imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Product data sheet

1. General description

The PCF2113x is a low-power CMOS LCD controller and driver, designed to drive a dot matrix LCD display of 2 lines of 12 characters or 1 line of 24 characters with 5×8 dot format. All necessary functions for the display are provided in a single chip, including on-chip generation of LCD bias voltages, resulting in a minimum of external components and lower system current consumption. The PCF2113x interfaces to most microcontrollers via a 4-bit or 8-bit bus or via the 2-wire l²C-bus. The chip contains a character generator and displays alphanumeric and kana (Japanese) characters.

The letter 'x' in PCF2113x characterizes the built-in character set. Various character sets can be manufactured on request.

2. Features

- Single-chip LCD controller/driver
- 2-line display of up to 12 characters + 120 icons, or 1-line display of up to 24 characters + 120 icons
- 5 × 7 character format plus cursor; 5 × 8 for kana (Japanese) and user-defined symbols
- Icon mode for e.g. additional segment display section: reduced current consumption while displaying icons only
- Icon blink function
- Very low current consumption (20 μA to 200 μA):
 - Icon mode: < 25 μA</p>
 - Power-down mode: < 2 μA
- On-chip:
 - Configurable 4, 3 or 2 voltage multiplier, generating LCD supply voltage V_{LCD}, independent of V_{DD}, programmable by instruction (external supply also possible)
 - Temperature compensation of on-chip generated V_{LCD}: -0.16 %/K to -0.24 %/K (programmable by instruction)
 - Generation of intermediate LCD bias voltages
 - Oscillator requires no external components (external clock also possible)
- Display data RAM: 80 characters
- Character generator ROM: 240 characters of 5 × 8 dots
- Character generator RAM: 16 characters of 5 × 8 dots; 3 characters used to drive 120 icons, 6 characters used if icon blink feature is used in application
- 4-bit or 8-bit parallel bus and 2-wire I²C-bus interface
- 18 row and 60 column outputs

- Multiplex rates (MUX) 1:18 (for normal operation), 1:9 (for single-line operation) and 1:2 (for lcon-only mode)
- Uses common 11 code instruction set (extended)
- Logic supply voltage range V_{DD1} V_{SS1} = 1.8 V to 5.5 V (chip may be driven with two battery cells)
- V_{LCD} generator supply voltage range V_{DD2} V_{SS2} = 2.2 V to 4.0 V
- **Display supply voltage range** $V_{LCD} V_{SS2} = 2.2 \text{ V to } 6.5 \text{ V}$
- Direct mode to save current consumption for Icon mode and MUX 1:9 (depending on V_{DD2} and LCD liquid properties)
- CMOS compatible
- Remark: Icon mode is a way to save current. When only icons are displayed (i.e. only the lower two rows are active), a much lower operating voltage V_{LCD} can be used and the switching frequency of the LCD outputs is reduced. In most applications it is possible to use V_{DD} as V_{LCD}.

3. Applications

- Telecom equipment
- Point-of-sale terminals
- Portable instruments

4. Ordering information

Table 1. Ordering information

Type number	Package							
	Name	Description	Version					
PCF2113AU/10/F4	-	chip on flexible film carrier	-					
PCF2113DU/F4	-	chip in tray	-					
PCF2113DH/4	LQFP100	plastic low profile quad flat package; 100 leads; body $14 \times 14 \times 1.4$ mm	SOT407-1					
PCF2113DU/2/F4	-	chip with bumps in tray	-					
PCF2113EU/2/F4	-	chip with bumps in tray	-					
PCF2113WU/2/F4	-	chip with bumps in tray	-					

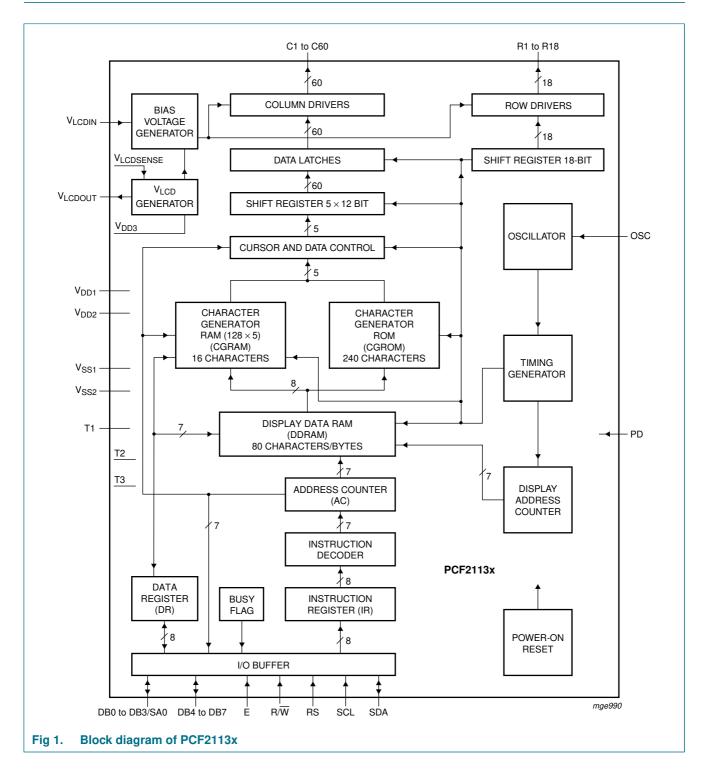
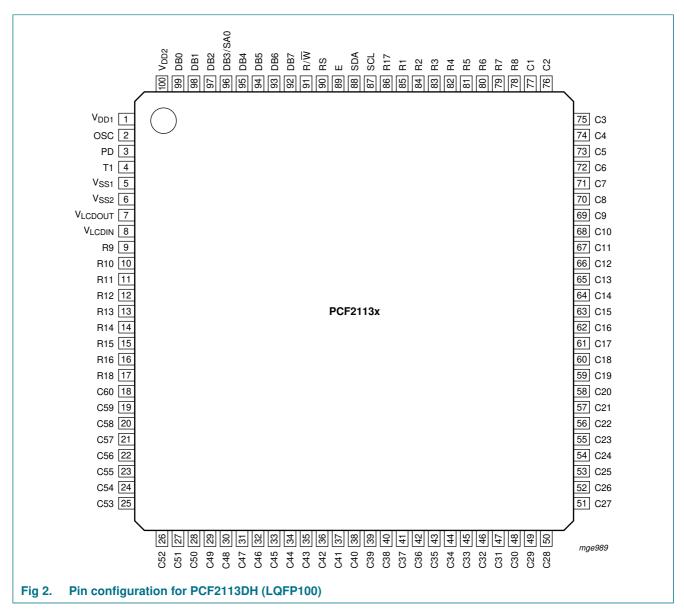
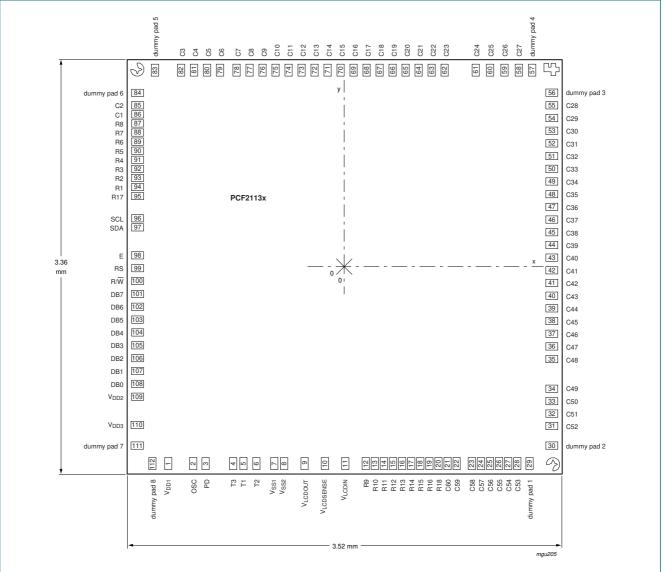

