imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Low-voltage 8-bit I²C-bus and SMBus low power I/O port with interrupt, reset and Agile I/O

Rev. 3.1 - 27 May 2015

Product data sheet

1. General description

The PCAL9538A is a low-voltage 8-bit General Purpose Input/Output (GPIO) expander with interrupt and reset for I²C-bus/SMBus applications. NXP I/O expanders provide a simple solution when additional I/Os are needed while keeping interconnections to a minimum, for example, in ACPI power switches, sensors, push buttons, LEDs, fan control, etc.

In addition to providing a flexible set of GPIOs, the wide V_{DD} range of 1.65 V to 5.5 V allows the PCAL9538A to interface with next-generation microprocessors and microcontrollers where supply levels are dropping down to conserve power.

The PCAL9538A contains the PCA9538A register set of four 8-bit Configuration, Input, Output, and Polarity Inversion registers, and additionally, the PCAL9538A has Agile I/O, which are additional features specifically designed to enhance the I/O. These additional features are: programmable output drive strength, latchable inputs, programmable pull-up/pull-down resistors, maskable interrupt, interrupt status register, programmable open-drain or push-pull outputs.

The PCAL9538A is a pin-to-pin replacement for the PCA9538, however, the PCAL9538A powers up with all I/O interrupts masked. This mask default allows for a board bring-up free of spurious interrupts at power-up.

The PCAL9538A open-drain interrupt (\overline{INT}) output is activated when any input state differs from its corresponding Input Port register state and is used to indicate to the system master that an input state has changed.

INT can be connected to the interrupt input of a microcontroller. By sending an interrupt signal on this line, the remote I/O can inform the microcontroller if there is incoming data on its ports without having to communicate via the I²C-bus. Thus, the PCAL9538A can remain a simple slave device.

The device outputs have 25 mA sink capabilities for directly driving LEDs while consuming low device current.

The power-on reset sets the registers to their default values and initializes the device state machine. In the PCAL9538A, the RESET pin causes the same reset/default I/O input configuration to occur without de-powering the device, holding the registers and I²C-bus state machine in their default state until the RESET input is once again HIGH. This input requires a pull-up to V_{DD}.

Two hardware pins (A0, A1) select the fixed I^2C -bus address and allow up to four devices to share the same I^2C -bus/SMBus.

Low-voltage 8-bit I²C-bus/SMBus low power I/O port

2. Features and benefits

- I²C-bus to parallel port expander
- Operating power supply voltage range of 1.65 V to 5.5 V
- Low standby current consumption:
 - 1.5 μA (typical at 5 V V_{DD})
 - 1.0 μA (typical at 3.3 V V_{DD})
- Schmitt-trigger action allows slow input transition and better switching noise immunity at the SCL and SDA inputs
 - $V_{hys} = 0.10 \times V_{DD}$ (typical)
- 5 V tolerant I/Os
- Active LOW reset input (RESET)
- Open-drain active LOW interrupt output (INT)
- 400 kHz Fast-mode l²C-bus
- Internal power-on reset
- Power-up with all channels configured as inputs
- No glitch on power-up
- Latched outputs with 25 mA drive maximum capability for directly driving LEDs
- Latch-up performance exceeds 100 mA per JESD78, Class II
- ESD protection exceeds JESD22
 - 2000 V Human Body Model (A114-A)
 - 1000 V Charged-Device Model (C101)
- Packages offered: TSSOP16 and HVQFN16

2.1 Agile I/O features

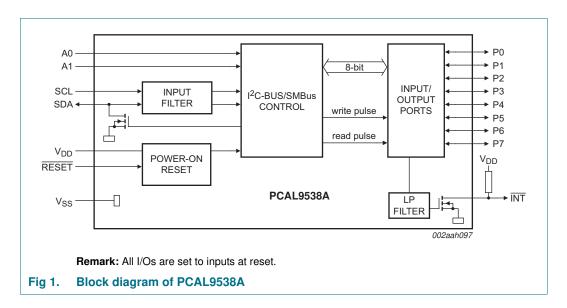
- Pin to pin replacement for PCA9538 and PCA9538A with interrupts disabled at power-up
 - Software backward compatible with PCA9538 and PCA9538A
- Output port configuration: bank selectable push-pull or open-drain output stages
- Interrupt status: read-only register identifies the source of an interrupt
- Bit-wise I/O programming features:
 - Output drive strength: four programmable drive strengths to reduce rise and fall times in low capacitance applications
 - Input latch: Input Port register values changes are kept until the Input Port register is read
 - Pull-up/pull-down enable: floating input or pull-up/down resistor enable
 - Pull-up/pull-down selection: 100 kΩ pull-up/down resistor selection
 - Interrupt mask: mask prevents the generation of the interrupt when input changes state

Table 1

Low-voltage 8-bit I²C-bus/SMBus low power I/O port

Ordering information 3.

Ordering information

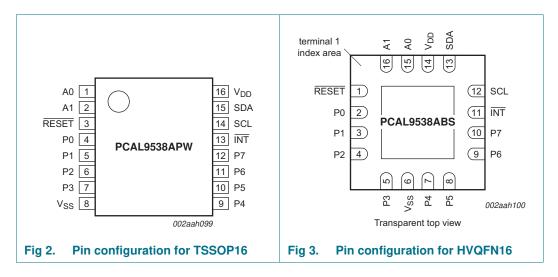

Type number	Topside	Package								
	mark	Name	Description							
PCAL9538ABS	L3A	HVQFN16	plastic thermal enhanced very thin quad flat package; no leads; 16 terminals; body $3 \times 3 \times 0.85$ mm	SOT758-1						
PCAL9538APW	PL9538A	TSSOP16	plastic thin shrink small outline package; 16 leads; body width 4.4 mm	SOT403-1						

3.1 Ordering options

Table 2. **Ordering options**

Type number	Orderable part number	Package	· ······g ······	Minimum order quantity	Temperature range
PCAL9538ABS	PCAL9538ABSHP	HVQFN16	Reel 13" Q2/T3 *Standard mark SMD	6000	$T_{amb} = -40 \ ^{\circ}C \ to \ +85 \ ^{\circ}C$
PCAL9538APW	PCAL9538APWJ	TSSOP16	Reel 13" Q1/T1 *Standard mark SMD	2500	$T_{amb} = -40 \ ^{\circ}C \ to \ +85 \ ^{\circ}C$

Block diagram 4.



