imall

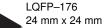
Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China


Freescale Semiconductor

Data Sheet: Technical Data

Document Number: MCF52277 Rev. 8, 09/2009

RoHS

MCF52277

n

MAPBGA-196 15mm x 15mm

MCF5227*x* ColdFire[®] Microprocessor Data Sheet

Features

- Version 2 ColdFire[®] Core with EMAC
- Up to 159 Dhrystone 2.1 MIPS @ 166.67 MHz
- 8 Kbytes configurable cache (instruction only, data only, or split instruction/data)
- 128 Kbytes internal SRAM
- Support for booting from SPI-compatible flash, EEPROM, and FRAM devices
- Crossbar switch technology (XBS) for concurrent access to peripherals or RAM from multiple bus masters
- 16 channel DMA controller
- 16- or 32-bit SDR/DDR controller
- USB 2.0 On-the-Go controller
- Liquid crystal display controller with support up to 800 × 600 pixels
- ADC and touchscreen controller
- FlexCAN module
- 4 32-bit timers with DMA support
- DMA supported serial peripheral interface (DSPI)
- 3 UARTs
- I²C bus interface
- Synchronous serial interface (SSI)
- Plus-width modulator (PWM)
- Real-time clock (RTC)
- Two programmable interrupt controllers (PIT)

Freescale reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.

© Freescale Semiconductor, Inc., 2009. All rights reserved.

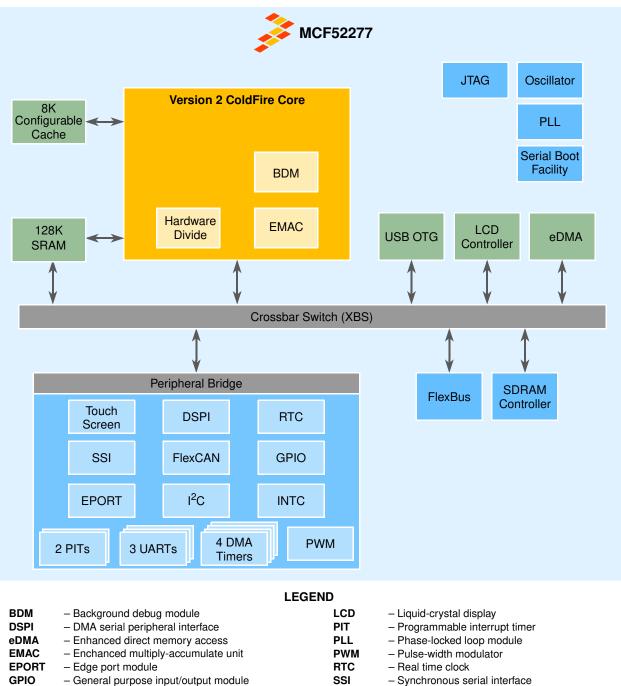
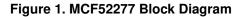

NP

Table of Contents


1 2 3	Orde	5227x Family Comparison
	3.1	PLL Power Filtering
	3.2	USB Power Filtering
	3.3	ADC Power Filtering
	3.4	Supply Voltage Sequencing
		3.4.1 Power Up Sequence
		3.4.2 Power Down Sequence
	3.5	Power Consumption Specifications7
4	Pin A	Assignments and Reset States
	4.1	Signal Multiplexing
	4.2	Pinout—176 LQFP14
	4.3	Pinout—196 MAPBGA15
5	Elect	rical Characteristics
	5.1	Maximum Ratings16
	5.2	Thermal Characteristics
	5.3	ESD Protection
	5.4	DC Electrical Specifications

	5.5 5.6	Oscillator and PLL Electrical Characteristics
	5.0 5.7	
	5.7	External Interface Timing Specifications
		5.7.2 SDRAM Bus
	5.8	General Purpose I/O Timing
	5.9	Reset and Configuration Override Timing 29
	5.10	LCD Controller Timing Specifications
	5.11	USB On-The-Go Specifications
	5.12	SSI Timing Specifications
	5.13	I ² C Timing Specifications
	5.14	DMA Timer Timing Specifications
	5.15	DSPI Timing Specifications
	5.16	SBF Timing Specifications
	5.17	JTAG and Boundary Scan Timing Specifications 40
	5.18	
6	Packa	age Information
7		uct Documentation
8		sion History
-		

- **I²C** Inter-intergrated circuit
- **INTC** Interrupt controller
- JTAG Joint Test Action Group interface

UART

MCF5227x ColdFire[®] Microprocessor Data Sheet, Rev. 8

- Universal asynchronous receiver/transmitter

USB OTG - Universal Serial Bus On-the-Go controller

MCF5227x Family Comparison

1 MCF5227x Family Comparison

The following table compares the various device derivatives available within the MCF5227*x* family.

Table 1. MCF5227x Family Configurations

Module	MCF52274	MCF52277
ColdFire Version 2 Core with EMAC (Enhanced Multiply-Accumulate Unit)	•	•
Core (System) Clock	up to 120 MHz	up to 166.67 MHz
Peripheral and External Bus Clock (Core clock ÷ 2)	up to 60 MHz	up to 83.33 MHz
Performance (Dhrystone/2.1 MIPS)	up to 114	up to 159
Static RAM (SRAM)	128 k	Cbytes
Configurable Cache	8 Kt	oytes
ASP Touchscreen Controller	•	•
LCD Controller	12-bit color	18-bit color
USB 2.0 On-the-Go	•	•
FlexBus External Interface	•	•
SDR/DDR SDRAM Controller	•	•
FlexCAN 2.0B communication module	•	•
Real Time Clock	•	•
Watchdog Timer	•	•
16-channel Direct Memory Access (DMA)	•	•
Interrupt Controllers (INTC)	1	1
Synchronous Serial Interface (SSI)	•	•
l ² C	•	•
DSPI	•	•
UARTs	3	3
32-bit DMA Timers	4	4
Periodic Interrupt Timers (PIT)	2	2
PWM Module	•	•
Edge Port Module (EPORT)	•	•
General Purpose I/O Module (GPIO)	•	•
JTAG - IEEE [®] 1149.1 Test Access Port	•	•
Package	176 LQFP	196 MAPBGA

2 Ordering Information

Table 2. Orderable Part Numbers

Freescale Part Number	Description		Speed	Temperature	
MCF52274CLU120	MCF52274 RISC Microprocessor	176 LQFP	120 MHz	-40° to $+85^{\circ}$ C	
MCF52277CVM160	MCF52277 RISC Microprocessor	196 MAPBGA	166.67 MHz	-40° to $+85^{\circ}$ C	

3 Hardware Design Considerations

3.1 PLL Power Filtering

To further enhance noise isolation, an external filter is strongly recommended for PLL analog V_{DD} pins. The filter shown in Figure 2 should be connected between the board V_{DD} and the PLLV_{DD} pins. The resistor and capacitors should be placed as close to the dedicated PLLV_{DD} pin as possible.

