

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

PCA9554; PCA9554A

8-bit I²C-bus and SMBus I/O port with interrupt Rev. 10 — 8 November 2017

Product data sheet

1. General description

The PCA9554 and PCA9554A are 16-pin CMOS devices that provide 8 bits of General Purpose parallel Input/Output (GPIO) expansion for I²C-bus/SMBus applications and were developed to enhance the NXP Semiconductors family of I²C-bus I/O expanders. The improvements include higher drive capability, 5 V I/O tolerance, lower supply current, individual I/O configuration, 400 kHz clock frequency, and smaller packaging. I/O expanders provide a simple solution when additional I/O is needed for ACPI power switches, sensors, push buttons, LEDs, fans, and so on.

The PCA9554/PCA9554A consist of an 8-bit Configuration register (Input or Output selection); 8-bit Input Port register, 8-bit Output Port register and an 8-bit Polarity Inversion register (active HIGH or active LOW operation). The system master can enable the I/Os as either inputs or outputs by writing to the I/O configuration bits. The data for each input or output is kept in the corresponding Input Port or Output Port register. The polarity of the read register can be inverted with the Polarity Inversion register. All registers can be read by the system master. Although pin-to-pin and I²C-bus address compatible with the PCF8574 series, software changes are required due to the enhancements and are discussed in Application Note AN469.

The PCA9554/PCA9554A open-drain interrupt output is activated when any input state differs from its corresponding Input Port register state and is used to indicate to the system master that an input state has changed. The power-on reset sets the registers to their default values and initializes the device state machine.

Three hardware pins (A0, A1, A2) vary the fixed I²C-bus address and allow up to eight devices to share the same I²C-bus/SMBus. The PCA9554A is identical to the PCA9554 except that the fixed I²C-bus address is different allowing up to sixteen of these devices (eight of each) on the same I²C-bus/SMBus.

2. Features and benefits

- Operating power supply voltage range of 2.3 V to 5.5 V
- 5 V tolerant I/Os
- Polarity Inversion register
- Active LOW interrupt output
- Low standby current
- Noise filter on SCL/SDA inputs
- No glitch on power-up
- Internal power-on reset
- 8 I/O pins which default to 8 inputs
- 0 Hz to 400 kHz clock frequency

- ESD protection exceeds 2000 V HBM per JESD22-A114 and 1000 V CDM per JESD22-C101
- Latch-up testing is done to JEDEC Standard JESD78 which exceeds 100 mA
- AEC-Q100 compliance available
- Packages offered: SO16, SSOP16, SSOP20, TSSOP16, HVQFN16 (2 versions: $4 \times 4 \times 0.85$ mm and $3 \times 3 \times 0.85$ mm), and bare die

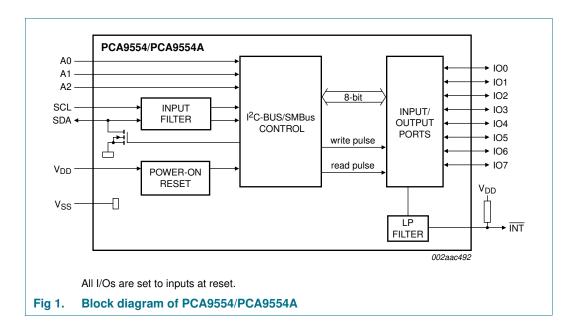
3. Ordering information

Table 1. Ordering information

Type number	Topside	Package						
	marking	Name	Description	Version				
PCA9554D	PCA9554D	Name Description SO16 plastic small outline package; 16 leads; body width 7.5 mm SSOP16 plastic shrink small outline package; 16 leads; body width 5.3 mm SSOP20 plastic shrink small outline package; 20 leads; body width 4.4 mm TSSOP16 plastic thin shrink small outline package; 16 leads; body width 4.4 mm HVQFN16 plastic thermal enhanced very thin quad flat package; no leads; 16 terminals; body 4 × 4 × 0.85 mm	SOT162-1					
PCA9554AD	PCA9554AD		body width 7.5 mm					
PCA9554DB	9554DB	SSOP16	plastic shrink small outline package; 16 leads;	SOT338-1				
PCA9554ADB	9554A		body width 5.3 mm					
PCA9554TS	PCA9554	SSOP20						
PCA9554ATS	PA9554A		body width 4.4 mm					
PCA9554PW	9554DH	TSSOP16		SOT403-1				
PCA9554PW/Q900[1]	9554DH		,					
PCA9554APW	9554ADH							
PCA9554BS	9554	HVQFN16	plastic thermal enhanced very thin quad flat package;	SOT629-1				
PCA9554ABS	554A		no leads; 16 terminals; body 4 × 4 × 0.85 mm					
PCA9554BS3	P54	HVQFN16	plastic thermal enhanced very thin quad flat package;	SOT758-1				
PCA9554ABS3	54A		no leads; 16 terminals; body $3 \times 3 \times 0.85$ mm					
PCA9554U	-	bare die	-	-				

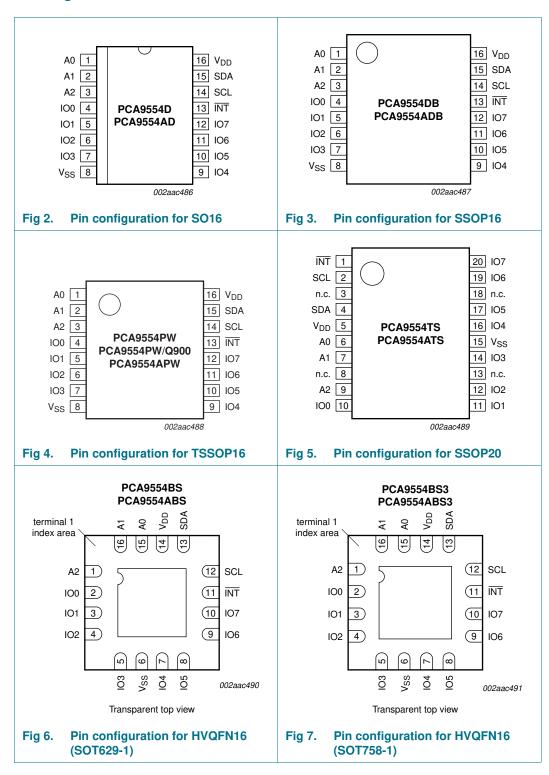
^[1] PCA9554PW/Q900 is AEC-Q100 compliant. Contact i2c.support@nxp.com for PPAP.