PCAL9538A

Low-voltage 8-bit I²C-bus/SMBus low power I/O port

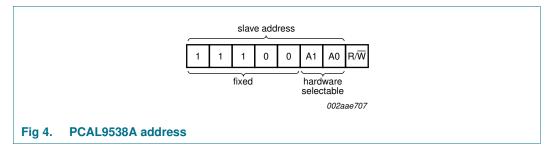
Pinning information 5.

5.1 Pinning

5.2 Pin description

Table 3. P	in descriptio	n	
Symbol	Pin		Description
	TSSOP16	HVQFN16	
A0	1	15	address input 0
A1	2	16	address input 1
RESET	3	1	active LOW reset input
P0[1]	4	2	Port P input/output 0
P1[1]	5	3	Port P input/output 1
P2[1]	6	4	Port P input/output 2
P3[1]	7	5	Port P input/output 3
V _{SS}	8	6 <mark>[2]</mark>	supply ground
P4[1]	9	7	Port P input/output 4
P5 <mark>[1]</mark>	10	8	Port P input/output 5
P6[1]	11	9	Port P input/output 6
P7[1]	12	10	Port P input/output 7
INT	13	11	interrupt output (open-drain)
SCL	14	12	serial clock line
SDA	15	13	serial data line
V _{DD}	16	14	supply voltage

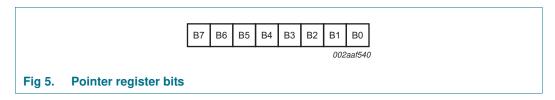
[1] All I/O are configured as input at power-on.


HVQFN16 package die supply ground is connected to both the V_{SS} pin and the exposed center pad. The [2] Vss pin must be connected to supply ground for proper device operation. For enhanced thermal, electrical, and board-level performance, the exposed pad needs to be soldered to the board using a corresponding thermal pad on the board, and for proper heat conduction through the board thermal vias need to be incorporated in the printed-circuit board in the thermal pad region.

PCAL9538A Product data sheet

6. Functional description

Refer to Figure 1 "Block diagram of PCAL9538A".


6.1 Device address

A1 and A0 are the hardware address package pins and are held to either HIGH (logic 1) or LOW (logic 0) to assign one of the four possible slave addresses. The last bit of the slave address (R/W) defines the operation (read or write) to be performed. A HIGH (logic 1) selects a read operation, while a LOW (logic 0) selects a write operation.

6.2 Pointer register and command byte

Following the successful acknowledgement of the address byte, the bus master sends a command byte, which is stored in the Pointer register in the PCAL9538A. Two bits of this data byte state the operation (read or write) and the internal registers (Input, Output, Polarity Inversion, or Configuration) that will be affected. Bit 6 in conjunction with the lower three bits of the Command byte are used to point to the extended features of the device (Agile I/O). This register is write only.

NXP Semiconductors

PCAL9538A

Low-voltage 8-bit I²C-bus/SMBus low power I/O port

Table	; 4 .	COI	IIIaII	u byt	e						
		Point	ter re	giste	r bits			Command byte	Register	Protocol	Power-up
B7	B6	B5	B 4	B3	B2	B1	B0	(hexadecimal)			default
0	0	0	0	0	0	0	0	00h	Input port	read byte	xxxx xxxx ^[1]
0	0	0	0	0	0	0	1	01h	Output port	read/write byte	1111 1111
0	0	0	0	0	0	1	0	02h	Polarity Inversion	read/write byte	0000 0000
0	0	0	0	0	0	1	1	03h	Configuration	read/write byte	1111 1111
0	1	0	0	0	0	0	0	40h	Output drive strength 0	read/write byte	1111 1111
0	1	0	0	0	0	0	1	41h	Output drive strength 1	read/write byte	1111 1111
0	1	0	0	0	0	1	0	42h	Input latch	read/write byte	0000 0000
0	1	0	0	0	0	1	1	43h	Pull-up/pull-down enable	read/write byte	0000 0000
0	1	0	0	0	1	0	0	44h	Pull-up/pull-down selection	read/write byte	1111 1111
0	1	0	0	0	1	0	1	45h	Interrupt mask	read/write byte	1111 1111
0	1	0	0	0	1	1	0	46h	Interrupt status	read byte	0000 0000
0	1	0	0	1	1	1	1	4Fh	Output port configuration	read/write byte	0000 0000

Table 4. Command byte

[1] Undefined.

6.3 Interface definition

Table 5. Interface definition

Byte				В	it			
	7 (MSB)	6	5	4	3	2	1	0 (LSB)
I ² C-bus slave address	Н	Н	Н	L	L	A1	A0	R/W
I/O data bus	P7	P6	P5	P4	P3	P2	P1	P0

6.4 Register descriptions

6.4.1 Input port register (00h)

The Input port register (register 0) reflects the incoming logic levels of the pins, regardless of whether the pin is defined as an input or an output by the Configuration register. The Input port register is read only; writes to this register have no effect. The default value 'X' is determined by the externally applied logic level. An Input port register read operation is performed as described in <u>Section 7.2 "Read commands"</u>.

Table 6.	Input	port	register	(address	00h)
----------	-------	------	----------	----------	------

Bit	7	6	5	4	3	2	1	0
Symbol	17	16	15	14	13	12	11	10
Default	Х	Х	Х	Х	Х	Х	Х	Х

6.4.2 Output port register (01h)

The Output port register (register 1) shows the outgoing logic levels of the pins defined as outputs by the Configuration register. Bit values in these registers have no effect on pins defined as inputs. In turn, reads from this register reflect the value that was written to this register, **not** the actual pin value.