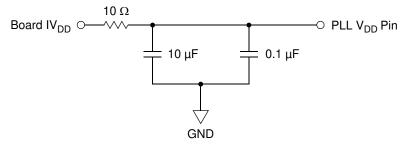


Figure 2. System PLL V_{DD} Power Filter

3.2 USB Power Filtering

To minimize noise, external filters are required for each of the USB power pins. The filter shown in Figure 3 should be connected between the board EV_{DD} and the USBV_{DD} pin. The resistor and capacitors should be placed as close to the dedicated USBV_{DD} pin as possible.

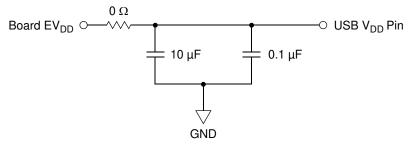


Figure 3. USB V_{DD} Power Filter

NOTE

In addition to the above filter circuitry, a 0.01 F capacitor is also recommended in parallel with those shown.

Hardware Design Considerations

3.3 ADC Power Filtering

To minimize noise, an external filters is required for the $ADCV_{DD}$ power pin. The filter shown in Figure 4 should be connected between the board EV_{DD} and the $ADCV_{DD}$ pin. The resistor and capacitors should be placed as close to the dedicated $ADCV_{DD}$ pin as possible.

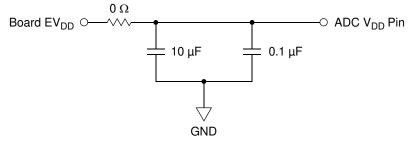


Figure 4. ADC V_{DD} Power Filter

3.4 Supply Voltage Sequencing

The relationship between SDV_{DD} and EV_{DD} is non-critical during power-up and power-down sequences. Both SDV_{DD} (2.5V or 3.3V) and EV_{DD} are specified relative to IV_{DD}.

3.4.1 Power Up Sequence

If EV_{DD}/SDV_{DD} are powered up with IV_{DD} at 0 V, then the sense circuits in the I/O pads will cause all pad output drivers connected to the EV_{DD}/SDV_{DD} to be in a high impedance state. There is no limit on how long after EV_{DD}/SDV_{DD} powers up before IV_{DD} must powered up. IV_{DD} should not lead the EV_{DD} , SDV_{DD} or $PLLV_{DD}$ by more than 0.4 V during power ramp-up, or there will be high current in the internal ESD protection diodes. The rise times on the power supplies should be slower than 500 us to avoid turning on the internal ESD protection clamp diodes.

3.4.2 Power Down Sequence

If $IV_{DD}/PLLV_{DD}$ are powered down first, then sense circuits in the I/O pads will cause all output drivers to be in a high impedance state. There is no limit on how long after IV_{DD} and $PLLV_{DD}$ power down before EV_{DD} or SDV_{DD} must power down. IV_{DD} should not lag EV_{DD} , SDV_{DD} , or $PLLV_{DD}$ going low by more than 0.4 V during power down or there will be undesired high current in the ESD protection diodes. There are no requirements for the fall times of the power supplies.

The recommended power down sequence is as follows:

- 1. Drop IV_{DD} /PLLV_{DD} to 0 V.
- 2. Drop EV_{DD}/SDV_{DD} supplies.

3.5 Power Consumption Specifications

All application power consumption data is lab data measured on an M52277EVB running the Freescale Linux BSP.

Core Freq.		Idle (LCD image)	ldle (audio image)	Button Demo	Slideshow Demo	MP3 Playback	USB FS File Copy	Units
	IV _{DD}	61.4	59.2	84.7	96.5	89.2	89.5	
100 1411	EV _{DD}	28.87	25.73	35.3	34.6	33.46	29.86	mA
160 MHz	SDV _{DD}	18.8	18.57	21.8	23.9	22.66	22.2	
	Total Power	221.211	207.135	282.78	301.95	285.006	272.748	mW

Table 3. MCF52277 Application Power Consumption¹

¹ All voltage rails at nominal values: $IV_{DD} = 1.5 V$, $EV_{DD} = 3.3 V$, and $SDV_{DD} = 1.8 V$.

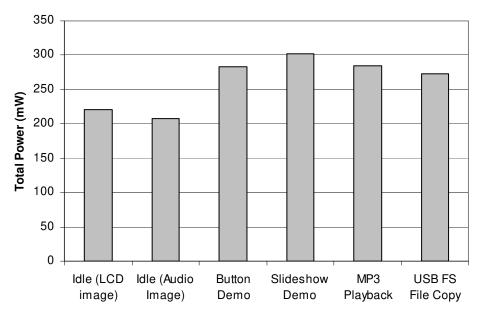


Figure 5. Power Consumption in Various Applications

All current consumption data is lab data measured on a single device using an evaluation board. Table 4 shows the typical power consumption in low-power modes. These current measurements are taken after executing a STOP instruction.