5. Marking

Table 2. Marking codes	
Type number	Marking code
PCF2113DH/4	PCF2113DH

PCF2113x


LCD controllers/drivers

6. Block diagram


7. Pinning information

7.1 Pinning

PCF2113x

LCD controllers/drivers

Fig 3. Bonding pad locations for PCF2113xU (bottom view)

	· ·	• / 1			
Pin	Pad	Symbol	Pin	Pad	Symbol
1	1	V _{DD1}	-	84	dummy pad
2	2	OSC	76	85	C2
3	3	PD	77	86	C1
-	4	Т3	78 to 85	87 to 94	R8 to R1
4	5	T1	86	95	R17
-	6	T2	87	96	SCL
5	7	V _{SS1}	88	97	SDA
6	8	V _{SS2}	89	98	E
7	9	V _{LCDOUT}	90	99	RS
-	10	V _{LCDSENSE}	91	100	R/W

PCF2113x

LCD controllers/drivers

Pin	Pad	Symbol	Pin	Pad	Symbol
8	11	V _{LCDIN}	92	101	DB7
9 to 16	12 to 19	R9 to R16	93	102	DB6
17	20	R18	94	103	DB5
18 to 25	21 to 28	C60 to C53	95	104	DB4
-	29	dummy pad	96	105	DB3/SA0
-	30	dummy pad	97	106	DB2
26 to 50	31 to 55	C52 to C28	98	107	DB1
-	56	dummy pad	99	108	DB0
-	57	dummy pad	100	109	V _{DD2}
51 to 75	58 to 82	C27 to C3	-	110	V _{DD3}
-	83	dummy pad	-	-	-

Table 4. **Bonding pad dimensions**

Pad	Size		Unit
Туре	galvanic pure Au		
Bump dimensions	$(50\pm6) imes(90\pm6) imes$: (17.5 ± 5)	μm
Height difference in one die	< 2		μm
Convex deformation	< 5		μm
Pad size (aluminium)	62 × 100		μm
Passivation opening	36 imes 76		μm
Pad pitch	-635.0		μm
Wafer thickness (excluding bumps)	380 ± 25		μm
	Fab 1 [1]	Fab 2 ^[2]	
Die size X	3.52	3.47	mm
Die size Y	3.36	3.31	mm

[1] Fab 1 identification starts with nnnnn, where n represents a number between 0 and 9 (8 inch wafer).

Fab 2 identification starts with AXnnnn, where X represents a letter or a number and n represents a number [2] between 0 and 9 (6 inch wafer).

Table 5. Pin and bonding pad description

All x/y coordinates represent the position of the center of each pad with respect to the center (x/y = 0) of the chip (see Figure 3).

Symbol	Pin	Туре	Pad	Χ (μm)	Υ (μm)	Description
V _{DD1}	1	Ρ	1	-1345	-1 550	supply voltage 1 for all except V _{LCD} generator
OSC	2	I	2	-1155	-1550	oscillator and external clock input [1]
PD	3	I	3	-1 055	-1 550	power-down select input; for normal operation PD is LOW
Т3	-	I	4	-845	-1 550	test pad; open circuit and not user accessible
T1	4	I	5	-765	-1 550	test pin; must be connected to V_{SS1}
T2	-	I	6	-665	-1550	test pad; must be connected to $V_{\mbox{\scriptsize SS1}}$
V _{SS1}	5	Р	7	-525	-1550	ground 1 for all except V_{LCD} generator

PCF2113_FAM_4

LCD controllers/drivers

Table 5. Pin and bonding pad description ...continued

All x/y coordinates represent the position of the center of each pad with respect to the center (x/y = 0) of the chip (see Figure 3).