3.1 Ordering options


Table 2. Ordering options

Type number	Orderable part number	Package	Packing method	Minimum order quantity	Temperature
PCA9554D	PCA9554D,112	SO16	Standard marking * IC's tube - DSC bulk pack	1920	$T_{amb} = -40 ^{\circ}\text{C} \text{ to } +85 ^{\circ}\text{C}$
	PCA9554D,118	SO16	Reel 13" Q1/T1 *standard mark SMD	1000	$T_{amb} = -40 ^{\circ}\text{C} \text{ to } +85 ^{\circ}\text{C}$
PCA9554AD	PCA9554AD,112	SO16	Standard marking * IC's tube - DSC bulk pack	1920	$T_{amb} = -40 ^{\circ}\text{C} \text{ to } +85 ^{\circ}\text{C}$
	PCA9554AD,118	SO16	Reel 13" Q1/T1 *standard mark SMD	1000	$T_{amb} = -40 ^{\circ}\text{C} \text{ to } +85 ^{\circ}\text{C}$
PCA9554DB	PCA9554DB,112	SSOP16	Standard marking * IC's tube - DSC bulk pack	1092	$T_{amb} = -40 ^{\circ}\text{C} \text{ to } +85 ^{\circ}\text{C}$
	PCA9554DB,118	SSOP16	Reel 13" Q1/T1 *standard mark SMD	2000	$T_{amb} = -40 ^{\circ}\text{C} \text{ to } +85 ^{\circ}\text{C}$

 Table 2.
 Ordering options ...continued


Type number	Orderable part number	Package	Packing method	Minimum order quantity	Temperature
PCA9554ADB	PCA9554ADB,112	SSOP16	Standard marking * IC's tube - DSC bulk pack	1092	$T_{amb} = -40 ^{\circ}\text{C} \text{ to } +85 ^{\circ}\text{C}$
	PCA9554ADB,118	SSOP16	Reel 13" Q1/T1 *standard mark SMD	2000	$T_{amb} = -40 ^{\circ}\text{C} \text{ to } +85 ^{\circ}\text{C}$
PCA9554TS	PCA9554TS,112	SSOP20	Standard marking * IC's tube - DSC bulk pack	1350	$T_{amb} = -40 ^{\circ}\text{C} \text{ to } +85 ^{\circ}\text{C}$
	PCA9554TS,118	SSOP20	Reel 13" Q1/T1 *standard mark SMD	2500	$T_{amb} = -40 ^{\circ}\text{C} \text{ to } +85 ^{\circ}\text{C}$
PCA9554ATS	PCA9554ATS,112	SSOP20	Standard marking * IC's tube - DSC bulk pack	1350	$T_{amb} = -40 ^{\circ}\text{C} \text{ to } +85 ^{\circ}\text{C}$
	PCA9554ATS,118	SSOP20	Reel 13" Q1/T1 *standard mark SMD	2500	$T_{amb} = -40 ^{\circ}\text{C} \text{ to } +85 ^{\circ}\text{C}$
PCA9554PW	PCA9554PW,112	TSSOP16	Standard marking * IC's tube - DSC bulk pack	2400	$T_{amb} = -40 ^{\circ}\text{C} \text{ to } +85 ^{\circ}\text{C}$
	PCA9554PW,118	TSSOP16	Reel 13" Q1/T1 *standard mark SMD	2500	$T_{amb} = -40 ^{\circ}\text{C} \text{ to } +85 ^{\circ}\text{C}$
PCA9554PW/Q900	PCA9554PW/Q900,118	TSSOP16	Reel 13" Q1/T1 *standard mark SMD	2500	$T_{amb} = -40 ^{\circ}\text{C} \text{ to } +85 ^{\circ}\text{C}$
PCA9554APW	PCA9554APW,112	TSSOP16	Standard marking * IC's tube - DSC bulk pack	2400	$T_{amb} = -40 ^{\circ}\text{C} \text{ to } +85 ^{\circ}\text{C}$
	PCA9554APW,118	TSSOP16	Reel 13" Q1/T1 *standard mark SMD	2500	$T_{amb} = -40 ^{\circ}\text{C} \text{ to } +85 ^{\circ}\text{C}$
PCA9554BS	PCA9554BS,118	HVQFN16	Reel 13" Q1/T1 *standard mark SMD	6000	$T_{amb} = -40 ^{\circ}\text{C} \text{ to } +85 ^{\circ}\text{C}$
PCA9554ABS	PCA9554ABS,118	HVQFN16	Reel 13" Q1/T1 *standard mark SMD	6000	$T_{amb} = -40 ^{\circ}\text{C} \text{ to } +85 ^{\circ}\text{C}$
PCA9554BS3	PCA9554BS3,118	HVQFN16	Reel 13" Q1/T1 *standard mark SMD	6000	$T_{amb} = -40 ^{\circ}\text{C} \text{ to } +85 ^{\circ}\text{C}$
PCA9554ABS3	PCA9554ABS3,118	HVQFN16	Reel 13" Q1/T1 *standard mark SMD	6000	$T_{amb} = -40 ^{\circ}\text{C} \text{ to } +85 ^{\circ}\text{C}$
PCA9554U	PCA9554U,029	bare die	Reel 7" Q1/T1 *no mark die mounted on punched tape	7000	$T_{amb} = -40 ^{\circ}\text{C} \text{ to } +85 ^{\circ}\text{C}$

4. Block diagram

5. Pinning information

5.1 Pinning

5.2 Pin description

Table 3. Pin description

Symbol	Pin			Description
	SO16, SSOP16, TSSOP16	HVQFN16	SSOP20	
A0	1	15	6	address input 0
A1	2	16	7	address input 1
A2	3	1	9	address input 2
IO0	4	2	10	input/output 0
IO1	5	3	11	input/output 1
IO2	6	4	12	input/output 2
IO3	7	5	14	input/output 3
V_{SS}	8	6[1]	15	supply ground
IO4	9	7	16	input/output 4
IO5	10	8	17	input/output 5
IO6	11	9	19	input/output 6
IO7	12	10	20	input/output 7
ĪNT	13	11	1	interrupt output (open-drain)
SCL	14	12	2	serial clock line
SDA	15	13	4	serial data line
V_{DD}	16	14	5	supply voltage
n.c.	-	-	3, 8, 13, 18	not connected

^[1] HVQFN16 package die supply ground is connected to both V_{SS} pin and exposed center pad. V_{SS} pin must be connected to supply ground for proper device operation. For enhanced thermal, electrical, and board level performance, the exposed pad needs to be soldered to the board using a corresponding thermal pad on the board and for proper heat conduction through the board, thermal vias need to be incorporated in the PCB in the thermal pad region.