Table 7. Output port register (address 01h)

Bit	7	6	5	4	3	2	1	0
Symbol	07	O6	O5	04	O3	O2	01	O0
Default	1	1	1	1	1	1	1	1

6.4.3 Polarity inversion register (02h)

The Polarity inversion register (register 2) allows polarity inversion of pins defined as inputs by the Configuration register. If a bit in this register is set (written with '1'), the corresponding port pin's polarity is inverted. If a bit in this register is cleared (written with a '0'), the corresponding port pin's original polarity is retained.

Table 8. Polarity inversion register (address 02h)

Bit	7	6	5	4	3	2	1	0
Symbol	N7	N6	N5	N4	N3	N2	N1	N0
Default	0	0	0	0	0	0	0	0

6.4.4 Configuration register (03h)

The Configuration register (register 3) configures the direction of the I/O pins. If a bit in this register is set to 1, the corresponding port pin is enabled as a high-impedance input. If a bit in this register is cleared to 0, the corresponding port pin is enabled as an output.

Table 9. Configuration register (address 03h)

Bit	7	6	5	4	3	2	1	0
Symbol	C7	C6	C5	C4	C3	C2	C1	C0
Default	1	1	1	1	1	1	1	1

6.4.5 Output drive strength registers (40h, 41h)

The Output drive strength registers control the output drive level of the GPIO. Each GPIO can be configured independently to a certain output current level by two register control bits. For example, Port 7 is controlled by register 41 CC7 (bits [7:6]), Port 6 is controlled by register 41 CC6 (bits [5:4]). The output drive level of the GPIO is programmed $00b = 0.25 \times$, $01b = 0.5 \times$, $10b = 0.75 \times$ or $11b = 1 \times$ of the drive capability of the I/O. See Section 8.2 "Output drive strength control" for more details.

Table 10. Current control register (address 40h)

Bit	7	6	5	4	3	2	1	0	
Symbol	CC3		CC2		CC		CC0		
Default	1	1 1		1	1	1	1	1	

Table 11. Current control register (address 41h)

Bit	7	6	5	4	3	2	1	0
Symbol	CC7		CC6		CC5		CC4	
Default	1 1		1 1		1	1	1	1

Product data sheet

PCAL9538A

6.4.6 Input latch register (42h)

The Input latch register enables and disables the input latch of the I/O pins. These registers are effective only when the pin is configured as an input port. When an input latch register bit is 0, the corresponding input pin state is not latched. A state change in the corresponding input pin generates an interrupt. A read of the input port register clears the interrupt. If the input goes back to its initial logic state before the input port register is read, then the interrupt is cleared.

When an input latch register bit is 1, the corresponding input pin state is latched. A change of state of the input generates an interrupt and the input logic value is loaded into the corresponding bit of the input port register (registers 0). A read of the input port register clears the interrupt. If the input pin returns to its initial logic state before the input port register register is read, then the interrupt is not cleared and the corresponding bit of the input port register keeps the logic value that initiated the interrupt. See Figure 11. For example, if the P4 input was as logic 0 and the input goes to logic 1 then back to logic 0, the input port register will capture this change and an interrupt is cleared, assuming there were no additional input(s) that have changed, and bit 4 of the input port register will read '1'. The next read of the input port register bit 4 should now read '0'.

An interrupt remains active when a non-latched input simultaneously switches state with a latched input and then returns to its original state. A read of the input port register reflects only the change of state of the latched input and also clears the interrupt. The interrupt is not cleared if the input latch register changes from latched to non-latched configuration.

If the input pin is changed from latched to non-latched input, a read from the input port register reflects the current port logic level. If the input pin is changed from non-latched to latched input, the read from the input port register reflects the latched logic level.

Bit	7	6	5	4	3	2	1	0
Symbol	L7	L6	L5	L4	L3	L2	L1	L0
Default	0	0	0	0	0	0	0	0

Table 12. Input latch register (address 42h)

6.4.7 Pull-up/pull-down enable register (43h)

This register allows the user to enable or disable pull-up/pull-down resistors on the I/O pins. Setting the bit to logic 1 enables the selection of pull-up/pull-down resistors. Setting the bit to logic 0 disconnects the pull-up/pull-down resistors from the I/O pins. Use the pull-up/pull-down registers to select either a pull-up or pull-down resistor.

Table 13.	Pull-up/pull-down	enable register	(address 43h)
-----------	-------------------	-----------------	---------------

Bit	7	6	5	4	3	2	1	0
Symbol	PE7	PE6	PE5	PE4	PE3	PE2	PE1	PE0
Default	0	0	0	0	0	0	0	0

6.4.8 Pull-up/pull-down selection register (44h)

The I/O port can be configured to have pull-up or pull-down resistor by programming the pull-up/pull-down selection register. Setting a bit to logic 1 selects a 100 k Ω pull-up resistor for that I/O pin. Setting a bit to logic 0 selects a 100 k Ω pull-down resistor for that I/O pin. If the pull-up/down feature is disconnected, writing to this register will have no effect on I/O pin. Typical value is 100 k Ω with minimum of 50 k Ω and maximum of 150 k Ω .

	Table 14. 1 dil-up/puil-uown selection register (address 44ii)										
Bit	7	6	5	4	3	2	1	0			
Symbol	PUD7	PUD6	PUD5	PUD4	PUD3	PUD2	PUD1	PUD0			
Default	1	1	1	1	1	1	1	1			

6.4.9 Interrupt mask register (45h)

Interrupt mask register is set to logic 1 upon power-on, disabling interrupts during system start-up. Interrupts may be enabled by setting corresponding mask bits to logic 0. If an input changes state and the corresponding bit in the Interrupt mask register is set to 1, the interrupt is masked and the interrupt pin (INT) will not be asserted. If the corresponding bit in the Interrupt mask register is set to 0, the interrupt pin will be asserted.

When an input changes state and the resulting interrupt is masked (interrupt mask bit is 1), setting the input mask register bit to 0 will cause the interrupt pin to be asserted. If the interrupt mask bit of an input that is currently the source of an interrupt is set to 1, the interrupt pin will be de-asserted.