<u>- iguro o</u>).							
Symbol	Pin	Туре	Pad	Χ (μm)	Υ (μm)	Description	
V _{SS2}	6	Р	8	-455	-1550	ground 2 for V _{LCD} generator	
V _{LCDOUT}	7	0	9	-295	-1550	V_{LCD} output if V_{LCD} is generated internally [2]	
V _{LCDSENSE}	-	I	10	-145	-1550	input (V _{LCD}) for voltage multiplier regulation [2]	
V _{LCDIN}	8	I	11	15	-1550	input for generation of LCD bias levels [2]	
R9	9	0	12	175	-1550	LCD row driver output	
R10	10	0	13	245	-1550	LCD row driver output	
R11	11	0	14	315	-1550	LCD row driver output	
R12	12	0	15	385	-1550	LCD row driver output	
R13	13	0	16	455	-1550	LCD row driver output	
R14	14	0	17	525	-1550	LCD row driver output	
R15	15	0	18	595	-1550	LCD row driver output	
R16	16	0	19	665	-1550	LCD row driver output	
R18	17	0	20	735	-1550	LCD row driver output	
C60	18	0	21	805	-1550	LCD column driver output	
C59	19	0	22	875	-1550	LCD column driver output	
C58	20	0	23	995	-1550	LCD column driver output	
C57	21	0	24	1065	-1550	LCD column driver output	
C56	22	0	25	1135	-1550	LCD column driver output	
C55	23	0	26	1205	-1550	LCD column driver output	
C54	24	0	27	1275	-1550	LCD column driver output	
C53	25	0	28	1345	-1550	LCD column driver output	
dummy pad 1	-	-	29	1435	-1550	-	
dummy pad 2	-	-	30	1630	-1395	-	
C52	26	0	31	1630	-1255	LCD column driver output	
C51	27	0	32	1630	-1155	LCD column driver output	
C50	28	0	33	1630	-1055	LCD column driver output	
C49	29	0	34	1630	-955	LCD column driver output	
C48	30	0	35	1630	-735	LCD column driver output	
C47	31	0	36	1630	-635	LCD column driver output	
C46	32	0	37	1630	-535	LCD column driver output	
C45	33	0	38	1630	-435	LCD column driver output	
C44	34	0	39	1630	-335	LCD column driver output	
C43	35	0	40	1630	-235	LCD column driver output	
C42	36	0	41	1630	-135	LCD column driver output	
C41	37	0	42	1630	-35	LCD column driver output	
C40	38	0	43	1630	65	LCD column driver output	
C39	39	0	44	1630	165	LCD column driver output	
C38	40	0	45	1630	265	LCD column driver output	
C37	41	0	46	1630	365	LCD column driver output	

PCF2113_FAM_4

PCF2113x

LCD controllers/drivers

Table 5. Pin and bonding pad description ...continued

All x/y coordinates represent the position of the center of each pad with respect to the center (x/y = 0) of the chip (see Figure 3).

Symbol	Pin	Туре	Pad	Χ (μm)	Υ (μm)	Description
C36	42	0	47	1630	465	LCD column driver output
C35	43	0	48	1630	565	LCD column driver output
C34	44	0	49	1630	665	LCD column driver output
C33	45	0	50	1630	765	LCD column driver output
C32	46	0	51	1630	865	LCD column driver output
C31	47	0	52	1630	965	LCD column driver output
C30	48	0	53	1630	1065	LCD column driver output
C29	49	0	54	1630	1165	LCD column driver output
C28	50	0	55	1630	1265	LCD column driver output
dummy pad 3	-	-	56	1630	1335	-
dummy pad 4	-	-	57	1435	1550	-
C27	51	0	58	1335	1550	LCD column driver output
C26	52	0	59	1225	1550	LCD column driver output
C25	53	0	60	1115	1550	LCD column driver output
C24	54	0	61	1005	1550	LCD column driver output
C23	55	0	62	765	1550	LCD column driver output
C22	56	0	63	665	1550	LCD column driver output
C21	57	0	64	565	1550	LCD column driver output
C20	58	0	65	465	1550	LCD column driver output
C19	59	0	66	365	1550	LCD column driver output
C18	60	0	67	265	1550	LCD column driver output
C17	61	0	68	165	1550	LCD column driver output
C16	62	0	69	65	1550	LCD column driver output
C15	63	0	70	-35	1550	LCD column driver output
C14	64	0	71	-135	1550	LCD column driver output
C13	65	0	72	-235	1550	LCD column driver output
C12	66	0	73	-335	1550	LCD column driver output
C11	67	0	74	-435	1550	LCD column driver output
C10	68	0	75	-535	1550	LCD column driver output
C9	69	0	76	-635	1550	LCD column driver output
C8	70	0	77	-735	1550	LCD column driver output
C7	71	0	78	-835	1550	LCD column driver output
C6	72	0	79	-965	1550	LCD column driver output
C5	73	0	80	-1065	1550	LCD column driver output
C4	74	0	81	-1165	1550	LCD column driver output
C3	75	0	82	-1265	1550	LCD column driver output
dummy pad 5	-	-	83	-1465	1550	
dummy pad 6	-	-	84	-1630	1355	-
C2	76	0	85	-1630	1255	LCD column driver output
		-				· · · · · · · · · · · · · · · · · · ·

LCD controllers/drivers

Table 5. Pin and bonding pad description ...continued

All x/y coordinates represent the position of the center of each pad with respect to the center (x/y = 0) of the chip (see Figure 3).

