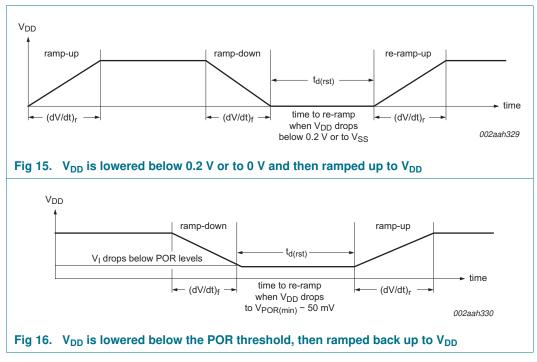


Table 13 specifies the performance of the power-on reset feature for PCA9535A for both types of power-on reset.

Low-voltage 16-bit I²C-bus I/O port with interrupt

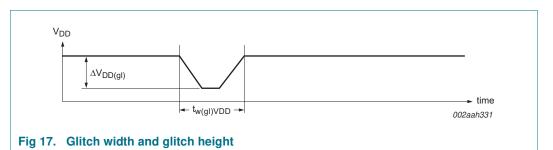
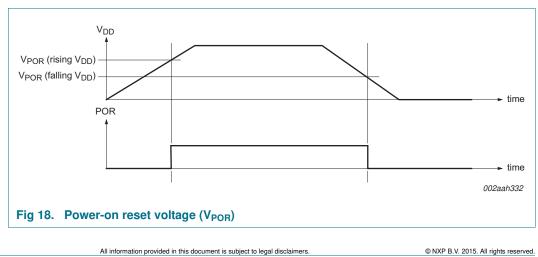

Symbol	Parameter	Condition	Min	Тур	Max	Unit
(dV/dt) _f	fall rate of change of voltage	Figure 15	0.1	-	2000	ms
(dV/dt) _r	rise rate of change of voltage	Figure 15	0.1	-	2000	ms
t _{d(rst)}	reset delay time	$\frac{\text{Figure 15}}{\text{V}_{\text{DD}}} \text{ drops below 0.2 V or to V}_{\text{SS}}$	1	-	-	μS
		$\frac{Figure \ 16}{V_{DD}} \text{ drops to } V_{POR(min)} - 50 \text{ mV}$	1	-	-	μS
$\Delta V_{\text{DD}(\text{gl})}$	glitch supply voltage difference	Figure 17	<u>[1]</u> -	-	1	V
t _{w(gl)VDD}	supply voltage glitch pulse width	Figure 17	[2] _	-	10	μS
V _{POR(trip)}	power-on reset trip voltage	falling V _{DD}	0.7	-	-	V
		rising V _{DD}	-	-	1.4	V

Table 13. Recommended supply sequencing and ramp rates


[1] Level that V_{DD} can glitch down to with a ramp rate of 0.4 µs/V, but not cause a functional disruption when t_{w(dl)VDD} < 1 µs.

[2] Glitch width that will not cause a functional disruption when $\Delta V_{DD(gl)} = 0.5 \times V_{DD}$.

Glitches in the power supply can also affect the power-on reset performance of this device. The glitch width $(t_{w(gl)VDD})$ and glitch height $(\Delta V_{DD(gl)})$ are dependent on each other. The bypass capacitance, source impedance, and device impedance are factors that affect power-on reset performance. Figure 17 and Table 13 provide more information on how to measure these specifications.

V_{POR} is critical to the power-on reset. V_{POR} is the voltage level at which the reset condition is released and all the registers and the I²C-bus/SMBus state machine are initialized to their default states. The value of V_{POR} differs based on the V_{DD} being lowered to or from 0 V. Figure 18 and Table 13 provide more details on this specification.