Table 4. Current Consumption in Low-Power Modes^{1,2}

		System Frequency						
Mode	Voltage Supply	80MHz	64MHz	48MHz	32MHz	4MHz (LIMP mode)		
RUN	IV _{DD} (mA)	75.1	62.7	49.2	36.6	3.5		
non	Power (mW)	112.65	94.05	73.80	54.90	5.25		
WAIT	IV _{DD} (mA)	61.9	52.8	42.0	31.7	2.9		
	Power (mW)	92.85	79.20	63.00	47.55	4.35		

MCF5227x ColdFire[®] Microprocessor Data Sheet, Rev. 8

Hardware Design Considerations

		System Frequency							
Mode	Voltage Supply	80MHz	64MHz	48MHz	32MHz	4MHz (LIMP mode)			
DOZE	IV _{DD} (mA)	57.0	48.8	38.9	29.7	2.7			
DOZE	Power (mW)	85.50	73.20	58.35	44.55	4.05			
STOP 0	IV _{DD} (mA)	16.1	15.1	13.4	12.5	1.3			
310F U	Power (mW)	24.15	22.65	20.10	18.75	1.95			
STOP 1	IV _{DD} (mA)	15.9	14.9	13.2	12.4	1.3			
310F 1	Power (mW)	23.85	22.35	19.80	18.60	1.95			
STOP 2	IV _{DD} (mA)	1.8	1.8	1.8	1.8	1.3			
STOP 2	Power (mW)	2.70	2.70	2.70	2.70	1.95			
STOP 3	IV _{DD} (mA)	0.5	0.5	0.5	0.5	0.5			
STOP 3	Power (mW)	0.75	0.75	0.75	0.75	0.75			

 Table 4. Current Consumption in Low-Power Modes^{1,2} (continued)

¹ All values are measured on an M52277EVB with nominal core voltage(IV_{DD} = 1.5 V). Tests performed at room temperature. All peripheral clocks on prior to entering low-power mode

² Refer to the Power Management chapter in the *MCF52277 Reference Manual* for more information on low-power modes.

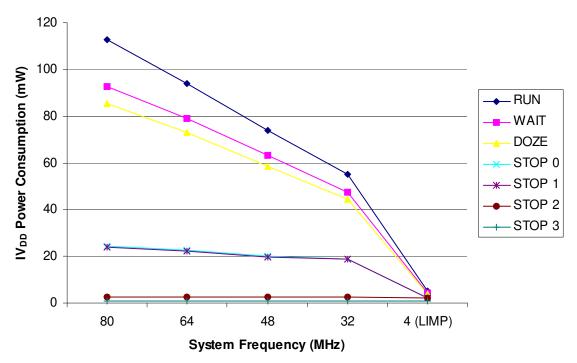


Figure 6. IV_{DD} Power Consumption in Low-Power Modes

4.1 Signal Multiplexing

The following table lists all the MCF5227*x* pins grouped by function. The direction column is the direction for the primary function of the pin only. Refer to Section 4, "Pin Assignments and Reset States," for package diagrams. For a more detailed discussion of the MCF5227*x* signals, consult the *MCF52277 Reference Manual* (MCF52277RM).

NOTE

In this table and throughout this document a single signal within a group is designated without square brackets (i.e., FB_A23), while designations for multiple signals within a group use brackets (i.e., FB_A[23:21]) and is meant to include all signals within the two bracketed numbers when these numbers are separated by a colon.

NOTE

The primary functionality of a pin is not necessarily its default functionality. Most pins that are muxed with GPIO will default to their GPIO functionality. See Table 5 for a list of the exceptions.

Table 5. Special-Case Default Signal Functionality

Pin	Default Signal
FB_BE/BWE[3:0]	FB_BE/BWE[3:0]
FB_CS[3:0]	FB_CS[3:0]
FB_OE	FB_OE
FB_TA	FB_TA
FB_R/W	FB_R/W
FB_TS	FB_TS

Signal Name	GPIO	Alternate 1	Alternate 2	Pull-up (U) ¹ Pull-down (D)	Direction ²	Voltage Domain	MCF52274 176 LQFP	MCF52277 196 MAPBGA	
	Reset								
RESET	_	_	_	U	Ι	EVDD	103	J11	
RSTOUT	—	—	—	—	0	EVDD	102	K11	
			Clock						
EXTAL		_	_		Ι	EVDD	106	F14	
XTAL	—	—	—	U ³	0	EVDD	105	G14	
	Mode Selection								
BOOTMOD[1:0]	_	_	—	—	Ι	EVDD	110, 109	G10, H10	

Signal Name	GPIO	Alternate 1	Alternate 2	Pull-up (U) ¹ Pull-down (D)	Direction ²	Voltage Domain	MCF52274 176 LQFP	MCF52277 196 MAPBGA			
	FlexBus										
FB_A[23:22]		FB_CS[5:4]	—	—	0	SDVDD	143, 142	C11, D11			
FB_A[21:16]	_	—	—	-	0	SDVDD	141–139, 137–135	A12, B12, C12, B13, A13, A14			
FB_A[15:14]	_	SD_BA[1:0]	—	_	0	SDVDD	131, 130	B14, C13			
FB_A[13:11]	_	SD_A[13:11]	_	—	0	SDVDD	129–127	C14, D12, D13			
FB_A10	—	—	—		0	SDVDD	126	D14			
FB_A[9:0]		SD_A[9:0]	_		0	SDVDD	125–116	E11–E14, F11–F13, G11, G12, H11			
FB_D[31:16]	_	SD_D[31:16]	_		I/O	SDVDD	30–37, 49–56	J4, K1–K4, L1–L3, M3, N3, P3,M4, N4, P4, L5, M5			
FB_D[15:0]	_	FB_D[31:16]	_		I/O	SDVDD	19–26, 60–67	G1–G4, H1–H4, M6, N6, P6, L7, M7, N7, P7, L8			
FB_CLK	_	—	—		0	SDVDD	42	P1			
FB_BE/BWE[3:0]	PBE[3:0]	SD_DQM[3:0]	—	_	0	SDVDD	29, 57, 27, 59	J3, N5, J1, L6			
FB_CS[3:2]	PCS[3:2]	—	—	—	0	SDVDD	—	B11, A11			
FB_CS1	PCS1	SD_CS1	—	—	0	SDVDD	144	D10			
FB_CS0	PCS0	—	—	-	0	SDVDD	145	C10			
FB_OE	PFBCTL3	—	—	—	0	SDVDD	69	N8			
FB_TA	PFBCTL2	—	—	U	Ι	SDVDD	115	H12			
FB_R/W	PFBCTL1		—	—	0	SDVDD	68	M8			
FB_TS	PFBCTL0	DACK0	—	—	0	SDVDD	15	F4			
		SD	RAM Controller								
SD_A10	_	—	—	—	0	SDVDD	46	L4			
SD_CAS	_	—	_	-	0	SDVDD	47	N2			
SD_CKE	_	—	_		0	SDVDD	17	F2			
SD_CLK	_	—	—	—	0	SDVDD	40	M1			
SD_CLK	_	—	—	—	0	SDVDD	41	N1			
SD_CS0	_	—	—	—	0	SDVDD	18	F1			
SD_DQS[3:2]	—	_	—	-	I/O	SDVDD	28, 58	J2, P5			
SD_RAS	—	—	—	—	0	SDVDD	48	P2			