Symbol	Pin	Туре	Pad	Χ (μm)	Υ (μm)	Description	
C1	77	0	86	-1630	1185	LCD column driver output	
R8	78	0	87	-1630	1115	LCD row driver output	
R7	79	0	88	-1630	1045	LCD row driver output	
R6	80	0	89	-1630	975	LCD row driver output	
R5	81	0	90	-1630	905	LCD row driver output	
R4	82	0	91	-1630	835	LCD row driver output	
R3	83	0	92	-1630	765	LCD row driver output	
R2	84	0	93	-1630	695	LCD row driver output	
R1	85	0	94	-1630	625	LCD row driver output	
R17	86	0	95	-1630	555	LCD row driver output	
SCL	87	I	96	-1630	375	I ² C-bus serial clock input	[4]
SDA	88	I/O	97	-1630	305	I ² C-bus serial data input/output	[4]
E	89	I	98	-1630	85	data bus clock input	[4]
RS	90	I	99	-1630	–15	register select input	
R/W	91	I	100	-1630	-115	read or write input	
DB7	92	I/O	101	-1630	-215	8-bit bidirectional bus bit 7	[5]
DB6	93	I/O	102	-1630	-315	8-bit bidirectional bus bit 6	
DB5	94	I/O	103	-1630	-415	8-bit bidirectional bus bit 5	
DB4	95	I/O	104	-1630	-515	8-bit bidirectional bus bit 4	
DB3/SA0	96	I/O	105	-1630	-615	8-bit bidirectional bus bit 3 or I ² C-bus address input	[4][5]
DB2	97	I/O	106	-1630	-715	8-bit bidirectional bus bit 2	
DB1	98	I/O	107	-1630	-815	8-bit bidirectional bus bit 1	
DB0	99	I/O	108	-1630	-915	8-bit bidirectional bus bit 0	
V _{DD2}	100	Р	109	-1630	-1015	supply voltage 2 for V_{LCD} generator	[6]
V _{DD3}	-	Р	110	-1630	-1235	supply voltage 3 for V_{LCD} generator	[3][6]
dummy pad 7	-	-	111	-1630	-1395	-	
dummy pad 8	-	-	112	-1465	-1550	-	

[1] When the on-chip oscillator is used this pad must be connected to V_{DD1}.

[2] When V_{LCD} is generated internally, pins V_{LCDIN} , V_{LCDOUT} and $V_{LCDSENSE}$ must be connected together. When an external V_{LCD} is supplied, this should be done via V_{LCDIN} . In this case only pins V_{LCDOUT} and $V_{LCDSENSE}$ must be connected together.

[3] In the LQFP100 version this signal is connected internally and is not accessible.

[4] When the I²C-bus is used, the parallel interface pin E must be LOW. In the I²C-bus read mode pins DB7 to DB0 must be connected to V_{DD1} or left open-circuit.

When the parallel bus is used, the pins SCL and SDA must be connected to pin V_{SS1} or pin V_{DD1} ; they must not be left open-circuit. When the 4-bit interface is used without reading out from the PCF2113x (bit R/W is set permanently to logic 0), the unused ports DB0 to DB3 can either be connected to V_{SS1} or V_{DD1} instead of leaving them open-circuit.

[5] DB7 may be used as the busy flag, signalling that internal operations are not yet completed. In 4-bit operations the four higher order lines DB7 to DB4 are used; DB3 to DB0 must be left open-circuit except for I²C-bus operations (see Table note 4).

[6] V_{DD2} and V_{DD3} must always be equal.

8. Functional description

8.1 LCD supply voltage generator

The LCD supply voltage (V_{LCD}) may be generated on-chip. The V_{LCD} generator is controlled by two internal 6-bit registers: VA and VB. <u>Section 10.10.1</u> shows how to program these registers. The nominal LCD operating voltage at room temperature is given by the relationship:

 $V_{oper(nom)} = (integer value of register \times 0.08 V) + 1.82 V$

With a programmed value from 1 to 63, $V_{oper(nom)} = 1.90$ V to 6.86 V at $T_{amb} = 27$ °C.

Values producing more than 6.5 V at operating temperature are not allowed. Operation above this voltage may damage the device. When programming the operating voltage the V_{LCD} tolerance and temperature coefficient must be taken into account.

Values below 2.2 V are below the specified operating range of the chip and therefore are not allowed.

Value 0 for VA and VB switches off the generator (i.e. VA = 0 in Character mode, VB = 0 in Icon mode).

Usually register VA is programmed with the voltage for Character mode and register VB with the voltage for Icon mode.

When V_{LCD} is generated on-chip, the V_{LCD} pins must be decoupled to V_{SS} with a suitable capacitor.

The generated V_{LCD} is independent of V_{DD} and is temperature compensated. When the V_{LCD} generator and the Direct mode are switched off, an external voltage may be supplied at pins V_{LCDIN} and V_{LCDOUT} (which are connected together). V_{LCDIN} and V_{LCDOUT} may be higher or lower than V_{DD2}.

During Direct mode (program DM bit) the internal V_{LCD} generator is turned off and the V_{LCDOUT} output voltage is directly connected to V_{DD2} . This reduces the current consumption during Icon mode and MUX 1:9 (depending on V_{DD2} and LCD liquid properties).

The V_{LCD} generator ensures that, as long as V_{DD} is in the valid range (2.2 V to 4 V), the required peak operating voltage of 6.5 V can be generated at any time.

8.2 LCD bias voltage generator

The intermediate bias voltages for the LCD display are also generated on-chip. This removes the need for an external resistive bias chain and significantly reduces the system current consumption. The optimum value of V_{LCD} depends on the multiplex rate, the LCD threshold voltage (V_{th}) and the number of bias levels. Using a 5-level bias scheme for 1:18 maximum rate allows V_{LCD} < 5 V for most LCD liquids. The intermediate bias levels for the different multiplex rates are shown in <u>Table 6</u>. These bias levels are automatically set to the given values when switching to the corresponding multiplex rate.

Multiplex	Number	Bias voltages ^[1]							
rate	of levels	V ₁	V ₂	V ₃	V4	V ₅	V ₆		
1:18	5	V _{LCD}	3/4	1/2	1/2	1/4	V _{SS}		
1:9	5	V_{LCD}	3⁄4	1/2	1/2	1⁄4	V_{SS}		
1:2	4	V_{LCD}	² /3	²/3	1/3	1/3	V_{SS}		

Table 6. Bias levels as a function of multiplex rate

[1] The values in the table are given relative to $V_{LCD} - V_{SS}$, e.g. $\frac{3}{4}$ means { $\frac{3}{4} \times (V_{LCD} - V_{SS})$ } + V_{SS} .