9. Limiting values

Table 14. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
V _{DD}	supply voltage		-0.5	+6.5	V
VI	input voltage		<u>[1]</u> –0.5	+6.5	V
Vo	output voltage		<u>[1]</u> –0.5	+6.5	V
I _{IK}	input clamping current	A0, A1, A2, SCL; V _I < 0 V	-	±20	mA
I _{OK}	output clamping current	INT ; V _O < 0 V	-	±20	mA
I _{IOK}	input/output clamping current	P port; $V_O < 0$ V or $V_O > V_{DD}$	-	±20	mA
		SDA; $V_O < 0$ V or $V_O > V_{DD}$	-	±20	mA
I _{OL}	LOW-level output current	continuous; I/O port	-	50	mA
		continuous; SDA, INT	-	25	mA
I _{OH}	HIGH-level output current	continuous; P port	-	25	mA
I _{DD}	supply current		-	160	mA
I _{SS}	ground supply current		-	200	mA
P _{tot}	total power dissipation		-	200	mW
T _{stg}	storage temperature		-65	+150	°C
T _{j(max)}	maximum junction temperature	•	-	125	°C

[1] The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

10. Recommended operating conditions

Table 15.	Operating conditions				
Symbol	Parameter	Conditions	Min	Max	Unit
V_{DD}	supply voltage		1.65	5.5	V
V _{IH}	HIGH-level input voltage	SCL, SDA	$0.7\times V_{DD}$	5.5	V
		A0, A1, A2, P1_7 to P0_0	$0.7\times V_{DD}$	5.5	V
V _{IL}	LOW-level input voltage	SCL, SDA	-0.5	$0.3\times V_{\text{DD}}$	V
		A0, A1, A2, P1_7 to P0_0	-0.5	$0.3\times V_{\text{DD}}$	V
I _{OH}	HIGH-level output current	P1_7 to P0_0	-	10	mA
I _{OL}	LOW-level output current	P1_7 to P0_0	-	25	mA
T _{amb}	ambient temperature	operating in free air	-40	+85	°C

11. Thermal characteristics

Table 16.	Thermal characteristics			
Symbol	Parameter	Conditions	Мах	Unit
Z _{th(j-a)}	transient thermal impedance from junction to ambient	TSSOP24 package	<u>[1]</u> 88	K/W
		HWQFN24 package	<u>[1]</u> 66	K/W

[1] The package thermal impedance is calculated in accordance with JESD 51-7.

12. Static characteristics

Table 17. Static characteristics

 $T_{amb} = -40 \ ^{\circ}C$ to +85 $\ ^{\circ}C$; $V_{DD} = 1.65 \ V$ to 5.5 V; unless otherwise specified.