Table 15. Interrupt mask register (address 45h)

Bit	7	6	5	4	3	2	1	0
Symbol	M7	M6	M5	M4	M3	M2	M1	M0
Default	1	1	1	1	1	1	1	1

6.4.10 Interrupt status register (46h)

This read-only register is used to identify the source of an interrupt. When read, a logic 1 indicates that the corresponding input pin was the source of the interrupt. A logic 0 indicates that the input pin is not the source of an interrupt.

When a corresponding bit in the interrupt mask register is set to 1 (masked), the interrupt status bit will return logic 0.

Table 16. Interrupt status register (address 46h)	Table 1	6. Interru	ot status	register ((address	46h)
---	---------	------------	-----------	------------	----------	------

Bit	7	6	5	4	3	2	1	0
Symbol	S7	S6	S5	S4	S3	S2	S1	S0
Default	0	0	0	0	0	0	0	0

PCAL9538A Product data sheet

6.4.11 Output port configuration register (4Fh)

The output port configuration register selects port-wise push-pull or open-drain I/O stage. A logic 0 configures the I/O as push-pull (Q1 and Q2 are active, see Figure 6). A logic 1 configures the I/O as open-drain (Q1 is disabled, Q2 is active). The recommended command sequence is to program this register (4Fh) before the Configuration register (03h) sets the port pins as outputs.

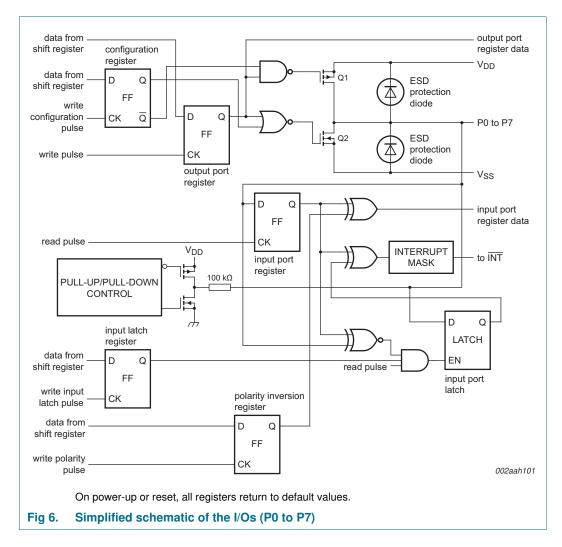

Table 17.	Output p	Julput port configuration register (address 4Fn)									
Bit	7	6	5	4	3	2	1	0			
Symbol		reserved									
Default	0	0	0	0	0	0	0	0			

Table 17. Output port configuration register (address 4Fh)

6.5 I/O port

When an I/O is configured as an input, FETs Q1 and Q2 are off, which creates a high-impedance input. The input voltage may be raised above V_{DD} to a maximum of 5.5 V.

If the I/O is configured as an output, Q1 or Q2 is enabled, depending on the state of the Output port register. In this case, there are low-impedance paths between the I/O pin and either V_{DD} or V_{SS} . The external voltage applied to this I/O pin should not exceed the recommended levels for proper operation.

6.6 Power-on reset

When power (from 0 V) is applied to V_{DD} , an internal power-on reset holds the PCAL9538A in a reset condition until V_{DD} has reached V_{POR} . At that time, the reset condition is released and the PCAL9538A registers and I²C-bus/SMBus state machine initialize to their default states. After that, V_{DD} must be lowered to below V_{POR} and back up to the operating voltage for a power-reset cycle. See <u>Section 8.4 "Power-on reset</u> requirements".

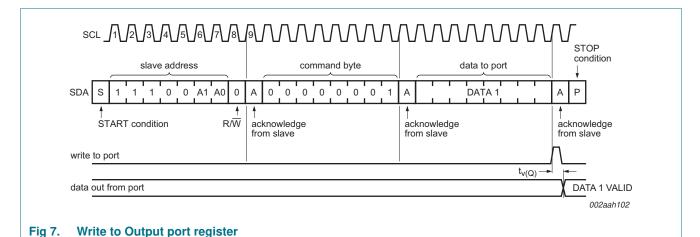
6.7 Reset input (RESET)

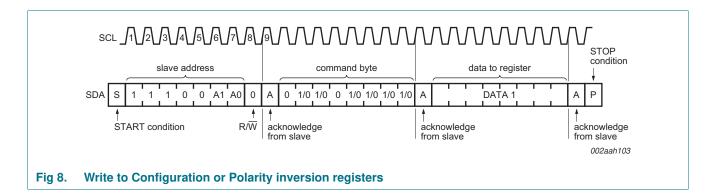
The RESET input can be asserted to initialize the system while keeping the V_{DD} at its operating level. A reset can be accomplished by holding the RESET pin LOW for a minimum of $t_{w(rst)}$. The PCAL9538A registers and I²C-bus/SMBus state machine are changed to their default state once RESET is LOW (0). When RESET is HIGH (1), the I/O levels at the P port can be changed externally or through the master. This input requires a pull-up resistor to V_{DD} if no active connection is used.

6.8 Interrupt output (INT)

An interrupt is generated by any rising or falling edge of the port inputs in the Input mode. After time $t_{v(INT)}$, the signal INT is valid. Resetting the interrupt circuit is achieved when data on the port is changed to the original setting or when data is read from the port that generated the interrupt (see Figure 10). Resetting occurs in the Read mode at the acknowledge (ACK) or not acknowledge (NACK) bit after the rising edge of the SCL signal. Interrupts that occur during the ACK or NACK clock pulse can be lost (or be very short) due to the resetting of the interrupt during this pulse. Each change of the I/Os after resetting is detected and is transmitted as INT.

A pin configured as an output cannot cause an interrupt. Changing an I/O from an output to an input may cause a false interrupt to occur, if the state of the pin does not match the contents of the Input port register.