6. Functional description

Refer to Figure 1 "Block diagram of PCA9554/PCA9554A".

6.1 Registers

6.1.1 Command byte

Table 4. Command byte

Command	Protocol	Function
0	read byte	Input Port register
1	read/write byte	Output Port register
2	read/write byte	Polarity Inversion register
3	read/write byte	Configuration register

The command byte is the first byte to follow the address byte during a write transmission. It is used as a pointer to determine which of the following registers will be written or read.

6.1.2 Register 0 - Input Port register

This register is a read-only port. It reflects the incoming logic levels of the pins, regardless of whether the pin is defined as an input or an output by Register 3. Writes to this register have no effect.

The default 'X' is determined by the externally applied logic level, normally '1' when no external signal externally applied because of the internal pull-up resistors.

Table 5. Register 0 - Input Port register bit description

Bit	Symbol	Access	Value	Description
7	17	read only	Х	determined by externally applied logic level
6	16	read only	X	
5	15	read only	X	
4	14	read only	X	
3	13	read only	X	
2	12	read only	X	
1	I1	read only	X	
0	10	read only	Х	

6.1.3 Register 1 - Output Port register

This register reflects the outgoing logic levels of the pins defined as outputs by Register 3. Bit values in this register have no effect on pins defined as inputs. Reads from this register return the value that is in the flip-flop controlling the output selection, **not** the actual pin value.

Table 6. Register 1 - Output Port register bit description Legend: * default value.

Bit	Symbol	Access	Value	Description
7	07	R	1*	reflects outgoing logic levels of pins defined as
6	O6	R	1*	outputs by Register 3
5	O5	R	1*	
4	O4	R	1*	
3	O3	R	1*	
2	O2	R	1*	
1	O1	R	1*	
0	00	R	1*	

6.1.4 Register 2 - Polarity Inversion register

This register allows the user to invert the polarity of the Input Port register data. If a bit in this register is set (written with '1'), the corresponding Input Port data is inverted. If a bit in this register is cleared (written with a '0'), the Input Port data polarity is retained.

Table 7. Register 2 - Polarity Inversion register bit description Legend: * default value.

Bit	Symbol	Access	Value	Description
7	N7	R/W	0*	inverts polarity of Input Port register data
6	N6	R/W	0*	0 = Input Port register data retained (default value)
5	N5	R/W	0*	1 = Input Port register data inverted
4	N4	R/W	0*	
3	N3	R/W	0*	
2	N2	R/W	0*	
1	N1	R/W	0*	
0	N0	R/W	0*	

6.1.5 Register 3 - Configuration register

This register configures the directions of the I/O pins. If a bit in this register is set, the corresponding port pin is enabled as an input with high-impedance output driver. If a bit in this register is cleared, the corresponding port pin is enabled as an output. At reset, the I/Os are configured as inputs with a weak pull-up to V_{DD} .

Table 8. Register 3 - Configuration register bit description Legend: * default value.

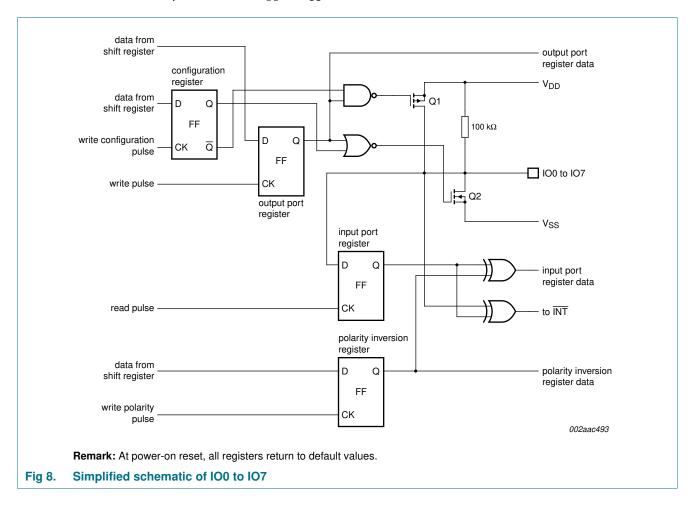
Bit	Symbol	Access	Value	Description
7	C7	R/W	1*	configures the directions of the I/O pins
6	C6	R/W	1*	0 = corresponding port pin enabled as an output
5	C5	R/W	1*	1 = corresponding port pin configured as input
4	C4	R/W	1*	(default value)
3	C3	R/W	1*	
2	C2	R/W	1*	
1	C1	R/W	1*	
0	C0	R/W	1*	

6.2 Power-on reset

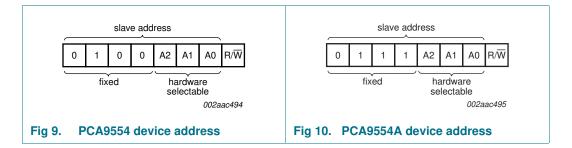
When power is applied to V_{DD} , an internal Power-On Reset (POR) holds the PCA9554/PCA9554A in a reset condition until V_{DD} has reached V_{POR} . At that point, the reset condition is released and the PCA9554/PCA9554A registers and state machine will initialize to their default states. Thereafter, V_{DD} must be lowered below 0.2 V to reset the device.

For a power reset cycle, V_{DD} must be lowered below 0.2 V and then restored to the operating voltage.

6.3 Interrupt output

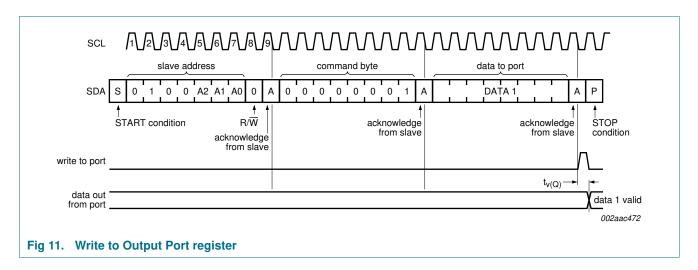

The open-drain interrupt output is activated when one of the port pins change state and the pin is configured as an input. The interrupt is deactivated when the input returns to its previous state or the Input Port register is read.