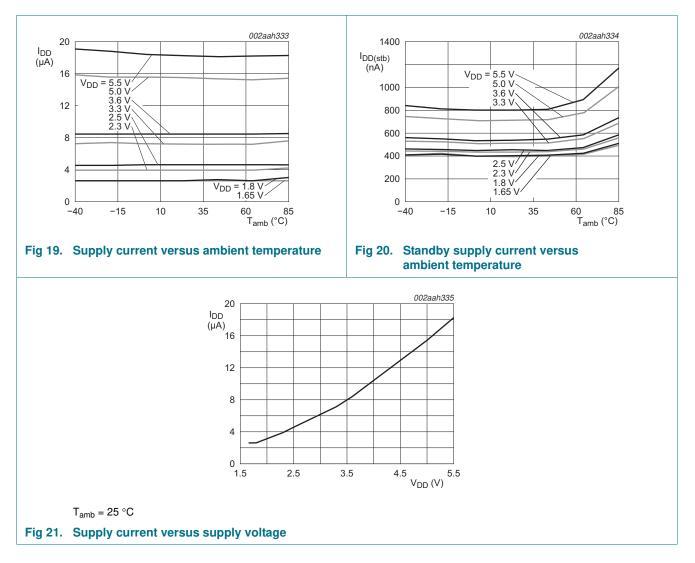
Symbol	Parameter	Conditions		Min	Typ <mark>[1]</mark>	Мах	Unit
V _{IK}	input clamping voltage	I _I = -18 mA		-1.2	-	-	V
V _{POR}	power-on reset voltage	$V_I = V_{DD}$ or V_{SS} ; $I_O = 0$ mA		-	1.1	1.4	V
lol	LOW-level output current	V_{OL} = 0.4 V; V_{DD} = 1.65 V to 5.5 V				- 1.4 - - - - - - - - - - - - - - - - - - -	
		SDA		3	-		mA
		INT		3	15 <mark>2</mark>	-	mA
	P port						
		$V_{OL} = 0.5 \text{ V}; V_{DD} = 1.65 \text{ V}$	[3]	8	10	-	mA
		$V_{OL} = 0.7 \text{ V}; V_{DD} = 1.65 \text{ V}$	[3]	10	13	- 1.4 - - - - - - - - - - - - - - - - - - -	mA
		$V_{OL} = 0.5 \text{ V}; V_{DD} = 2.3 \text{ V}$	[3]	8	10		mA
		$V_{OL} = 0.7 \text{ V}; V_{DD} = 2.3 \text{ V}$	[3]	10	- 1.1 - 15 ^[2] 10 13	-	mA
		$V_{OL} = 0.5 \text{ V}; V_{DD} = 3.0 \text{ V}$	[3]	8		-	mA
		$V_{OL} = 0.7 \text{ V}; V_{DD} = 3.0 \text{ V}$	[3]	10	19	- 1.4 - - - - - - - - - - - - - - - - - - -	mA
		$V_{OL} = 0.5 \text{ V}; V_{DD} = 4.5 \text{ V}$	[3]	8	17		mA
		$V_{OL} = 0.7 \text{ V}; V_{DD} = 4.5 \text{ V}$	[3]	10	24		mA
V _{OH}	HIGH-level output voltage	P port				-	
		$I_{OH} = -8 \text{ mA}; V_{DD} = 1.65 \text{ V}$	[4]	1.2		-	V
		$I_{OH} = -10 \text{ mA}; V_{DD} = 1.65 \text{ V}$	[4]	1.1	-	- 1.4 - - - - - - - - - - - - - - - - - - -	V
		$I_{OH} = -8 \text{ mA}; V_{DD} = 2.3 \text{ V}$	[4]	1.8	-		V
		$I_{OH} = -10 \text{ mA}; V_{DD} = 2.3 \text{ V}$	[4]	1.7	-	-	V
		$I_{OH} = -8 \text{ mA}; V_{DD} = 3.0 \text{ V}$	[4]	2.6	-	- 1.4 - - - - - - - - - - - - - - - - - - -	V
		$I_{OH} = -10 \text{ mA}; V_{DD} = 3.0 \text{ V}$	[4]	2.5	-		V
		$I_{OH} = -8 \text{ mA}; V_{DD} = 4.5 \text{ V}$	[4]	4.1	-	-	V
		$I_{OH} = -10 \text{ mA}; V_{DD} = 4.5 \text{ V}$	[4]	4.0	-	-	V
V _{OL}	LOW-level output voltage	P port; I _{OL} = 8 mA					
		$V_{DD} = 1.65 \text{ V}$		-	-	0.45	V
		$V_{DD} = 2.3 V$		-	-	0.25	V
		$V_{DD} = 3.0 V$		-	-	0.25	V
		$V_{DD} = 4.5 V$		-	-	0.2	V
I	input current	V _{DD} = 1.65 V to 5.5 V					
		SCL, SDA; $V_1 = V_{DD}$ or V_{SS}	$ \begin{bmatrix} 4 \\ 1 & 1.1 \\ 1 & 8 \\ 1 & 8 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 1.7$	±1	μA		
		A0, A1, A2; $V_I = V_{DD}$ or V_{SS}		-	-	±1	μA
Ін	HIGH-level input current	P port; $V_1 = V_{DD}$; $V_{DD} = 1.65$ V to 5.5 V		-	-	1	μA
IIL	LOW-level input current	P port; $V_I = V_{SS}$; $V_{DD} = 1.65$ V to 5.5 V		-	-	1	μA