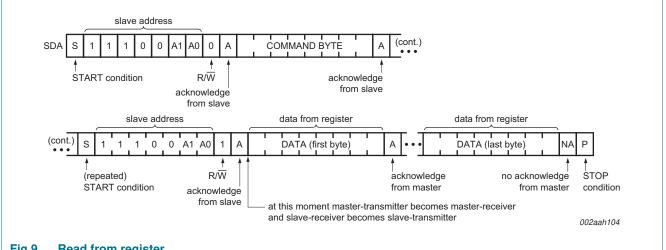

The $\overline{\text{INT}}$ output has an open-drain structure and requires a pull-up resistor to V_{DD}. $\overline{\text{INT}}$ should be connected to the voltage source of the device that requires the interrupt information. When using the input latch feature, the input pin state is latched. The interrupt is reset only when data is read from the port that generated the interrupt. The reset occurs in the Read mode at the acknowledge (ACK) or not acknowledge (NACK) bit after the rising edge of the SCL signal.


7. **Bus transactions**

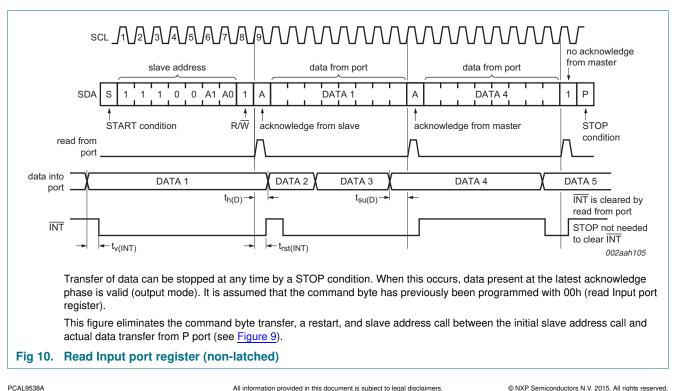
The PCAL9538A is an I²C-bus slave device. Data is exchanged between the master and PCAL9538A through write and read commands using I²C-bus. The two communication lines are a serial data line (SDA) and a serial clock line (SCL). Both lines must be connected to a positive supply via a pull-up resistor when connected to the output stages of a device. Data transfer may be initiated only when the bus is not busy.

7.1 Write commands

Data is transmitted to the PCAL9538A by sending the device address and setting the Least Significant Bit (LSB) to a logic 0 (see Figure 4 for device address). The command byte is sent after the address and determines which register receives the data that follows the command byte. There is no limitation on the number of data bytes sent in one write transmission.


PCAL9538A Product data sheet

7.2 Read commands


To read data from the PCAL9538A, the bus master must first send the PCAL9538A address with the least significant bit set to a logic 0 (see Figure 4 for device address). The command byte is sent after the address and determines which register is to be accessed.

After a restart the device address is sent again, but this time the LSB is set to a logic 1. Data from the register defined by the command byte then is sent by the PCAL9538A (see Figure 9 and Figure 10).

Data is clocked into the register on the rising edge of the ACK clock pulse. There is no limit on the number of data bytes received in one read transmission, but on the final byte received the bus master must not acknowledge the data.

All information provided in this document is subject to legal disclaimers

Low-voltage 8-bit I²C-bus/SMBus low power I/O port

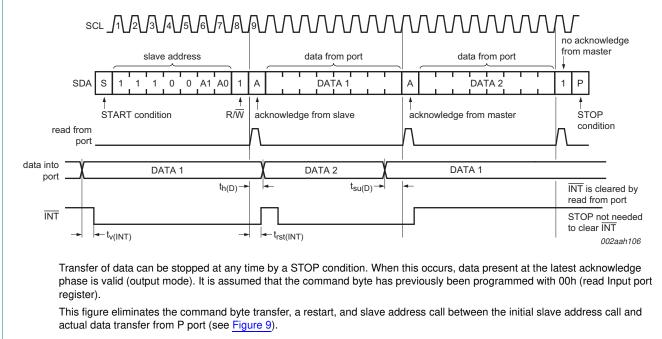
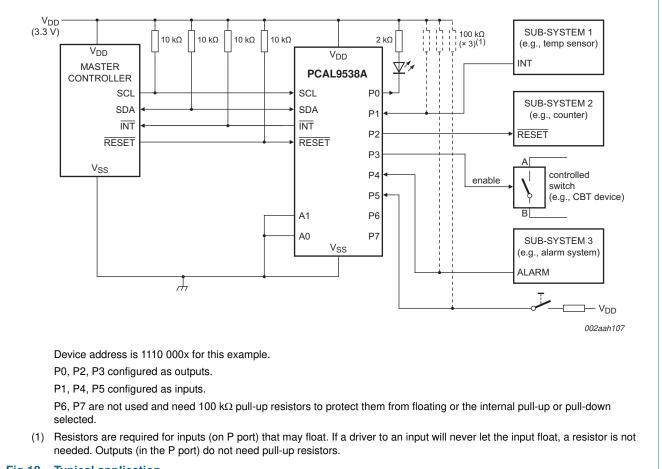
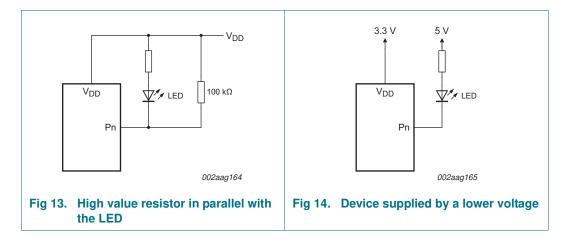



Fig 11. Read Input port register (latch enabled)

Low-voltage 8-bit I²C-bus/SMBus low power I/O port

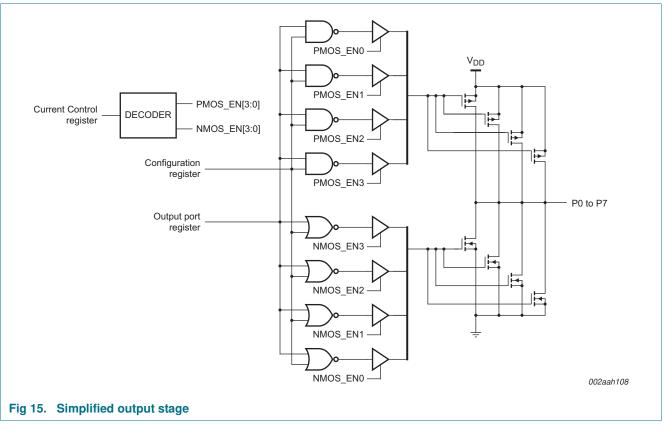
8. Application design-in information


Fig 12. Typical application

8.1 Minimizing I_{DD} when the I/Os are used to control LEDs

When the I/Os are used to control LEDs, they are normally connected to V_{DD} through a resistor as shown in Figure 12. Since the LED acts as a diode, when the LED is off the I/O V_I is about 1.2 V less than V_{DD}. The supply current, I_{DD}, increases as V_I becomes lower than V_{DD}.