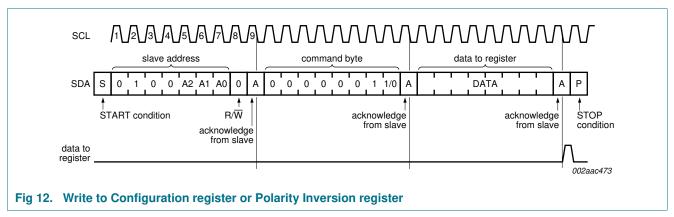
Note that changing an I/O from and output to an input may cause a false interrupt to occur if the state of the pin does not match the contents of the Input Port register.

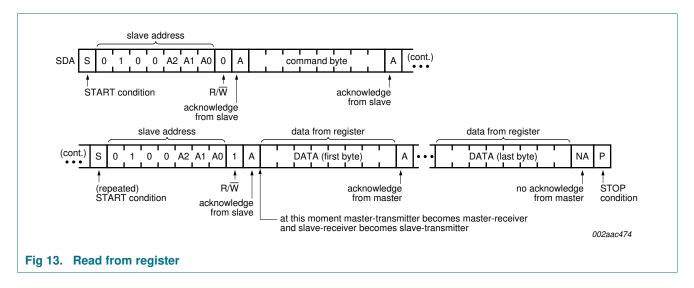

6.4 I/O port

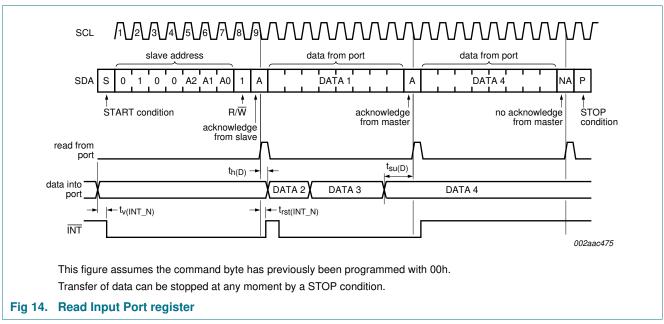
When an I/O is configured as an input, FETs Q1 and Q2 are off, creating a high-impedance input with a weak pull-up (100 k Ω typ.) to V_{DD}. The input voltage may be raised above V_{DD} to a maximum of 5.5 V.

If the I/O is configured as an output, then either Q1 or Q2 is enabled, depending on the state of the Output Port register. Care should be exercised if an external voltage is applied to an I/O configured as an output because of the low-impedance paths that exist between the pin and either V_{DD} or V_{SS} .

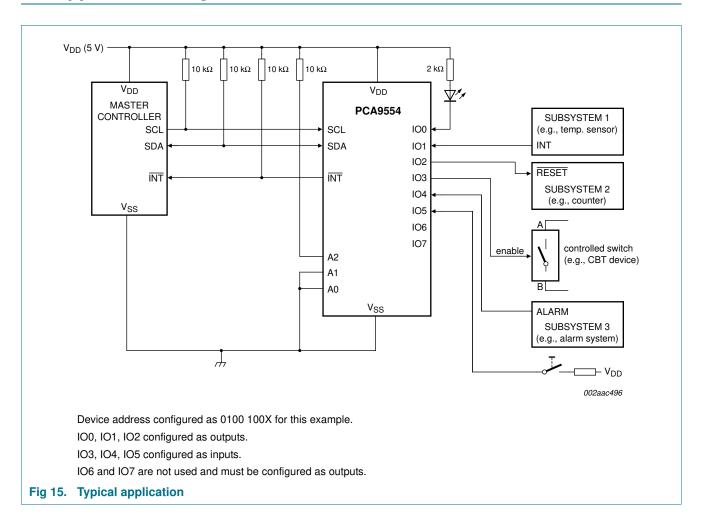



6.5 Device address




6.6 Bus transactions

Data is transmitted to the PCA9554/PCA9554A registers using the Write mode as shown in Figure 11 and Figure 12. Data is read from the PCA9554/PCA9554A registers using the Read mode as shown in Figure 13 and Figure 14. These devices do not implement an auto-increment function, so once a command byte has been sent, the register which was addressed will continue to be accessed by reads until a new command byte has been sent.



7. Application design-in information

8. Limiting values

Table 9. Limiting values
In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
V_{DD}	supply voltage		-0.5	+6.0	V
I _I	input current		-	±20	mA
V _{I/O}	voltage on an input/output pin		$V_{SS}-0.5$	5.5	V
I _{O(IOn)}	output current on pin IOn		-	±50	mA
I _{DD}	supply current		-	85	mA
I _{SS}	ground supply current		-	100	mA
P _{tot}	total power dissipation		-	200	mW
T _{stg}	storage temperature		-65	+150	°C
T _{amb}	ambient temperature	operating	-40	+85	°C

9. Static characteristics

Table 10. Static characteristics

 V_{DD} = 2.3 V to 5.5 V; V_{SS} = 0 V; T_{amb} = -40 °C to +85 °C; unless otherwise specified.