8.3 Oscillator

The on-chip oscillator provides the clock signal for the display system. No external components are required and the OSC pin must be connected to V_{DD1} .

8.4 External clock

If an external clock is to be used, this input is at the OSC pin. The resulting display frame

frequency is given by: $f_{fr(LCD)} = \frac{f_{osc}}{3072}$

Only in the Power-down mode is the clock allowed to be stopped (pin OSC connected to V_{SS}), otherwise the LCD is frozen in a DC state.

8.5 Power-on reset

The on-chip power-on reset block initializes the chip after power-on or power failure. This is a synchronous reset and requires 3 oscillator cycles to be executed.

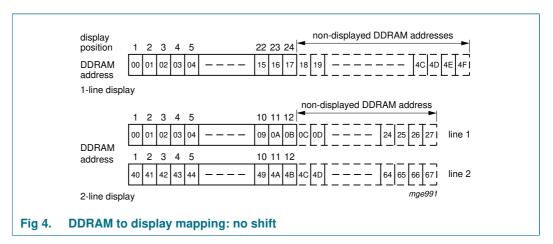
8.6 Registers

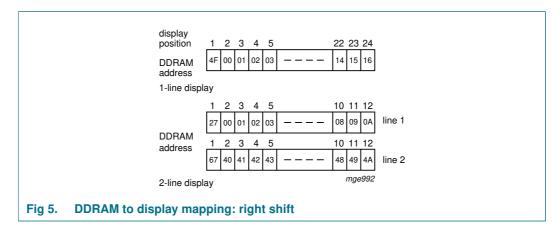
The PCF2113x has two 8-bit registers: an Instruction Register (IR) and a Data Register (DR). The Register Select (RS) signal determines which register will be accessed. The instruction register stores instruction codes such as 'display clear', 'cursor shift', and address information for the Display Data RAM (DDRAM) and Character Generator RAM (CGRAM). The instruction register can be written to but not read from by the system controller.

The data register temporarily stores data to be read from the DDRAM and CGRAM. When reading, data from the DDRAM or CGRAM corresponding to the address in the instruction register is written to the data register prior to being read by the 'read data' instruction.

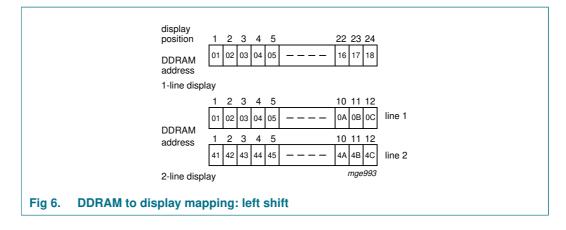
8.7 Busy flag

The busy flag indicates the internal status of the PCF2113x. A logic 1 indicates that the chip is busy and further instructions will not be accepted. The busy flag is output to pin DB7 when bit RS = 0 and bit R/W = 1. Instructions must only be written after checking that the busy flag is at logic 0 or waiting for the required number of cycles.


8.8 Address counter


The Address Counter (AC) assigns addresses to the DDRAM and CGRAM for reading and writing and is set by the commands 'set DDRAM address' and 'set CGRAM address'. After a read/write operation the address counter is automatically incremented or decremented by 1. The address counter contents are output to the bus (DB6 to DB0) when bit RS = 0 and bit $R/\overline{W} = 1$.

8.9 Display data RAM


The Display Data RAM (DDRAM) stores up to 80 characters of display data represented by 8-bit character codes. RAM locations which are not used for storing display data can be used as general purpose RAM. The basic RAM to display addressing scheme is shown in Figure 4. With no display shift the characters represented by the codes in the first 24 RAM locations starting at address 00h in line 1 are displayed. Figure 5 and Figure 6 show the display mapping for right and left shift respectively.

When data is written to or read from the DDRAM, wrap-around occurs from the end of one line to the start of the next line. When the display is shifted each line wraps around within itself, independently of the others. Thus all lines are shifted and wrapped around together. The address ranges and wrap-around operations for the various modes are shown in Table 7.

LCD controllers/drivers

Table 7. Address space and wrap-around operation

Mode	1 × 24	2 × 12	1 × 12
Address space	00h to 4Fh	00h to 27h; 40h to 67h	00h to 27h
Read/write wrap-around (moves to next line)	4Fh to 00h	27h to 40h; 67h to 00h	27h to 00h
Display shift wrap-around (stays within line)	4Fh to 00h	27h to 00h; 67h to 40h	27h to 00h

8.10 Character generator ROM

The Character Generator ROM (CGROM) generates 240 character patterns in a 5×8 dot format from 8-bit character codes. Figure 7, Figure 8, Figure 9 and Figure 10 show the character sets that are currently implemented.

LCD controllers/drivers	LCD	control	lers/	drivers
-------------------------	-----	---------	-------	---------

ower I bits	upper 4 bits	0000	0001	0010	0011	0100		0110	0111		1001	1010	1011	1100	1101	1110	1111
xxxx	0000	1						•	j				•••••	7			
xxxx	0001	2												-			
xxxx	0010	3		::								I		Ņ			
xxxx	0011	4	1				:;	: <u>.</u> .	<u>.</u> .						.	.	
xxxx	0100	5		:	÷				÷			•.		.	.		
xxxx	0101	6										::					
xxxx	0110	7					ļ.	÷	<u>ن</u> .:			÷.		•••• •••••			
xxxx	0111	8		:						<u>.</u> .							
xxxx	1000	9					X	!	33			.:i					
xxxx	1001	10					÷		·!			·:::	·	·		1	·
xxxx	1010	11	<u>.</u>	:4:	:: ::					÷							
xxxx	1011	12	:	!	:: ::						<u>ن</u> .	::					
xxxx	1100	13		:							÷	† ::				:	
xxxx	1101	14												·`. :			
xxxx	1110	15	₩.	::			····	:"I	÷						•••		
xxxx	1111	16			· · ·				÷				••••	÷			