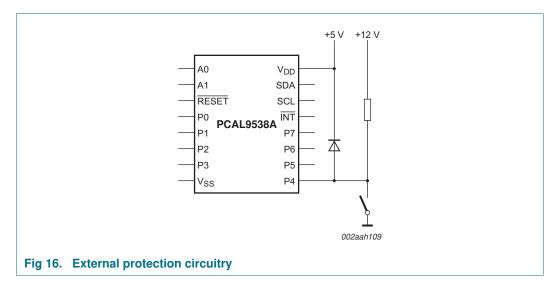
Designs needing to minimize current consumption, such as battery power applications, should consider maintaining the I/O pins greater than or equal to V_{DD} when the LED is off. Figure 13 shows a high value resistor in parallel with the LED. Figure 14 shows V_{DD} less than the LED supply voltage by at least 1.2 V. Both of these methods maintain the I/O V_I at or above V_{DD} and prevents additional supply current consumption when the LED is off.


Low-voltage 8-bit I²C-bus/SMBus low power I/O port

8.2 Output drive strength control

The Output drive strength registers allow the user to control the output drive level of the GPIO. Each GPIO can be configured independently to one of the four possible output current levels. By programming these bits the user is changing the number of transistor pairs or 'fingers' that drive the I/O pad.

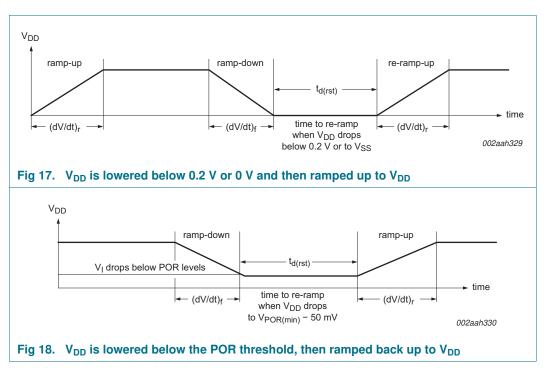
<u>Figure 15</u> shows a simplified output stage. The behavior of the pad is affected by the Configuration register, the output port data, and the current control register. When the Current Control register bits are programmed to 10b, then only two of the fingers are active, reducing the current drive capability by 50 %.



Low-voltage 8-bit I²C-bus/SMBus low power I/O port

Reducing the current drive capability may be desirable to reduce system noise. When the output switches (transitions from H/L), there is a peak current that is a function of the output drive selection. This peak current runs through V_{DD} and V_{SS} package inductance and will create noise (some radiated, but more critically Simultaneous Switching Noise (SSN)). In other words, switching many outputs at the same time will create ground and supply noise. The output drive strength control through the Current Control registers allows the user to mitigate SSN issues without the need of additional external components.

8.3 12 V tolerant I/Os


The PCAL9538A device SCR group reference diode can go up to 10 V before latch back to 8 V. The ESD gate oxide will protect the device, but not if used continually. Therefore, to achieve 12 V tolerant I/Os, the external protection circuitry (diode) must be used as shown in Figure 16.

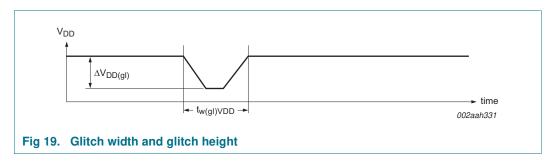
8.4 Power-on reset requirements

In the event of a glitch or data corruption, PCAL9538A can be reset to its default conditions by using the power-on reset feature. Power-on reset requires that the device go through a power cycle to be completely reset. This reset also happens when the device is powered on for the first time in an application.

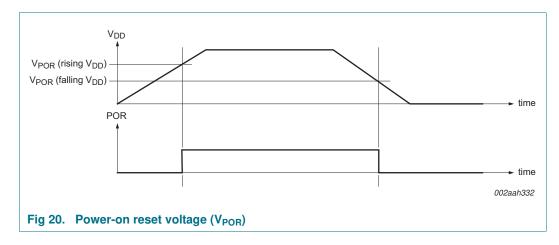
The two types of power-on reset are shown in Figure 17 and Figure 18.

<u>Table 18</u> specifies the performance of the power-on reset feature for PCAL9538A for both types of power-on reset.

Table 18. Recommended supply sequencing and ramp rates


 $T_{amb} = 25 \ ^{\circ}C$ (unless otherwise noted). Not tested; specified by design.

Symbol	Parameter	Condition		Min	Тур	Max	Unit
(dV/dt) _f	fall rate of change of voltage	Figure 17		0.1	-	2000	ms
(dV/dt) _r	rise rate of change of voltage	Figure 17		0.1	-	2000	ms
t _{d(rst)} reset delay time	reset delay time	$\frac{\text{Figure 17}}{\text{V}_{\text{DD}} \text{ drops to V}_{\text{SS}}}$		1	-	-	μS
		$\frac{Figure 18}{V_{DD} \text{ drops to } V_{POR(min)} - 50 \text{ mV}}$		1	-	-	μS
$\Delta V_{DD(gl)}$	glitch supply voltage difference	Figure 19	[1]	-	-	1.0	V
t _{w(gl)VDD}	supply voltage glitch pulse width	Figure 19	[2]	-	-	10	μS
V _{POR(trip)}	power-on reset trip voltage	falling V _{DD}		0.7	-	-	V
		rising V_{DD}		-	-	1.4	V


[1] Level that V_{DD} can glitch down to, but not cause a functional disruption when $t_{w(gl)VDD} < 1 \mu s$.

[2] Glitch width that will not cause a functional disruption when $\Delta V_{DD(ql)} = 0.5 \times V_{DD}$.