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
Supplies							
V_{DD}	supply voltage			2.3	-	5.5	V
I _{DD}	supply current	operating mode; $V_{DD} = 5.5 \text{ V}$; no load; $f_{SCL} = 100 \text{ kHz}$		-	104	175	μА
I _{stb}	standby current	Standby mode; $V_{DD} = 5.5 \text{ V}$; no load; $V_{I} = V_{SS}$; $f_{SCL} = 0 \text{ kHz}$; $I/O = \text{inputs}$		-	550	700	μА
		Standby mode; $V_{DD} = 5.5 \text{ V}$; no load; $V_{I} = V_{DD}$; $f_{SCL} = 0 \text{ kHz}$; $I/O = \text{inputs}$		-	0.25	1	μА
V_{POR}	power-on reset voltage	no load; $V_I = V_{DD}$ or V_{SS}	[1]	-	1.7	2.2	V
Input SC	L; input/output SDA						
V _{IL}	LOW-level input voltage			-0.5	-	+0.3V _{DD}	٧
V _{IH}	HIGH-level input voltage			$0.7V_{DD}$	-	5.5	V
l _{OL}	LOW-level output current	V _{OL} = 0.4 V		3	6	-	mA
IL	leakage current	$V_I = V_{DD} = V_{SS}$		-1	-	+1	μΑ
C _i	input capacitance	$V_I = V_{SS}$		-	6	10	рF
I/Os						<u> </u>	
V _{IL}	LOW-level input voltage			-0.5	-	+0.8	V
V _{IH}	HIGH-level input voltage			2.0	-	5.5	٧
I _{OL}	LOW-level output current	$V_{OL} = 0.5 \text{ V}; V_{DD} = 2.3 \text{ V}$	[2]	8	10	-	mA
		V _{OL} = 0.7 V; V _{DD} = 2.3 V	[2]	10	13	-	mA
		$V_{OL} = 0.5 \text{ V}; V_{DD} = 3.0 \text{ V}$	[2]	8	14	-	mA
		$V_{OL} = 0.7 \text{ V}; V_{DD} = 3.0 \text{ V}$	[2]	10	19	-	mA
		V _{OL} = 0.5 V; V _{DD} = 4.5 V	[2]	8	17	-	mA
		V _{OL} = 0.7 V; V _{DD} = 4.5 V	[2]	10	24	-	mA
V _{OH}	HIGH-level output voltage	$I_{OH} = -8 \text{ mA}; V_{DD} = 2.3 \text{ V}$	[3]	1.8	-	-	V
		$I_{OH} = -10 \text{ mA}; V_{DD} = 2.3 \text{ V}$	[3]	1.7	-	-	V
		$I_{OH} = -8 \text{ mA}; V_{DD} = 3.0 \text{ V}$	[3]	2.6	-	-	V
		$I_{OH} = -10 \text{ mA}; V_{DD} = 3.0 \text{ V}$	[3]	2.5	-	-	٧
		$I_{OH} = -8 \text{ mA}; V_{DD} = 4.75 \text{ V}$	[3]	4.1	-	-	٧
		$I_{OH} = -10 \text{ mA}; V_{DD} = 4.75 \text{ V}$	[3]	4.0	-	-	V
ILI	input leakage current	$V_{DD} = 3.6 \text{ V}; V_{I} = V_{DD}$		-1	-	+1	μΑ
IL	leakage current	$V_{DD} = 5.5 \text{ V}; V_{I} = V_{SS}$		-	-	-100	μΑ
Ci	input capacitance			-	3.7	5	рF
Co	output capacitance			-	3.7	5	pF
Interrupt	INT	1	1	1	1		
I _{OL}	LOW-level output current	V _{OL} = 0.4 V		3	-	-	mA
		1	1	1			

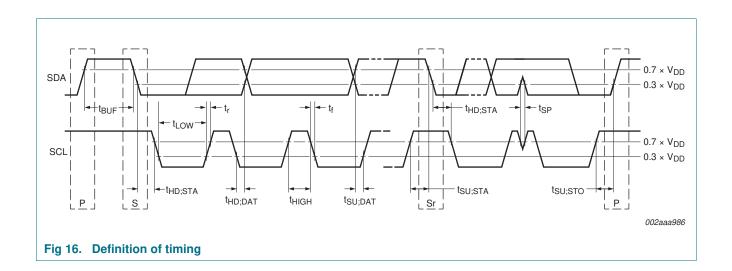
Table 10. Static characteristics ... continued

 V_{DD} = 2.3 V to 5.5 V; V_{SS} = 0 V; T_{amb} = -40 °C to +85 °C; unless otherwise specified.

Symbol	Parameter	Conditions		Min	Тур	Max	Unit	
Select inputs A0, A1, A2								
V_{IL}	LOW-level input voltage			-0.5	-	0.8	V	
V_{IH}	HIGH-level input voltage			2.0	-	5.5	V	
I _{LI}	input leakage current			-1	-	1	μΑ	

- [1] V_{DD} must be lowered to 0.2 V for at least 5 μs in order to reset part.
- [2] Each I/O must be externally limited to a maximum of 25 mA and the device must be limited to a maximum current of 100 mA.
- [3] The total current sourced by all I/Os must be limited to 85 mA.