Signal Name	GPIO	Alternate 1	Alternate 2	Pull-up (U) ¹ Pull-down (D)	Direction ²	Voltage Domain	MCF52274 176 LQFP	MCF52277 196 MAPBGA
SD_SDR_DQS	—	_		—	0	SDVDD	38	M2
SD_WE	—	_	_	—	0	SDVDD	16	F3
	•	Extern	al Interrupts Port ⁴					
IRQ7	PIRQ7	_		—	I	EVDD	162	D7
IRQ4	PIRQ4	DREQ0	DSPI_PCS4	5	I	EVDD	161	C7
IRQ1	PIRQ1	USB_CLKIN	SSI_CLKIN	—	I	EVDD	160	B7
		LC	CD Controller ⁶					
LCD_D[17:16] ⁶	PLCDDH[1:0]	LCD_D[11:10]	_	_	0	EVDD	9, 8	E3, E4
LCD_D[15:14] ⁶	PLCDDM[7:6]	LCD_D[9:8]		—	0	EVDD	7, 6	D1, D2
LCD_D13	PLCDDM5	CANTX	_	—	0	EVDD	_	C1
LCD_D12	PLCDDM4	CANRX	_	—	0	EVDD	_	C2
LCD_D[11:8] ⁶	PLCDDM[3:0]	LCD_D[7:4]	—	—	0	EVDD	5–2	D3, C3, D4, B1
LCD_D7	PLCDDL7	PWM7	—	—	0	EVDD	_	B2
LCD_D6	PLCDDL6	PWM5		—	0	EVDD	_	A1
LCD_D[5:2] ⁶	PLCDDL[5:2]	LCD_D[3:0]	_	—	0	EVDD	175–172	A2, A3, B3, A4
LCD_D1	PLCDDL1	PWM3	_	—	0	EVDD	_	B4
LCD_D0	PLCDDL0	PWM1		—	0	EVDD	_	C4
LCD_ACD/ LCD_OE	PLCDCTL3	LCD_SPL_SPR	_	—	0	EVDD	169	B5
LCD_FLM/ LCD_VSYNC	PLCDCTL2		_	—	0	EVDD	10	E2
LCD_LP/ LCD_HSYNC	PLCDCTL1			—	0	EVDD	11	E1
LCD_LSCLK	PLCDCTL0	—	_	—	0	EVDD	170	A5
	1	U	SB On-the-Go					1
USB_DM	—	_	_	—	0	USB VDD	149	A9
USB_DP	_	_		—	0	USB VDD	150	A10
		Re	al Time Clock	•				
RTC_EXTAL	—	—		_	I	EVDD	100	J14
RTC_XTAL	—	_	—	—	0	EVDD	99	K14

Table 6. MCF5227x Signal Information and Muxing (continued)

Signal Name	GPIO	Alternate 1	Alternate 2	Pull-up (U) ¹ Pull-down (D)	Direction ²	Voltage Domain	MCF52274 176 LQFP	MCF52277 196 MAPBGA			
Touchscreen Controller											
ADC_IN[7:0]	_	_	_	_	I	VDD_ ADC	82–85, 87–90	P12, N12, P13, N13, P14, N14, M13, M14			
ADC_REF		_	—	—	I	VDD_ ADC	86	M12			
			l ² C								
I2C_SCL	PI2C1	CANTX	U2TXD	U	I/O	EVDD	168	C5			
I2C_SDA	PI2C0	CANRX	U2RXD	U	I/O	EVDD	167	D5			
			DSPI ⁷		•						
DSPI_PCS0/SS	PDSPI3	U2RTS	—	U	I/O	EVDD	152	B9			
DSPI_SIN	PDSPI2	U2RXD	SBF_DI	8	I	EVDD	155	D8			
DSPI_SOUT	PDSPI1	U2TXD	SBF_D0	—	0	EVDD	154	D9			
DSPI_SCK	PDSPI0	U2CTS	SBF_CK	—	I/O	EVDD	153	C9			
			UARTs								
U1CTS	PUART7	SSI_BCLK	LCD_CLS	—	I	EVDD	156	C8			
U1RTS	PUART6	SSI_FS	LCD_PS	—	0	EVDD	157	B8			
U1TXD	PUART5	SSI_TXD	—	—	0	EVDD	159	A7			
U1RXD	PUART4	SSI_RXD	—	—	I	EVDD	158	A8			
UOCTS	PUART3	DT1OUT	USB_VBUS_EN	_	I	EVDD	97	K12			
UORTS	PUART2	DT1IN	USB_VBUS_OC	—	0	EVDD	98	J12			
U0TXD	PUART1	CANTX	—	_	0	EVDD	95	L12			
U0RXD	PUART0	CANRX	—	—	Ι	EVDD	96	K13			
			DMA Timers								
DT3IN	PTIMER3	DT3OUT	SSI_MCLK	_	I	EVDD	163	D6			
DT2IN/SBF_CS ⁷	PTIMER2	DT2OUT	DSPI_PCS2		Ι	EVDD	164	C6			
DT1IN	PTIMER1	DT1OUT	LCD_CONTRAST	—	I	EVDD	165	B6			
DT0IN	PTIMER0	DT0OUT	LCD_REV	—	Ι	EVDD	166	A6			
			BDM/JTAG ⁹	_	_	_					
PST[3:0]	—	_	—	—	0	EVDD	—	L9, M9, N9, P9			
DDATA[3:0]	_	_	—	—	0	EVDD	—	L10, M10, N10, P10			