Fig 7. Character set 'A' in CGROM

lower 4 bits	upper 4 bits	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
xxxx	0000	1						••		····					:: :		
xxxx	0001	2							•						:	•	
xxxx	0010	3							:····								
xxxx	0011	4					:	:	•••••						:		
xxxx	0100	5	ļ												4:	4	
xxxx	0101	6										**		.	: :		
xxxx	0110	7	; •					÷	••								
xxxx	0111	8	** ** ***	•	:					÷					:::	:	
xxxx	1000	9															
xxxx	1001	10					Ŧ		•			÷.			: : :		
xxxx	1010	11		:	:: ::							•••					
xxxx	1011	12	:	··••·	::	K.				1		•					-
xxxx	1100	13	:	:						Ï	÷	·				\$	
xxxx	1101	14										÷		::::	•••••		
xxxx	1110	15						!"``I	••••••			₽₿					
xxxx	1111	16							•			• • •					

mgd688

The first column (0000) is the CGRAM, the other 15 columns (0001 to 1111) are the CGROM.

Fig 8. Character set 'D' in CGROM

ower 4 bits	upper 4 bits	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
xxxx	0000	1													:	÷	
xxxx	0001	2															
xxxx	0010	3					÷		÷								
xxxx	0011	4			•	·									:	:	·
xxxx	0100	5				Ξ.							4				· •
xxxx	0101	6		•		:	:	.									
xxxx	0110	7				::: : :	T										۱ <u>.</u> ,
xxxx	0111	8				::: :	·									•	
xxxx	1000	9				T			÷.								2
xxxx	1001	10			i.					Ļ							·i
xxxx	1010	11									••••• ••••	: :	:: ::				
xxxx	1011	12				₩.							::				
xxxx	1100	13				•••			•****			:					
xxxx	1101	14	.:			.			•••			•••••					
xxxx	1110	15		ŀ		÷			••			:				:"i	
хххх	1111	16		•		H											

The first column (0000) is the CGRAM, the other 15 columns (0001 to 1111) are the CGROM.

Fig 9. Character set 'E' in CGROM

LCD controllers/drivers

ower 4 bits	upper 4 bits	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
xxxx	0000	1						:-			•						
хххх	0001	2	•	1					•								
хххх	0010	3		::													}
хххх	0011	4					:	:	·								÷
xxxx	0100	5		·:::					÷.					ľ,			
xxxx	0101	6	····							••••••••••••••••••••••••••••••••••••••				••••• ••••	•		
xxxx	0110	7							<u>ن</u> .:			•.		··			
хххх	0111	8		3				•			••	•••					
хххх	1000	9	· · ··	É					:::					·			
хххх	1001	10	•				·		•					•••			
хххх	1010	11		:4:	:: ::									i,			
хххх	1011	12	÷.		:	K.					<u>ب</u>			÷			
xxxx	1100	13		:			•••									 :	
хххх	1101	14		•••••								:::					
хххх	1110	15							•••					•			
xxxx	1111	16	-#·		·				:::								

The first column (0000) is the CGRAM, the other 15 columns (0001 to 1111) are the CGROM.

Fig 10. Character set 'W' in CGROM

8.11 Character generator RAM

Up to 16 user-defined characters may be stored in the Character Generator RAM (CGRAM). Some CGRAM characters (see Figure 18 and Figure 19) are also used to drive icons (6 if icons blink and both icon rows are used in the application; 3 if no blink but both icon rows are used in the application; 0 if no icons are driven by the icon rows). The CGROM and CGRAM use a common address space, of which the first column is reserved for the CGRAM (see Figure 7, Figure 8, Figure 9 and Figure 10).

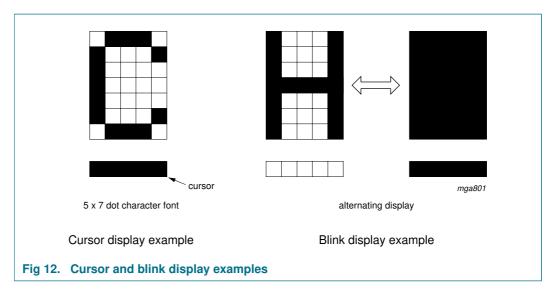
		(D)	DRA		11a)						a	dre				1		anAi	M da				(CGI		uald	a)
,	6	5	4	3	2	1	0		6	5	4	3	2	1	0		4 3	8 2	2 1	0		4	3	2	1	0
	nigh ord					ower				high orde				ower order		higher			lowe	r r►						
-	bit	5				bits				bits	5			bits		bits			bits							
)	0	0	0	0	0	0	0		0	0	0	0	0 0 0 1 1 1	0 1 1 0 1 1	0 1 0 1 0 1 0					0 0 0	character pattern example 1	1 1 1 1 1 1 0	1 0 1 0 0 0	1 0 1 1 0 0	1 0 1 0 1 0	0 1 0 0 1 0
)	0	0	0	0	0	0	1		0	0	0	1	0 0 0 1 1 1	0 0 1 1 0 0 1	0 1 0 1 0 1 0				0 0 0	0 0 0	character pattern example 2	1 0 1 0 1 0 0 0	0 1 1 0 1 0 0 0	0 0 1 1 1 1 1 0	0 1 0 1 0 0 0	1 0 1 0 1 0 0 0
)	0	0	0	0	0	1	0		0	0	1	0	0 0	0 0	0 1						-				тg	e995
_	_												_	_							-					
)))	0 0 0 0	0 0 0 0	0 0 0 0	1 1 1 1	1 1 1 1	1 1 1 1	1 1 1		1 1 1 1	1 1 1 1	1 1 1 1	1 1 1 1	1 1 1 1	0 0 1 1	0 1 0 1											
	(CGI berf	RAN orm	l ad ed b	dres by Ic	ss b gic	its 0 OR	to 2 with	2 de 1 the	sigr e cu	nate rsor	the . Da	cha Ita i	arac n the	ter e 8t	osition appe	sition. ears ir	the	e cur	sor p	is the cursor po osition. In this figure.	sition	anc	l dis	play	' is

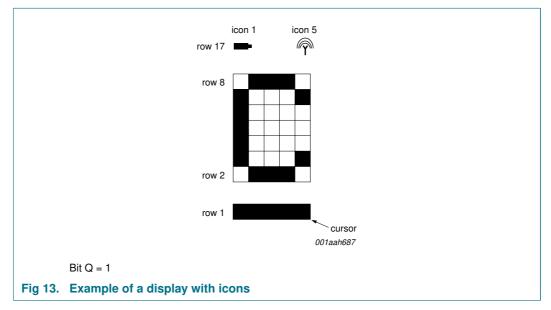
Figure 11 shows the addressing principle for the CGRAM.