Low-voltage 16-bit I²C-bus I/O port with interrupt

Symbol	Parameter	Conditions	Min	Typ <mark>[1]</mark>	Max	Unit
I _{DD}	supply current	SDA, P port, A0, A1, A2; V _I on SDA = V _{DD} or V _{SS} ; V _I on P port and A0, A1, A2 = V _{DD} ; I _O = 0 mA; I/O = inputs; f _{SCL} = 400 kHz				
		$V_{DD} = 3.6 V \text{ to } 5.5 V$	-	10	25 15 9 7 3.2 1.7 125 75 45 25 80 7	μA
		$V_{DD} = 2.3 \text{ V} \text{ to } 3.6 \text{ V}$	-	6.5	15	μA
		$V_{DD} = 1.65 \text{ V to } 2.3 \text{ V}$	-	4	9	μA
		SCL, SDA, P port, A0, A1, A2; V ₁ on SCL, SDA = V_{DD} or V_{SS} ; V ₁ on P port and A0, A1, A2 = V_{DD} ; I _O = 0 mA; I/O = inputs; f _{SCL} = 0 kHz				
		$V_{DD} = 3.6 V \text{ to } 5.5 V$	-	1.5	7	μA
		$V_{DD} = 2.3 \text{ V} \text{ to } 3.6 \text{ V}$	-	1	3.2	μA
		$V_{DD} = 1.65 \text{ V to } 2.3 \text{ V}$	-	0.5	1.7	μA
		Active mode; P port, A0, A1, A2; V ₁ on P port, A0, A1, A2 = V _{DD} ; $I_O = 0$ mA; I/O = inputs; $f_{SCL} = 400$ kHz, continuous register read				
		$V_{DD} = 3.6 V \text{ to } 5.5 V$	-	60	125	μA
		$V_{DD} = 2.3 \text{ V to } 3.6 \text{ V}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	75	μA	
		V _{DD} = 1.65 V to 2.3 V	-	20	45	μA
ΔI_{DD}	additional quiescent supply current	SCL, SDA; one input at V_{DD} – 0.6 V, other inputs at V_{DD} or V_{SS} ; V_{DD} = 1.65 V to 5.5 V	-	-	25	μA
		P port, A0, A1, A2; one input at V_{DD} – 0.6 V, other inputs at V_{DD} or V_{SS} ; V_{DD} = 1.65 V to 5.5 V	-	-	25	μA
Ci	input capacitance	$V_{I} = V_{DD}$ or V_{SS} ; $V_{DD} = 1.65$ V to 5.5 V	-	6	7	pF
C _{io}	input/output capacitance	$V_{I/O} = V_{DD}$ or V_{SS} ; $V_{DD} = 1.65$ V to 5.5 V	-	7	8	pF
		$V_{I/O} = V_{DD}$ or V_{SS} ; $V_{DD} = 1.65$ V to 5.5 V	-	7.5	8.5	pF

Table 17. Static characteristics ... continued

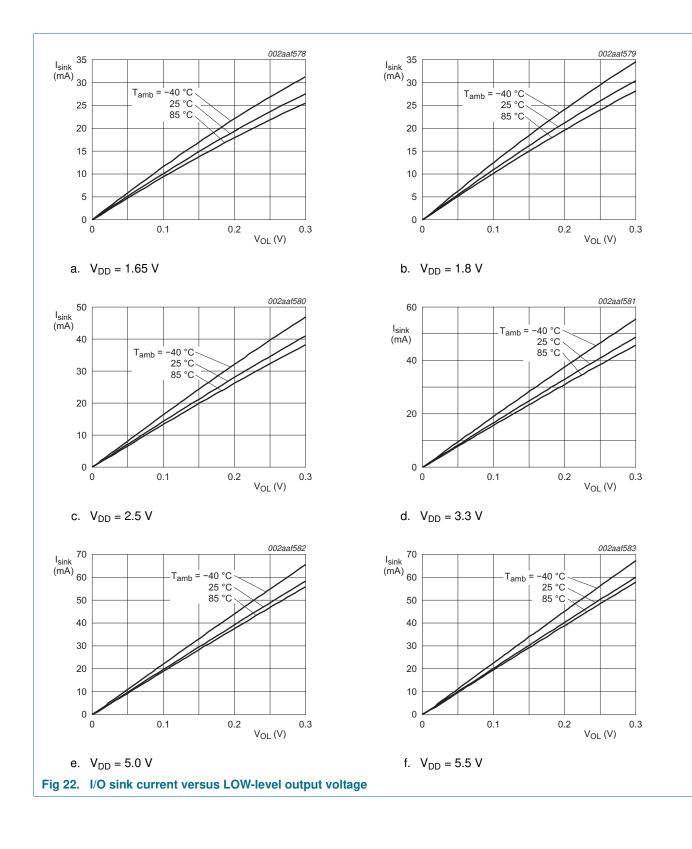
 $T_{amb} = -40 \text{ °C to } +85 \text{ °C}; V_{DD} = 1.65 \text{ V to } 5.5 \text{ V}; unless otherwise specified.}$