Signal Name	GPIO	Alternate 1	Alternate 2	Pull-up (U) ¹ Pull-down (D)	Direction ²	Voltage Domain	MCF52274 176 LQFP	MCF52277 196 MAPBGA
ALLPST		_	_	—	0	EVDD	76	—
JTAG_EN	—	_	—	D	I	EVDD	79	K10
PSTCLK	—	TCLK	—	U	0	EVDD	74	P8
DSI	_	TDI	—	U	Ι	EVDD	78	M11
DSO	_	TDO	—	—	0	EVDD	81	L11
BKPT	—	TMS	—	U	Ι	EVDD	80	N11
DSCLK	_	TRST	—	U	Ι	EVDD	77	P11
			Test	•	•	•		
TEST	—	_	_	D	Ι	EVDD	134	E10
		Po	ower Supplies					
IVDD	_			—		—	39, 75, 114, 138, 171	K5, F10, E5, J10
EVDD	—		_	—	—		12, 72, 73, 94, 111, 148, 176	E6, E7, F5, F6, G5, H9, J9, K8, K9
SD_VDD	—		_	—		—	14, 43, 44, 70, 113, 132, 146	E8, E9, F9, G9, H5, J5, J6, K6, K7
VDD_OSC		_	—	—	—	_	108	G13
VDD_PLL	_	_	—	_	—	_	104	H14
VDD_USB		_	_	—	—	—	151	B10
VDD_RTC		_	_	—	—	—	101	J13
VDD_ADC	_	_	—	—	—		91	L13
VSS	—	_	_	—			1, 13, 45, 71, 93, 112, 133, 147	F7, F8, G6–G8, H6–H8, J7, J8
VSS_OSC	_	_	_	—	—		107	H13
VSS_ADC	—		—				92	L14

Table 6. MCF5227x Signal Information and Muxing (continued)

¹ Pull-ups are generally only enabled on pins with their primary function, except as noted.

² Refers to pin's primary function.

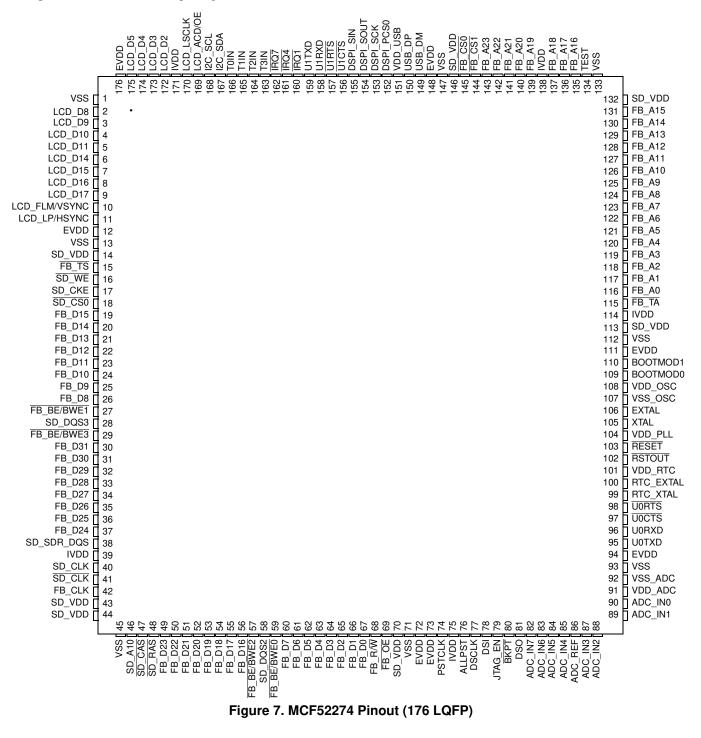
³ Enabled only in oscillator bypass mode (internal crystal oscillator is disabled).

⁴ GPIO functionality is determined by the edge port module. The GPIO module is only responsible for assigning the alternate functions.

⁵ Pull-up when $\overline{\text{DREQ}}$ controls the pin.

⁶ The 176 LQFP device only supports a 12-bit LCD data bus.

⁷ DSPI or SBF signal functionality is controlled by RESET. When asserted, these pins are configured for serial boot; when negated, the pins are configured for DSPI.


⁸ Pull-up when the serial boot facility (SBF) controls the pin.

⁹ If JTAG_EN is asserted, these pins default to alternate 1 (JTAG) functionality. The GPIO module is not responsible for assigning these pins.

4.2 Pinout—176 LQFP

The pinout for the MCF52274 package is shown below.

4.3 Pinout—196 MAPBGA

The pinout for the MCF52277 package is shown below.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	
A	LCD_D6	LCD_D5	LCD_D4	LCD_D2	LCD_ LSCLK	T0IN	U1TXD	U1RXD	USB_DM	USB_DP	FB_CS2	FB_A21	FB_A17	FB_A16	A
в	LCD_D8	LCD_D7	LCD_D3	LCD_D1	LCD_ ACD/OE	T1IN	IRQ_1	U1RTS	DSPI_ PCS0	VDD_ USB	FB_CS3	FB_A20	FB_A18	FB_A15	в
с	LCD_D13	LCD_D12	LCD_D10	LCD_D0	I2C_SCL	T2IN	IRQ_4	U1CTS	DSPI_ SCK	FB_CS0	FB_A23	FB_A19	FB_A14	FB_A13	с
D	LCD_D15	LCD_D14	LCD_D11	LCD_D9	I2C_SDA	T3IN	IRQ_7	DSPI_SIN	DSPI_ SOUT	FB_CS1	FB_A22	FB_A12	FB_A11	FB_A10	D
E	LCD_LP/ HSYNC	LCD_FLM/ VSYNC	LCD_D17	LCD_D16	IVDD	EVDD	EVDD	SDVDD	SDVDD	TEST	FB_A9	FB_A8	FB_A7	FB_A6	Е
F	SD_CS0	SD_CKE	SD_WE	FB_TS	EVDD	EVDD	VSS	VSS		IVDD	FB_A5	FB_A4	FB_A3	EXTAL	F
G	FB_D15	FB_D14	FB_D13	FB_D12	EVDD	VSS	VSS	VSS		BOOT MOD1	FB_A2	FB_A1	VDD_ OSC	XTAL	G
н	FB_D11	FB_D10	FB_D9	FB_D8		VSS	VSS	VSS	EVDD	BOOT MOD0	FB_A0	FB_TA	VSS_ OSC	VDD_ PLL	н
J	FB_BE/ BWE1	SD_DQS3	FB_BE/ BWE3	FB_D31			VSS	VSS	EVDD	IVDD	RESET	UORTS	VDD_ RTC	RTC_ EXTAL	J
к	FB_D30	FB_D29	FB_D28	FB_D27	IVDD			EVDD	EVDD	JTAG_EN	RSTOUT	UOCTS	U0RXD	RTC_ XTAL	к
L	FB_D26	FB_D25	FB_D24	SD_A10	FB_D17	FB_BE/ BWE0	FB_D4	FB_D0	PST3	DDATA3	TDO	U0TXD	VDD_ ADC	VSS_ ADC	L
М	SD_CLK	SD_ SDR_DQS	FB_D23	FB_D20	FB_D16	FB_D7	FB_D3	FB_R/W	PST2	DDATA2	TDI	ADC_ REF	ADC_IN1	ADC_IN0	М
N	SD_CLK	SD_CAS	FB_D22	FB_D19	FB_BE/ BWE2	FB_D6	FB_D2	FB_OE	PST1	DDATA1	TMS	ADC_IN6	ADC_IN4	ADC_IN2	N
Ρ	FB_CLK	SD_RAS	FB_D21	FB_D18	SD_ DQS0	FB_D5	FB_D1	TCLK	PST0	DDATA0	TRST	ADC_IN7	ADC_IN5	ADC_IN3	Ρ
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	