Glitches in the power supply can also affect the power-on reset performance of this device. The glitch width $(t_{w(gl)VDD})$ and glitch height $(\Delta V_{DD(gl)})$ are dependent on each other. The bypass capacitance, source impedance, and device impedance are factors that affect power-on reset performance. Figure 19 and Table 18 provide more information on how to measure these specifications.

 V_{POR} is critical to the power-on reset. V_{POR} is the voltage level at which the reset condition is released and all the registers and the I²C-bus/SMBus state machine are initialized to their default states. The value of V_{POR} differs based on the V_{DD} being lowered to or from 0 V. Figure 20 and Table 18 provide more details on this specification.

8.5 Device current consumption with internal pull-up and pull-down resistors

The PCAL9538A integrates programmable pull-up and pull-down resistors to eliminate external components when pins are configured as inputs and pull-up or pull-down resistors are required (for example, nothing is driving the inputs to the power supply rails. Since these pull-up and pull-down resistors are internal to the device itself, they contribute to the current consumption of the device and must be considered in the overall system design.

The pull-up or pull-down function is selected in register 44h, while the resistor is connected by the enable register 43h. The configuration of the resistors is shown in Figure 6.

If the resistor is configured as a pull-up, that is, connected to V_{DD} , a current will flow from the V_{DD} pin through the resistor to ground when the pin is held LOW. This current will appear as additional I_{DD} upsetting any current consumption measurements.

In the same manner, if the resistor is configured as a pull-down and the pin is held HIGH, current will flow from the power supply through the pin to the V_{SS} pin. While this current will not be measured as part of I_{DD}, one must be mindful of the 200 mA limiting value through V_{SS}.

The pull-up and pull-down resistors are simple resistors and the current is linear with voltage. The resistance specification for these devices spans from 50 k Ω with a nominal 100 k Ω value. Any current flow through these resistors is additive by the number of pins held HIGH or LOW and the current can be calculated by Ohm's law. See Figure 24 for a graph of supply current versus the number of pull-up resistors.

9. Limiting values

Table 19. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions		Min	Max	Unit
V _{DD}	supply voltage			-0.5	+6.5	V
VI	input voltage		[1]	-0.5	+6.5	V
Vo	output voltage		[1]	-0.5	+6.5	V
I _{IK}	input clamping current	A0, A1, $\overline{\text{RESET}}$, SCL; V _I < 0 V		-	±20	mA
l _{ок}	output clamping current	INT; V _O < 0 V		-	±20	mA
I _{IOK}	input/output clamping current	P port; $V_O < 0$ V or $V_O > V_{DD}$		-	±20	mA
		SDA; $V_O < 0$ V or $V_O > V_{DD}$		-	±20	mA
l _{OL}	LOW-level output current	continuous; I/O port		-	50	mA
		continuous; SDA, INT		-	25	mA
I _{OH}	HIGH-level output current	continuous; P port		-	25	mA
I _{DD}	supply current			-	160	mA
I _{SS}	ground supply current			-	200	mA
P _{tot}	total power dissipation			-	200	mW
T _{stg}	storage temperature			-65	+150	°C
T _{j(max)}	maximum junction temperature			-	125	°C

[1] The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

10. Recommended operating conditions

Table 20. Operating conditions

Symbol	Parameter	Conditions	Min	Max	Unit
V _{DD}	supply voltage		1.65	5.5	V
V _{IH}	HIGH-level input voltage	SCL, SDA, RESET	$0.7 \times V_{DD}$	5.5	V
		A0, A1, P port	$0.7 \times V_{DD}$	5.5	V
V _{IL}	LOW-level input voltage	SCL, SDA, RESET	-0.5	$0.3\times V_{\text{DD}}$	V
		A0, A1, P port	-0.5	$0.3\times V_{\text{DD}}$	V
I _{OH}	HIGH-level output current	P port	-	10	mA
l _{ol}	LOW-level output current	P port	-	25	mA
T _{amb}	ambient temperature	operating in free air	-40	+85	°C

11. Thermal characteristics

Table 21. Thermal characteristics

Symbol	Parameter	Conditions		Max	Unit
Z _{th(j-a)}	transient thermal impedance from junction to ambient	HVQFN16 package	[1]	53	K/W
		TSSOP16 package	<u>[1]</u>	108	K/W

[1] The package thermal impedance is calculated in accordance with JESD 51-7.

12. Static characteristics

Table 22. Static characteristics

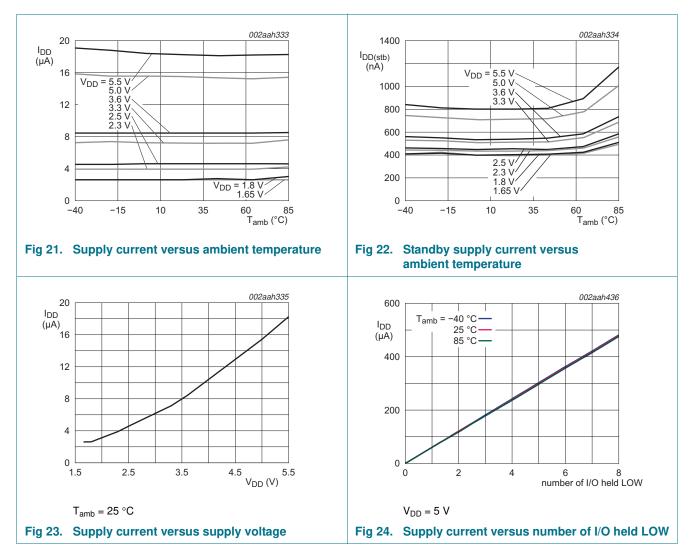
 $T_{amb} = -40 \ ^{\circ}C$ to +85 $\ ^{\circ}C$; $V_{DD} = 1.65 \ V$ to 5.5 V; unless otherwise specified.