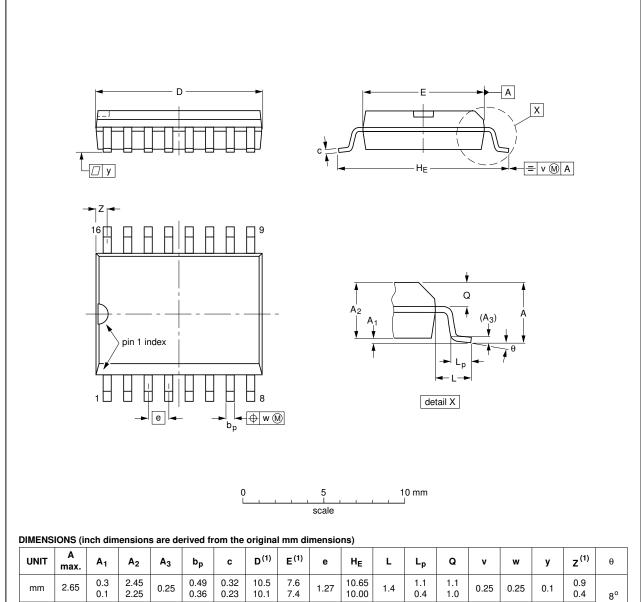
10. Dynamic characteristics


Table 11. Dynamic characteristics

Symbol	Parameter	Conditions			d-mode bus	Fast-mode I ²	Unit	
				Min	Max	Min	Max	
f _{SCL}	SCL clock frequency			0	100	0	400	kHz
t _{BUF}	bus free time between a STOP and START condition			4.7	-	1.3	-	μS
t _{HD;STA}	hold time (repeated) START condition			4.0	-	0.6	-	μS
t _{SU;STA}	set-up time for a repeated START condition			4.7	-	0.6	-	μS
t _{SU;STO}	set-up time for STOP condition			4.0	-	0.6	-	μS
t _{HD;DAT}	data hold time			0	-	0	-	μS
t _{VD;ACK}	data valid acknowledge time		[1]	0.3	3.45	0.1	0.9	μS
t _{VD;DAT}	data valid time		[2]	300	-	50	-	ns
t _{SU;DAT}	data set-up time			250	-	100	-	ns
t _{LOW}	LOW period of the SCL clock			4.7	-	1.3	-	μS
t _{HIGH}	HIGH period of the SCL clock			4.0	-	0.6	-	μS
t _r	rise time of both SDA and SCL signals			-	1000	20 + 0.1C _b [3]	300	ns
t _f	fall time of both SDA and SCL signals			-	300	20 + 0.1C _b [3]	300	ns
t _{SP}	pulse width of spikes that must be suppressed by the input filter			-	50	-	50	ns
Port timing	9		·					
$t_{v(Q)}$	data output valid time			-	200	-	200	ns
t _{su(D)}	data input set-up time			100	-	100	-	ns
t _{h(D)}	data input hold time			1	-	1	-	μS
Interrupt t	iming							
t _{v(INT_N)}	valid time on pin INT			-	4	-	4	μS
t _{rst(INT_N)}	reset time on pin INT			-	4	-	4	μS

^[1] $t_{VD:ACK}$ = time for Acknowledgement signal from SCL LOW to SDA (out) LOW.

^[2] $t_{VD;DAT} = minimum time for SDA data output to be valid following SCL LOW.$

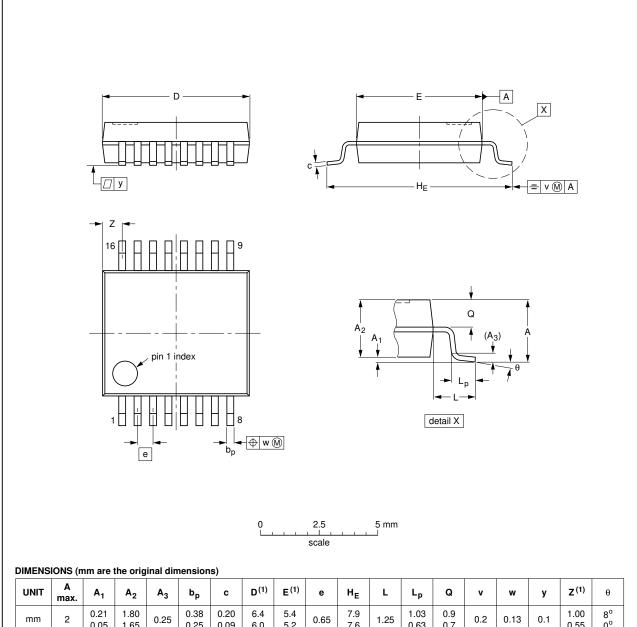

^[3] $C_b = total$ capacitance of one bus line in pF.

11. Package outline

SO16: plastic small outline package; 16 leads; body width 7.5 mm

SOT162-1

ı	UNIT	A max.	A ₁	A ₂	A ₃	bp	С	D ⁽¹⁾	E ⁽¹⁾	е	HE	L	Lp	Q	v	w	у	z ⁽¹⁾	θ
	mm	2.65	0.3 0.1	2.45 2.25	0.25	0.49 0.36	0.32 0.23	10.5 10.1	7.6 7.4	1.27	10.65 10.00	1.4	1.1 0.4	1.1 1.0	0.25	0.25	0.1	0.9 0.4	8°
ir	nches	0.1	0.012 0.004	0.096 0.089	0.01	0.019 0.014	0.013 0.009	0.41 0.40	0.30 0.29	0.05	0.419 0.394	0.055	0.043 0.016	0.043 0.039	0.01	0.01	0.004	0.035 0.016	0°


1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.

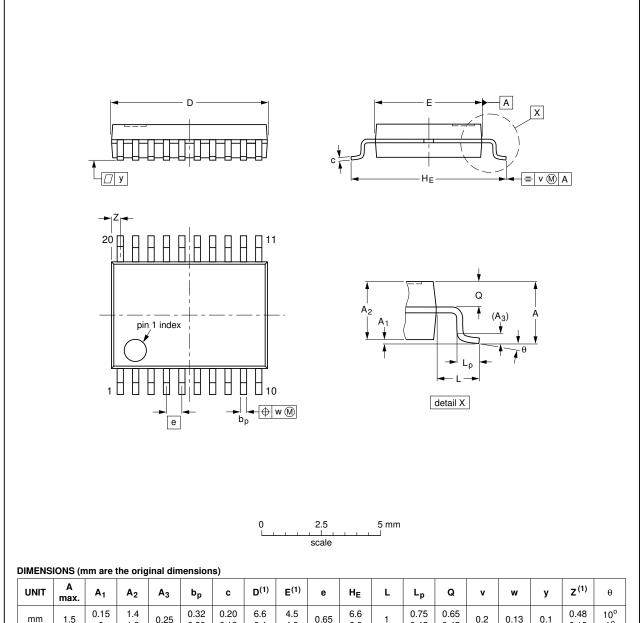
OUTLINE		REFER	EUROPEAN	ISSUE DATE		
VERSION	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE
SOT162-1	075E03	MS-013				99-12-27 03-02-19

Fig 17. Package outline SOT162-1 (SO16)

SSOP16: plastic shrink small outline package; 16 leads; body width 5.3 mm

SOT338-1

UNIT	A max.	A ₁	A ₂	A ₃	b _p	O	D ⁽¹⁾	E ⁽¹⁾	Ф	HE	L	Lp	Q	v	w	у	Z ⁽¹⁾	θ
mm	2	0.21 0.05	1.80 1.65	0.25	0.38 0.25	0.20 0.09	6.4 6.0	5.4 5.2	0.65	7.9 7.6	1.25	1.03 0.63	0.9 0.7	0.2	0.13	0.1	1.00 0.55	8° 0°