Figure 8. MCF52277 Pinout (196 MAPBGA)

5 Electrical Characteristics

This document contains electrical specification tables and reference timing diagrams for the MCF5227x microprocessor. This section contains detailed information on DC/AC electrical characteristics and AC timing specifications.

The electrical specifications are preliminary and are from previous designs or design simulations. These specifications may not be fully tested or guaranteed at this early stage of the product life cycle, however for production silicon these specifications will be met. Finalized specifications will be published after complete characterization and device qualifications have been completed.

NOTE

The parameters specified in this MCU document supersede any values found in the module specifications.

5.1 Maximum Ratings

Table 7. Absolute Maximum Ratings^{1, 2}

Characteristic	Symbol	Value	Unit
Core Supply Voltage	IV _{DD}	-0.5 to +2.0	V
CMOS Pad Supply Voltage	EV _{DD}	-0.3 to +4.0	V
DDR/Memory Pad Supply Voltage	SDV _{DD}	-0.3 to +4.0	V
Oscillator Supply Voltage	OSCV _{DD}	-0.3 to +4.0	V
PLL Supply Voltage	PLLV _{DD}	-0.3 to +2.0	V
RTC Supply Voltage	RTCV _{DD}	-0.5 to +2.0	V
Digital Input Voltage ³	V _{IN}	-0.3 to +3.6	V
Instantaneous Maximum Current Single pin limit (applies to all pins) ^{3, 4, 5}	۱ _D	25	mA
Operating Temperature Range (Packaged)	T _A (T _L – T _H)	-40 to +85	°C
Storage Temperature Range	T _{stg}	-55 to +150	°C

¹ Functional operating conditions are given in Section 5.4, "DC Electrical Specifications." Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Continued operation at these levels may affect device reliability or cause permanent damage to the device.

² This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (e.g., either V_{SS} or EV_{DD}).

³ Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then use the larger of the two values.

 4 All functional non-supply pins are internally clamped to V_{SS} and EV_{DD}.

⁵ Power supply must maintain regulation within operating EV_{DD} range during instantaneous and operating maximum current conditions. If positive injection current ($V_{in} > EV_{DD}$) is greater than I_{DD} , the injection current may flow out of EV_{DD} and could result in external power supply going out of regulation. Insure external EV_{DD} load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not consuming power (ex; no clock). Power supply must maintain regulation within operating EV_{DD} range during instantaneous and operating maximum current conditions.

5.2 Thermal Characteristics

Characteristic		Symbol	196 MAPBGA	176 LQFP	Unit
Junction to ambient, natural convection	Four layer board (2s2p)	θ_{JA}	38 ^{1,2}	48 ^{1,2}	°C/W
Junction to ambient (@200 ft/min)	Four layer board (2s2p)	θ_{JMA}	34 ^{1,2}	42 ^{1,2}	°C/W
Junction to board		θ_{JB}	27 ³	37 ³	°C/W
Junction to case		θ_{JC}	17 ⁴	14 ⁴	°C/W
Junction to top of package		Ψ_{jt}	4 ^{1,5}	3 ^{1,5}	°C/W
Maximum operating junction temperature)	Тj	105	105	°C

Table 8. Thermal Characteristics

 θ_{JA} , θ_{JMA} and Ψ_{jt} parameters are simulated in conformance with EIA/JESD Standard 51-2 for natural convection. Freescale recommends the use of θ_{JmA} and power dissipation specifications in the system design to prevent device junction temperatures from exceeding the rated specification. System designers should be aware that device junction temperatures can be significantly influenced by board layout and surrounding devices. Conformance to the device junction temperature specification can be verified by physical measurement in the customer's system using the Ψ_{it} parameter, the device power dissipation, and the method described in EIA/JESD Standard 51-2.

² Per JEDEC JESD51-6 with the board horizontal.

³ Thermal resistance between the die and the printed circuit board in conformance with JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.

⁴ Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).

⁵ Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written in conformance with Psi-JT.

The average chip-junction temperature (T_J) in °C can be obtained from:

$$T_J = T_A + (P_D \times \Theta_{JMA})$$
 Eqn. 1

Where:

For most applications $P_{I/O} < P_{INT}$ and can be ignored. An approximate relationship between P_D and T_J (if $P_{I/O}$ is neglected) is:

$$P_D = \frac{K}{(T_J + 273 \,^{\circ}C)}$$
 Eqn. 2

Solving equations 1 and 2 for K gives:

$$K = P_D \times (T_A \times 273^{\circ}C) + Q_{JMA} \times P_D^2$$
 Eqn. 3

where K is a constant pertaining to the particular part. K can be determined from Equation 3 by measuring P_D (at equilibrium) for a known T_A . Using this value of K, the values of P_D and T_J can be obtained by solving Equation 1 and Equation 2 iteratively for any value of T_A .

MCF5227x ColdFire[®] Microprocessor Data Sheet, Rev. 8

Freescale Semiconductor

5.3 ESD Protection

Characteristic	Symbol	Value	Unit
ESD Target for Human Body Model	HBM	2000	V

 Table 9. ESD Protection Characteristics^{1,2}

¹ All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits.

² A device is defined as a failure if after exposure to ESD pulses the device no longer meets the device specification requirements. Complete DC parametric and functional testing is performed per applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification.