Symbol	Parameter	Conditions	Min	Typ <mark>[1]</mark>	Max	Unit
V _{IK}	input clamping voltage	I _I = -18 mA	-1.2	-	-	V
V _{POR}	power-on reset voltage	$V_I = V_{DD} \text{ or } V_{SS}; I_O = 0 \text{ mA}$	-	1.1	1.4	V
V _{OH}	HIGH-level output voltage ^[2]	P port; $I_{OH} = -8$ mA; CCX = 11b			1	
		V _{DD} = 1.65 V	1.2	-	-	V
		V _{DD} = 2.3 V	1.8	-	-	V
		V _{DD} = 3 V	2.6	-	-	V
		V _{DD} = 4.5 V	4.1	-	-	V
		P port; $I_{OH} = -2.5$ mA and CCX = 00b; $I_{OH} = -5$ mA and CCX = 01b; $I_{OH} = -7.5$ mA and CCX = 10b; $I_{OH} = -10$ mA and CCX = 11b				
		V _{DD} = 1.65 V	1.1	-	-	V
		V _{DD} = 2.3 V	1.7	-	-	V
		V _{DD} = 3 V	2.5	-	-	V
		V _{DD} = 4.5 V	4.0	-	-	V
V _{OL}	LOW-level output voltage ^[2]	P port; I _{OL} = 8 mA; CCX = 11b			·	
		V _{DD} = 1.65 V	-	-	0.45	V
		V _{DD} = 2.3 V	-	-	0.25	V
		V _{DD} = 3 V	-	-	0.25	V
		V _{DD} = 4.5 V	-	-	0.2	V
		P port; I_{OL} = 2.5 mA and CCX = 00b; I_{OL} = 5 mA and CCX = 01b; I_{OL} = 7.5 mA and CCX = 10b; I_{OL} = 10 mA and CCX = 11b				
		V _{DD} = 1.65 V	-	-	0.5	V
		V _{DD} = 2.3 V	-	-	0.3	V
		V _{DD} = 3 V	-	-	0.25	V
		V _{DD} = 4.5 V	-	-	0.2	V
l _{ol}	LOW-level output current	$V_{OL} = 0.4 \text{ V}; V_{DD} = 1.65 \text{ V} \text{ to } 5.5 \text{ V}$				
		SDA	3	-	-	mA
		INT	3	15 <mark>3</mark>	-	mA
I	input current	V _{DD} = 1.65 V to 5.5 V				
		SCL, SDA, $\overline{\text{RESET}}$; $V_1 = V_{DD}$ or V_{SS}	-	-	0.1	μA
		A0, A1; $V_I = V_{DD}$ or V_{SS}	-	-	±1	μA
IIH	HIGH-level input current	P port; $V_I = V_{DD}$; $V_{DD} = 1.65$ V to 5.5 V	-	-	1	μA
IIL	LOW-level input current	P port; $V_{I} = V_{SS}$; $V_{DD} = 1.65$ V to 5.5 V	-	-	1	μA

Low-voltage 8-bit I²C-bus/SMBus low power I/O port

Table 22. Static characteristics ...continued

 $T_{amb} = -40$ °C to +85 °C; $V_{DD} = 1.65$ V to 5.5 V; unless otherwise specified.


Symbol	Parameter	Conditions	Min	Typ[1]	Max	Unit
IDD	supply current	SDA, P port, A0, A1, $\overline{\text{RESET}}$; V _I on SDA and $\overline{\text{RESET}} = V_{DD}$ or V _{SS} ; V _I on P port and A0, A1 = V _{DD} ; I _O = 0 mA; I/O = inputs; f _{SCL} = 400 kHz				
		V _{DD} = 3.6 V to 5.5 V	-	10	25	μA
		V _{DD} = 2.3 V to 3.6 V	-	6.5	15	μA
		V _{DD} = 1.65 V to 2.3 V	-	4	9	μA
		SCL, SDA, P port, A0, A1, \overline{RESET} ; V _I on SCL, SDA and $\overline{RESET} = V_{DD}$ or V _{SS} ; V _I on P port and A0, A1 = V _{DD} ; I _O = 0 mA; I/O = inputs; f _{SCL} = 0 kHz				
		V _{DD} = 3.6 V to 5.5 V	-	1.5	7	μA
		V _{DD} = 2.3 V to 3.6 V	-	1	3.2	μA
		V _{DD} = 1.65 V to 2.3 V	-	0.5	1.7	μA
ΔI _{DD}	additional quiescent supply current	SCL, SDA, $\overline{\text{RESET}}$; one input at V _{DD} – 0.6 V, other inputs at V _{DD} or V _{SS} ; V _{DD} = 1.65 V to 5.5 V	-	-	25	μA
		P port, A0, A1; one input at $V_{DD} - 0.6 V$, other inputs at V_{DD} or V_{SS} ; $V_{DD} = 1.65 V$ to 5.5 V	-	-	80	μA
Ci	input capacitance	$V_I = V_{DD}$ or V_{SS} ; $V_{DD} = 1.65$ V to 5.5 V	-	6	7	pF
C _{io}	input/output capacitance	$V_{I/O}$ = V_{DD} or $V_{SS};$ V_{DD} = 1.65 V to 5.5 V	-	7	8	pF
		$V_{I/O} = V_{DD}$ or V_{SS} ; $V_{DD} = 1.65$ V to 5.5 V	-	7.5	8.5	pF
R _{pu(int)}	internal pull-up resistance	input/output	50	100	150	kΩ
R _{pd(int)}	internal pull-down resistance	input/output	50	100	150	kΩ

[1] For I_{DD}, all typical values are at nominal supply voltage (1.8 V, 2.5 V, 3.3 V, 3.6 V or 5 V V_{DD}) and $T_{amb} = 25$ °C. Except for I_{DD}, the typical values are at V_{DD} = 3.3 V and $T_{amb} = 25$ °C.

[2] The total current sourced by all I/Os must be limited to 160 mA, and total current sunk by all I/Os must be limited to 200 mA.

[3] Typical value for T_{amb} = 25 °C. V_{OL} = 0.4 V and V_{DD} = 3.3 V. Typical value for V_{DD} < 2.5 V, V_{OL} = 0.6 V.

Low-voltage 8-bit I²C-bus/SMBus low power I/O port

12.1 Typical characteristics

PCAL9538A **Product data sheet**