CGRAM character patterns are selected when character code bits 4 to 7 are all logic 0. CGRAM data = logic 1 corresponds to selection for display.

Only bits 0 to 5 of the CGRAM address are set by the 'set CGRAM address' command. Bit 6 can be set using the 'set DDRAM address' command in the valid address range or by using the auto-increment feature during CGRAM write. All bits 0 to 6 can be read using the 'read busy flag' and 'address counter' command.

Fig 11. Relationship between CGRAM addresses, data and display patterns


8.12 Cursor control circuit


The cursor control circuit generates the cursor underline and/or cursor blink as shown in Figure 12 at the DDRAM address contained in the address counter.

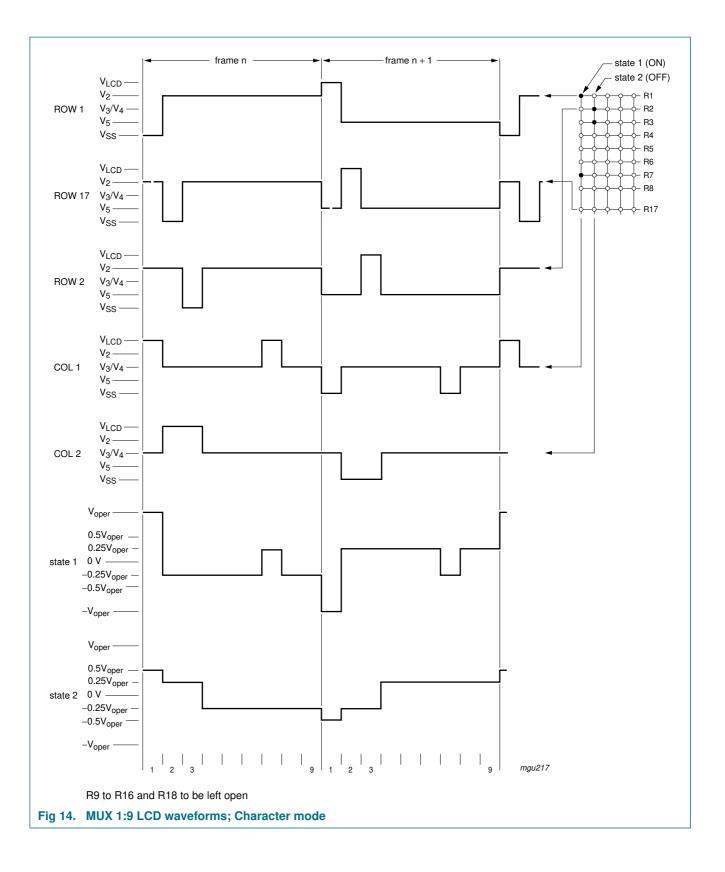
When the address counter contains the CGRAM address the cursor will be inhibited.

PCF2113x

LCD controllers/drivers

8.13 Timing generator

The timing generator produces the various signals required to drive the internal circuitry. Internal chip operation is not disturbed by operations on the data buses.

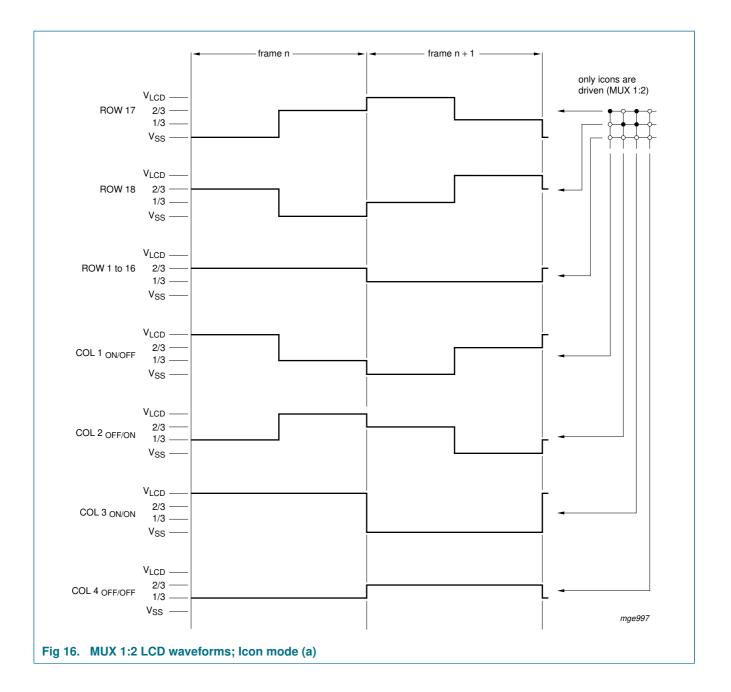

8.14 LCD row and column drivers

The PCF2113x contains 18 row and 60 column drivers, which connect the appropriate LCD bias voltages in sequence to the display in accordance with the data to be displayed. R17 and R18 drive the icon rows.