5.4 DC Electrical Specifications

Table 10. DC Electrical Specifications

Characteristic	Symbol	Min	Max	Unit
Core Supply Voltage	IV _{DD}	1.4	1.6	V
PLL Supply Voltage	PLLV _{DD}	1.4	1.6	V
RTC Supply Voltage	RTCV _{DD}	1.4	1.6	V
CMOS Pad Supply Voltage	EV _{DD}	3.0	3.6	V
SDRAM and FlexBus Supply Voltage Mobile DDR/Bus Pad Supply Voltage (nominal 1.8V) DDR/Bus Pad Supply Voltage (nominal 2.5V) SDR/Bus Pad Supply Voltage (nominal 3.3V)	SDV _{DD}	1.7 2.25 3.0	1.95 2.75 3.6	V
USB Supply Voltage	USBV _{DD}	3.0	3.6	V
Oscillator Supply Voltage	OSCV _{DD}	3.0	3.6	V
CMOS Input High Voltage	EVIH	2	EV _{DD} + 0.3	V
CMOS Input Low Voltage	EVIL	V _{SS} – 0.3	0.8	V
CMOS Output High Voltage I _{OH} = -5.0 mA	EV _{OH}	EV _{DD} -0.4	_	V
CMOS Output Low Voltage I _{OL} = 5.0 mA	EV _{OL}	—	0.4	V
SDRAM and FlexBus Input High Voltage Mobile DDR/Bus Input High Voltage (nominal 1.8V) DDR/Bus Pad Supply Voltage (nominal 2.5V) SDR/Bus Pad Supply Voltage (nominal 3.3V)	SDV _{IH}	1.35 1.7 2	SDV _{DD} + 0.3 SDV _{DD} + 0.3 SDV _{DD} + 0.3	V
SDRAM and FlexBus Input Low Voltage Mobile DDR/Bus Input High Voltage (nominal 1.8V) DDR/Bus Pad Supply Voltage (nominal 2.5V) SDR/Bus Pad Supply Voltage (nominal 3.3V)	SDV _{IL}	V _{SS} - 0.3 V _{SS} - 0.3 V _{SS} - 0.3	0.45 0.8 0.8	V

Characteristic	Symbol	Min	Max	Unit
SDRAM and FlexBus Output High Voltage Mobile DDR/Bus Input High Voltage (nominal 1.8V) DDR/Bus Pad Supply Voltage (nominal 2.5V) SDR/Bus Pad Supply Voltage (nominal 3.3V) I _{OH} = -5.0 mA for all modes	SDV _{OH}	1.4 2.1 2.4		V
SDRAM and FlexBus Output Low Voltage Mobile DDR/Bus Input High Voltage (nominal 1.8V) DDR/Bus Pad Supply Voltage (nominal 2.5V) SDR/Bus Pad Supply Voltage (nominal 3.3V) I _{OL} = 5.0 mA for all modes	SDV _{OL}	 	0.3 0.3 0.5	V
Input Leakage Current $V_{in} = V_{DD}$ or V_{SS} , Input-only pins	l _{in}	-1.0	1.0	μΑ
Weak Internal Pull-Up Device Current, tested at V _{IL} Max. ¹	I _{APU}	-10	-130	μA
Input Capacitance ² All input-only pins All input/output (three-state) pins	C _{in}		7 7	pF

Table 10. DC Electrical Specifications (continued)

¹ Refer to the signals section for pins having weak internal pull-up devices.

² This parameter is characterized before qualification rather than 100% tested.

5.5 Oscillator and PLL Electrical Characteristics

Table 11.	PLL E	lectrical	Characteristics
-----------	-------	-----------	-----------------

Num	Characteristic	Symbol	Min	Max	Unit
1	PLL Reference Frequency Range Crystal reference External reference	f _{ref_crystal} f _{ref_ext}	16 16	25 ¹ 66.67 ¹	MHz MHz
2	Core/system frequency CLKOUT Frequency	f _{sys} f _{sys/2}	512 Hz ² 256 Hz ²	166.67 83.33	MHz MHz
3	Crystal Start-up Time ^{3,4}	t _{cst}	—	10	ms
4	EXTAL Input High Voltage Crystal Mode ⁵ All other modes (External, Limp)	V _{IHEXT} V _{IHEXT}	V _{XTAL} + 0.4 E _{VDD} /2 + 0.4	_	V V
5	EXTAL Input Low Voltage Crystal Mode ⁵ All other modes (External, Limp)	V _{ILEXT} V _{ILEXT}	_	V _{XTAL} - 0.4 E _{VDD} /2 - 0.4	V V
7	PLL Lock Time ^{3,6}	t _{ipii}	—	50000	CLKIN
8	Duty cycle of reference ³	t _{dc}	40	60	%
9	XTAL Current	I _{XTAL}	1	3	mA
10	Total on-chip stray capacitance on XTAL	C _{S_XTAL}	—	1.5	pF
11	Total on-chip stray capacitance on EXTAL	C _{S_EXTAL}	—	1.5	pF
12	Crystal capacitive load	CL	See crys	stal spec	

Num	Characteristic	Symbol	Min	Max	Unit
13	Discrete load capacitance for XTAL Discrete load capacitance for EXTAL	C _{L_XTAL} C _{L_EXTAL}	_	$\begin{array}{c} 2\times (C_L-\\ C_{S_XTAL}-\\ C_{S_EXTAL}-\\ C_{S_PCB})^7 \end{array}$	pF
14	Frequency un-LOCK Range	f _{UL}	-4.0	4.0	% f _{sys}
15	Frequency LOCK Range	f _{LCK}	-2.0	2.0	% f _{sys}
17	CLKOUT period jitter ^{4, 5, 8} measured at f _{sys} max Peak-to-peak jitter (Clock edge to clock edge) Long-term jitter	C _{jitter}		10 TBD	% f _{sys/2} % f _{sys/2}
19	VCO frequency ($f_{vco} = f_{ref} \times PFDR$)	f _{vco}	350	540	MHz

Although these are the allowable frequency ranges, do not violate the VCO frequency range of the PLL. See the 1 MCF5227x Reference Manual for more details.

 $^2~$ The minimum system frequency is the minimum input clock divided by the maximum low-power divider (16 MHz \div 32,768). When the PLL is enabled, the minimum system frequency (f_{sys}) is 37.5 MHz.

³ This parameter is guaranteed by characterization before gualification rather than 100% tested. Applies to external clock reference only.