1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

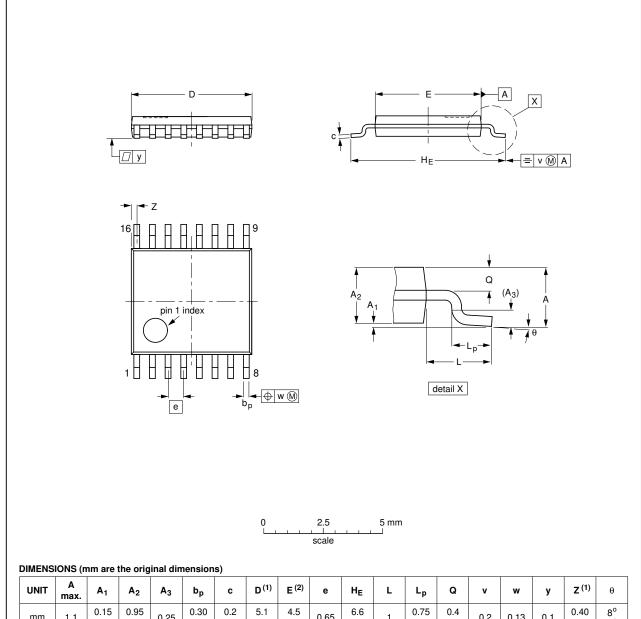
OUTLINE		REFER	EUROPEAN	ISSUE DATE		
VERSION	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE
SOT338-1		MO-150				99-12-27 03-02-19

Fig 18. Package outline SOT338-1 (SSOP16)

SSOP20: plastic shrink small outline package; 20 leads; body width 4.4 mm

SOT266-1

						-,												
UNIT	A max.	A ₁	A ₂	A ₃	bp	С	D ⁽¹⁾	E ⁽¹⁾	е	HE	L	Lp	Q	v	w	у	Z ⁽¹⁾	θ
mm	1.5	0.15 0	1.4 1.2	0.25	0.32 0.20	0.20 0.13	6.6 6.4	4.5 4.3	0.65	6.6 6.2	1	0.75 0.45	0.65 0.45	0.2	0.13	0.1	0.48 0.18	10° 0°


1. Plastic or metal protrusions of 0.20 mm maximum per side are not included.

OUTLINE		REFER	EUROPEAN	ISSUE DATE	
VERSION	IEC	JEDEC	JEITA	PROJECTION	ISSUE DATE
SOT266-1		MO-152			99-12-27 03-02-19

Fig 19. Package outline SOT266-1 (SSOP20)

TSSOP16: plastic thin shrink small outline package; 16 leads; body width 4.4 mm

SOT403-1

						-,												
UNIT	A max.	A ₁	A ₂	A ₃	bp	С	D ⁽¹⁾	E (2)	е	HE	L	Lp	Q	v	w	у	Z ⁽¹⁾	θ
mm	1.1	0.15 0.05	0.95 0.80	0.25	0.30 0.19	0.2 0.1	5.1 4.9	4.5 4.3	0.65	6.6 6.2	1	0.75 0.50	0.4 0.3	0.2	0.13	0.1	0.40 0.06	8° 0°

Notes

- 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
- 2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFER	EUROPEAN	ISSUE DATE		
VERSION	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE
SOT403-1		MO-153				-99-12-27 03-02-18

Fig 20. Package outline SOT403-1 (TSSOP16)

HVQFN16: plastic thermal enhanced very thin quad flat package; no leads; 16 terminals; body 4 x 4 x 0.85 mm

SOT629-1

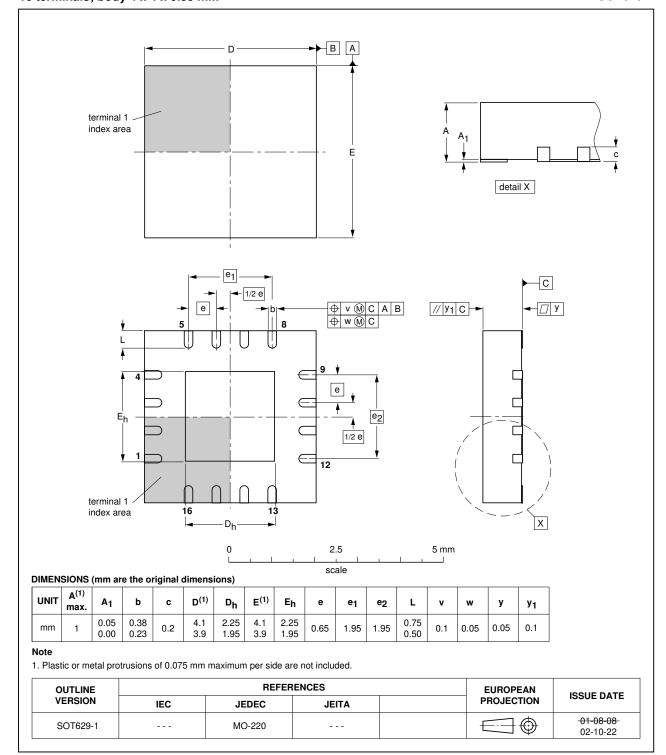


Fig 21. Package outline SOT629-1 (HVQFN16)

HVQFN16: plastic thermal enhanced very thin quad flat package; no leads; 16 terminals; body 3 x 3 x 0.85 mm

SOT758-1

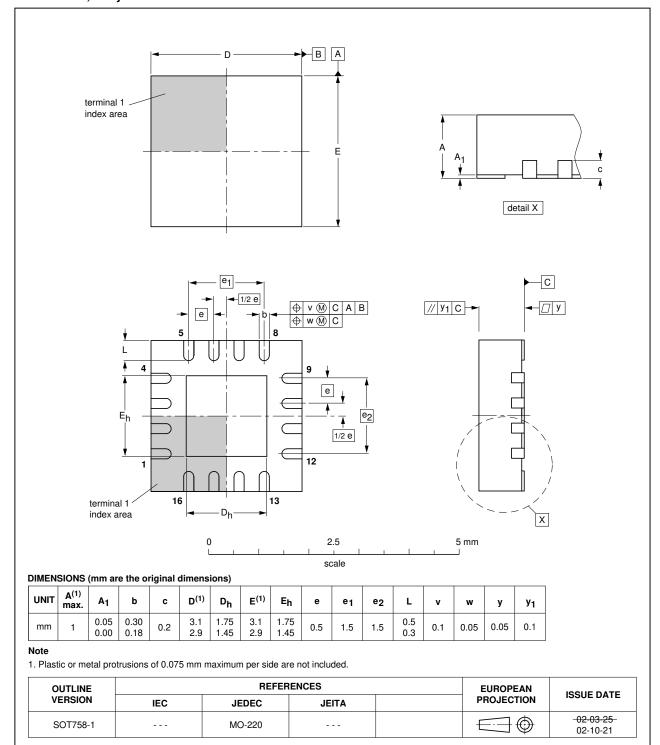


Fig 22. Package outline SOT758-1 (HVQFN16)

12. Handling information

All input and output pins are protected against ElectroStatic Discharge (ESD) under normal handling. When handling ensure that the appropriate precautions are taken as described in *JESD625-A* or equivalent standards.