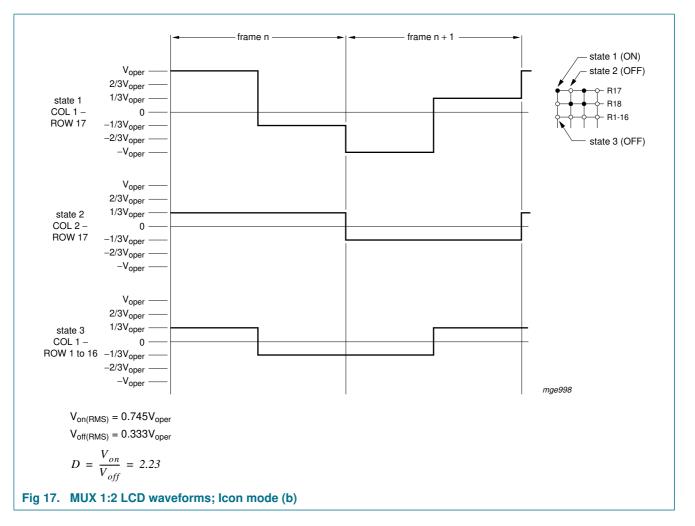
The bias voltages and the timing are selected automatically when the number of lines in the display is selected. Figure 14, Figure 15, Figure 16 and Figure 17 show typical waveforms. Unused outputs should be left unconnected.

PCF2113x

LCD controllers/drivers


PCF2113x

LCD controllers/drivers


PCF2113x

LCD controllers/drivers

LCD controllers/drivers

8.15 Power-down mode

The chip can be put into Power-down mode by applying an external HIGH level to the PD pin. In Power-down mode all static currents are switched off (no internal oscillator, no bias level generation and all LCD outputs are internally connected to V_{SS}).

During power-down, information in the RAMs and the chip state are preserved. Instruction execution during power-down is possible when pin OSC is externally clocked.

8.16 Reset function

The PCF2113x automatically initializes (resets) when power is turned on. The chip executes a reset sequence, including a 'clear display', requiring 165 oscillator cycles. After the reset the chip has the state shown in Table 8.

LCD controllers/drivers

Step	Function	Control bit state	Conditions
1	clear display		
2	entry mode set	I/D = 1	+1 (increment)
		S = 0	no shift
3	display control	D = 0	display off
		C = 0	cursor off
		B = 0	cursor character blink off
4	function set	DL = 1	8-bit interface
		M = 0	1-line display
		H = 0	normal instruction set
		SL = 0	MUX 1:18 mode
5	default address pointer to DDRAM	the Busy Flag (BF) indicates the busy state (BF = 1) until initialization ends	the busy state lasts 2 ms; the chip may also be initialized by software see <u>Table 26</u> (8-bit interface) and <u>Table 27</u> (4-bit interface).
6	icon control	IM = 0; IB = 0; DM = 0	icons, icon blink and Direct mode disabled
7	display or screen configuration	L = 0; P = 0; Q = 0	default configurations
8	V _{LCD} temperature coefficient	TC1 = 0; TC2 = 0	default temperature coefficient
9	set V _{LCD}	VA = 0; VB = 0	V _{LCD} generator off
10	I ² C-bus interface reset		
11	set HVgen stages	S1 = 1; S0 = 0	V _{LCD} generator voltage multiplier set at factor 4

Table 8. State after reset

9. Instructions

Only two PCF2113x registers, the Instruction Register (IR) and the Data Register (DR), can be directly controlled by the microcontroller. Before internal operation, control information is stored temporarily in these registers to allow interfacing to various types of microcontrollers which operate at different speeds or to allow interfacing to peripheral control ICs.

The instruction set for I^2C -bus commands is given in <u>Table 9</u>. <u>Section 11.2.1</u> discusses how these control and command bytes are embedded in the I^2C -bus protocol.

Table 9. Instruction set for I ² C-bus commands	Table 9.	Instruction	set for	I ² C-bus	commands
--	----------	-------------	---------	----------------------	----------

l ² C-bus commands	Control byte		Command byte	l ² C-bus commands
<u>[1]</u>	Co ^[2] RS 0	0 0 0 0 0	DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0	<u>[1]</u>

[1] R/\overline{W} is set together with the slave address.

[2] For explanation, see Table 11.

The PCF2113x operation is controlled by the instructions shown in <u>Table 10</u> together with their execution time. Details are explained in subsequent sections.

PCF2113x

There are 4 types of instructions:

- Designate PCF2113x functions such as display format, data length
- Set internal RAM addresses
- Perform data transfer with internal RAM
- Other functions

In normal use, data transfer instructions are used most frequently. However, automatic incrementing by 1 (or decrementing by 1) of internal RAM addresses after each data write lessens the microcontroller program load. The display shift in particular can be performed concurrently with display data write, enabling the designer to develop systems in minimum time with maximum programming efficiency.

During internal operation, no instructions other than the 'read busy flag' and 'read address' instructions will be executed. Because the busy flag is set to logic 1 while an instruction is being executed, check to ensure it is logic 0 before sending the next instruction or wait for the maximum instruction execution time, as given in <u>Table 10</u>. An instruction sent while the busy flag is logic 1 will not be executed.

Instruction	Cont	rol an	d com	mand	bits						Description ^[1]	Required
	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	-	clock cycles
H = 0 or 1 (basi	c and	extend	ded fu	nction	s)					•		
NOP	0	0	0	0	0	0	0	0	0	0	no operation	3
Function set	0	0	0	0	1	DL	0	Μ	SL	Η	sets interface Data Length (DL), number of display lines (M), single line/MUX 1:9 (SL) and extended instruction set control (H)	3
Read busy flag and address counter	0	1	BF	AC							reads the Busy Flag (BF), indicating internal operating is being performed, and the Address Counter (AC)	0
Read data	1	1	read	data							reads data from CGRAM or DDRAM	3
Write data	1	0	write	data							writes data to CGRAM or DDRAM	3
H = 0 (basic fur	nctions	s)										
Clear display	0	0	0	0	0	0	0	0	0	1	clears entire display and sets DDRAM address 0 in address counter	165
Return home	0	0	0	0	0	0	0	0	1	0	sets DDRAM address 0 in address counter; also returns shifted display to original position; DDRAM contents remain unchanged	3

Table 10. Instruction set with parallel bus commands