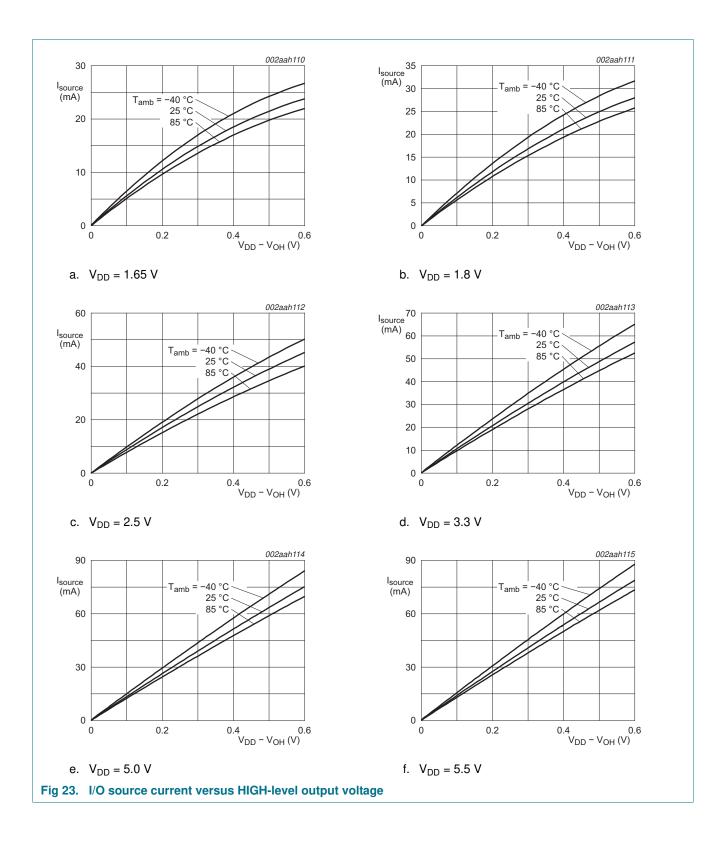

[1] For I_{DD}, all typical values are at nominal supply voltage (1.8 V, 2.5 V, 3.3 V, 3.6 V or 5 V V_{DD}) and T_{amb} = 25 °C. Except for I_{DD}, the typical values are at V_{DD} = 3.3 V and T_{amb} = 25 °C.

[2] Typical value for $T_{amb} = 25$ °C. $V_{OL} = 0.4$ V and $V_{DD} = 3.3$ V. Typical value for $V_{DD} < 2.5$ V, $V_{OL} = 0.6$ V.

[3] Each I/O must be externally limited to a maximum of 25 mA and the device must be limited to a maximum current of 200 mA.

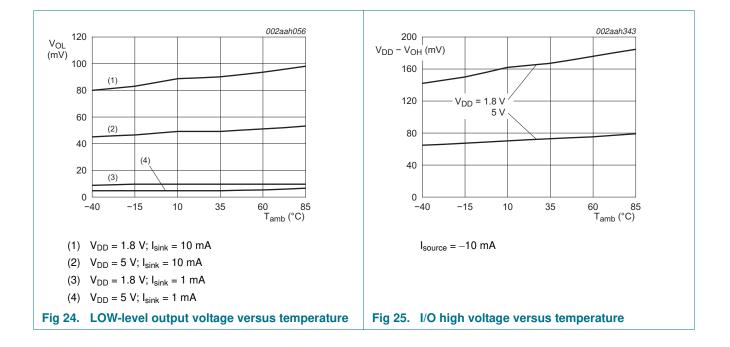
[4] The total current sourced by all I/Os must be limited to 160 mA.