13. Soldering of SMD packages

This text provides a very brief insight into a complex technology. A more in-depth account of soldering ICs can be found in Application Note *AN10365 "Surface mount reflow soldering description"*.

13.1 Introduction to soldering

Soldering is one of the most common methods through which packages are attached to Printed Circuit Boards (PCBs), to form electrical circuits. The soldered joint provides both the mechanical and the electrical connection. There is no single soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and Surface Mount Devices (SMDs) are mixed on one printed wiring board; however, it is not suitable for fine pitch SMDs. Reflow soldering is ideal for the small pitches and high densities that come with increased miniaturization.

13.2 Wave and reflow soldering

Wave soldering is a joining technology in which the joints are made by solder coming from a standing wave of liquid solder. The wave soldering process is suitable for the following:

- Through-hole components
- Leaded or leadless SMDs, which are glued to the surface of the printed circuit board

Not all SMDs can be wave soldered. Packages with solder balls, and some leadless packages which have solder lands underneath the body, cannot be wave soldered. Also, leaded SMDs with leads having a pitch smaller than ~0.6 mm cannot be wave soldered, due to an increased probability of bridging.

The reflow soldering process involves applying solder paste to a board, followed by component placement and exposure to a temperature profile. Leaded packages, packages with solder balls, and leadless packages are all reflow solderable.

Key characteristics in both wave and reflow soldering are:

- · Board specifications, including the board finish, solder masks and vias
- · Package footprints, including solder thieves and orientation
- · The moisture sensitivity level of the packages
- · Package placement
- · Inspection and repair
- · Lead-free soldering versus SnPb soldering

13.3 Wave soldering

Key characteristics in wave soldering are:

- Process issues, such as application of adhesive and flux, clinching of leads, board transport, the solder wave parameters, and the time during which components are exposed to the wave
- · Solder bath specifications, including temperature and impurities

13.4 Reflow soldering

Key characteristics in reflow soldering are:

- Lead-free versus SnPb soldering; note that a lead-free reflow process usually leads to higher minimum peak temperatures (see <u>Figure 23</u>) than a SnPb process, thus reducing the process window
- Solder paste printing issues including smearing, release, and adjusting the process window for a mix of large and small components on one board
- Reflow temperature profile; this profile includes preheat, reflow (in which the board is heated to the peak temperature) and cooling down. It is imperative that the peak temperature is high enough for the solder to make reliable solder joints (a solder paste characteristic). In addition, the peak temperature must be low enough that the packages and/or boards are not damaged. The peak temperature of the package depends on package thickness and volume and is classified in accordance with Table 12 and 13

Table 12. SnPb eutectic process (from J-STD-020C)

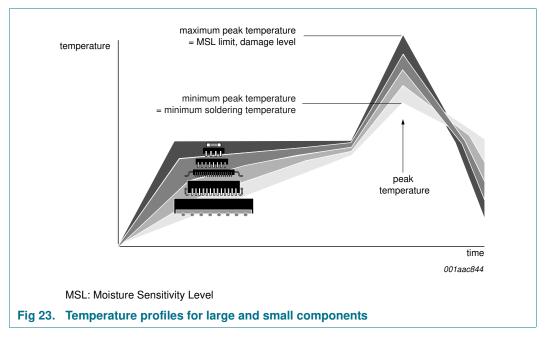

Package thickness (mm)	Package reflow temperature (°C)							
	/olume (mm³)							
	< 350	≥ 350						
< 2.5	235	220						
≥ 2.5	220 220							

Table 13. Lead-free process (from J-STD-020C)

Package thickness (mm)	Package reflow temperature (°C)									
	Volume (mm ³)	olume (mm³)								
	< 350	350 to 2000	> 2000							
< 1.6	260	260	260							
1.6 to 2.5	260	250	245							
> 2.5	250	245	245							

Moisture sensitivity precautions, as indicated on the packing, must be respected at all times.

Studies have shown that small packages reach higher temperatures during reflow soldering, see Figure 23.

For further information on temperature profiles, refer to Application Note *AN10365* "Surface mount reflow soldering description".

14. Soldering: PCB footprints

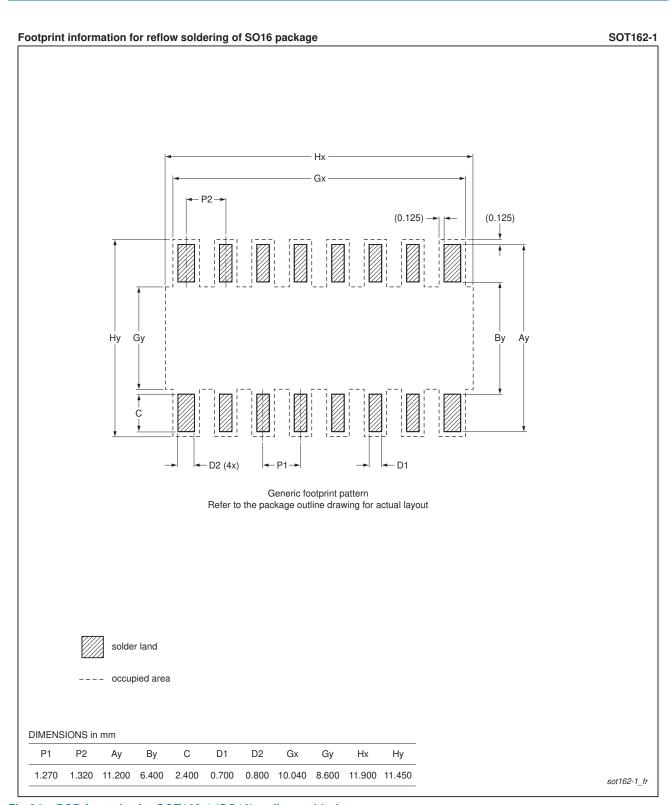


Fig 24. PCB footprint for SOT162-1 (SO16); reflow soldering