Low-voltage 16-bit I²C-bus I/O port with interrupt


12.1 Typical characteristics

PCA9535A Product data sheet

Low-voltage 16-bit I²C-bus I/O port with interrupt


Low-voltage 16-bit I²C-bus I/O port with interrupt

NXP Semiconductors

PCA9535A

Low-voltage 16-bit I²C-bus I/O port with interrupt

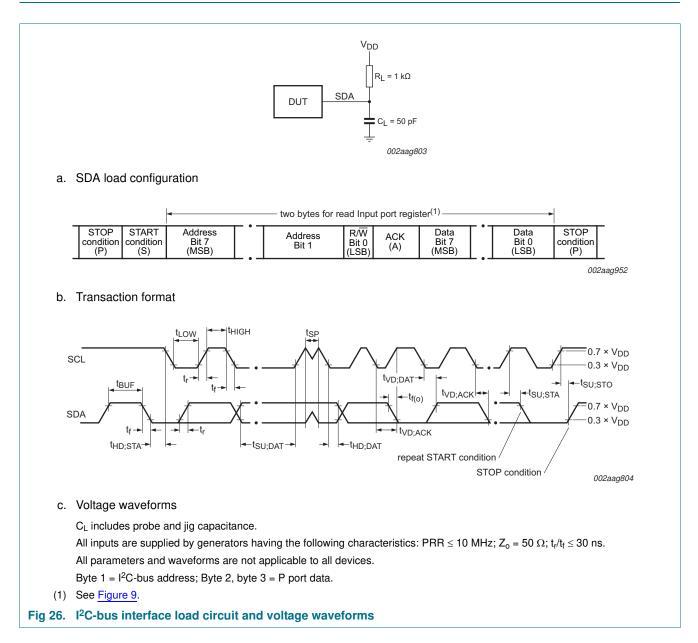
Low-voltage 16-bit I²C-bus I/O port with interrupt

13. Dynamic characteristics

Table 18. I²C-bus interface timing requirements

Over recommended operating free air temperature range, unless otherwise specified. See Figure 26.

Symbol	Parameter	Conditions		d-mode bus	Fast-moo I ² C-bus		Unit
			Min	Max	Min	Мах	
f _{SCL}	SCL clock frequency		0	100	0	400	kHz
t _{HIGH}	HIGH period of the SCL clock		4	-	0.6	-	μs
t _{LOW}	LOW period of the SCL clock		4.7	-	1.3	-	μs
t _{SP}	pulse width of spikes that must be suppressed by the input filter		0	50	0	50	ns
t _{SU;DAT}	data set-up time		250	-	100	-	ns
t _{HD;DAT}	data hold time		0	-	0	-	ns
t _r	rise time of both SDA and SCL signals		-	1000	20	300	ns
t _f	fall time of both SDA and SCL signals		-	300	$\begin{array}{c} 20 \times \\ (V_{DD} / 5.5 \; V) \end{array}$	300	ns
t _{BUF}	bus free time between a STOP and START condition		4.7	-	1.3	-	μS
t _{SU;STA}	set-up time for a repeated START condition		4.7	-	0.6	-	μS
t _{HD;STA}	hold time (repeated) START condition		4	-	0.6	-	μS
t _{SU;STO}	set-up time for STOP condition		4	-	0.6	-	μS
t _{VD;DAT}	data valid time	SCL LOW to SDA output valid	-	3.45	-	0.9	μS
t _{VD;ACK}	data valid acknowledge time	ACK signal from SCL LOW to SDA (out) LOW	-	3.45	-	0.9	μS


Table 19. Switching characteristics

Over recommended operating free air temperature range; $C_L \le 100 \text{ pF}$; unless otherwise specified. See <u>Figure 27</u>.

Symbol	Parameter	Conditions		Standard-mode I ² C-bus		Fast-mode I ² C-bus	
			Min	Max	Min	Max	
t _{v(INT)}	valid time on pin INT	from P port to INT	-	1	-	1	μS
t _{rst(INT)}	reset time on pin INT	from SCL to INT	-	1	-	1	μS
t _{v(Q)}	data output valid time	from SCL to P port	-	400	-	400	ns
t _{su(D)}	data input set-up time	from P port to SCL	0	-	0	-	ns
t _{h(D)}	data input hold time	from P port to SCL	300	-	300	-	ns

Low-voltage 16-bit I²C-bus I/O port with interrupt

14. Parameter measurement information