- ⁴ Proper PC board layout procedures must be followed to achieve specifications.
- ⁵ This parameter is guaranteed by design rather than 100% tested.
- ⁶ This specification is the PLL lock time only and does not include oscillator start-up time..
- 7

 C_{S_PCB} is the measured PCB stray capacitance on EXTAL and XTAL. Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum f_{sys} . Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the PLL circuitry via PLL V_{DD}, EV_{DD}, and V_{SS} and variation in crystal oscillator frequency increase the Cjitter percentage for a given interval.

5.6 ASP Electrical Characteristics

Table 12 lists the electrical specifications for the ASP module.

Characteristic	Symbol	Min	Typical	Max	Unit
ASP Analog Supply Voltage	V _{DDA}	3.0	-	3.6	V
Input Voltage Range	V _{ADIN}	0		V _{DDA}	V
Operating Current Consumption	I _{DDA_ON}		700	_	uA
Power-down Current Consumption	I _{DDA_OFF}		1	—	uA
Resolution	R _{ES}			12	bits
Sampling rate				125	kS/s
Integral Non-linearity	INL		±8	±24	lsb ¹
Differential Non-linearity	DNL		±2	±24	lsb ¹
ADC Internal Clock Frequency	t _{AIC}	2	—	8	MHz
Conversion Range	R _{AD}	0	—	V _{DDA}	V

Characteristic	Symbol	Min	Typical	Max	Unit
Conversion Time	t _{ADC}	15	_	32	t _{AIC} cycles
Sample Time	t _{ADS}	3	_	20	t _{AIC} cycles
Multiplexer Settling Time	t _{AMS}		_	3	t _{AIC} cycles
Zero-scale Error	ZE		±4	±12	lsb ¹
Full-scale Error	FE		±320	±370	lsb ¹
Input Capacitance	C _{AIN}		—	34	pF

Table 12. ASP Electrical Characteristics (continued)

¹ A least significant bit (lsb) is a unit of voltage equal to the smallest resolution of the ADC. This unit of measure approximately relates the error voltage to the observed error in conversion (code error), and is useful for systemic errors such as differential non-linearity. A 2.56-V input on an ADC with ± 3 lsb of error could read between 0x1FD and 0x203. This unit is by far the most common terminology and will be the preferred unit used for error representation.

A bit is a unit equal to the log (base2) of the error voltage normalized to the resolution of the ADC. An error of N bits corresponds to 2^N lsb of error. This measure is easily confused with lsb and is hard to extrapolate between integer values.

5.7 External Interface Timing Specifications

5.7.1 FlexBus

A multi-function external bus interface called FlexBus is provided with basic functionality to interface to slave-only devices up to a maximum bus frequency of 66MHz. It can be directly connected to asynchronous or synchronous devices such as external boot ROMs, flash memories, gate-array logic, or other simple target (slave) devices with little or no additional circuitry. For asynchronous devices a simple chip-select based interface can be used.

All processor bus timings are synchronous; that is, input setup/hold and output delay are given in respect to the rising edge of a reference clock, FB_CLK. The FB_CLK frequency may be the same as the internal system bus frequency or an integer divider of that frequency.

The following timing numbers indicate when data will be latched or driven onto the external bus, relative to the Flexbus output clock, FB_CLK. All other timing relationships can be derived from these values.

Num	Characteristic	Symbol	Min	Мах	Unit	Notes
	Frequency of Operation		_	83.33	MHz	f _{sys/2}
FB1	Clock Period (FB_CLK)	t _{FBCK}	12.0	_	ns	t _{cyc}
FB2	Address, Data, and Control Output Valid (FB_A[23:0], FB_D[31:0], FB_CS[5:0], FB_R/W, FB_TS, FB_BE/BWE[3:0] and FB_OE)	t _{FBCHDCV}	_	7.0	ns	1
FB3	Address, Data, and Control Output Hold (FB_A[23:0], FB_D[31:0], FB_CS[5:0], FB_R/W, FB_TS, FB_BE/BWE[3:0], and FB_OE)	t _{FBCHDCI}	1	—	ns	1, 2

Table 13. FlexBus AC Timing Specifications

Num	Characteristic	Symbol	Min	Мах	Unit	Notes
FB4	Data Input Setup	t _{DVFBCH}	3.5	_	ns	
FB5	Data Input Hold	t _{DIFBCH}	0	_	ns	
FB6	Transfer Acknowledge (TA) Input Setup	t _{CVFBCH}	4	_	ns	
FB7	Transfer Acknowledge (TA) Input Hold	t _{CIFBCH}	0		ns	
1 Timina	$\frac{1}{1}$ for chin selects only applies to the $\overline{\text{FB}}$ (S[5:0] signals. Please see	Section 5 7	2.2 "000		CTimina	

Table 13. FlexBus AC Timing Specifications (continued)

Timing for chip selects only applies to the FB_CS[5:0] signals. Please see Section 5.7.2.2, "DDR SDRAM AC Timing Specifications," for SD_CS[3:0] timing.

² The FlexBus supports programming an extension of the address hold. Please consult the device reference manual for more information.

NOTE

The processor drives the data lines during the first clock cycle of the transfer with the full 32-bit address. This may be ignored by standard connected devices using non-multiplexed address and data buses. However, some applications may find this feature beneficial.

The address and data busses are muxed between the FlexBus and SDRAM controller. At the end of the read and write bus cycles the address signals are indeterminate.

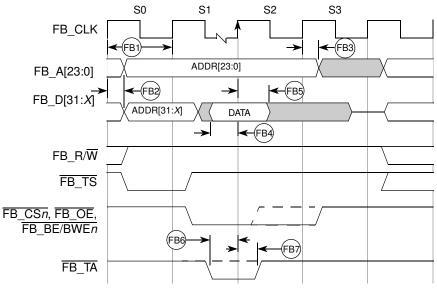
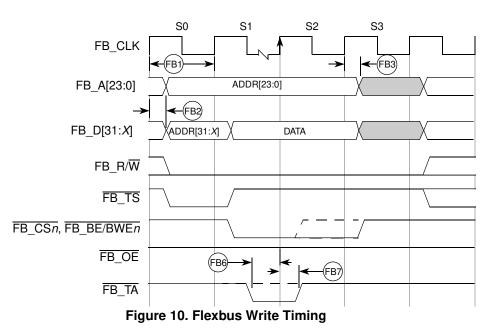



Figure 9. FlexBus Read Timing

5.7.2 SDRAM Bus

The SDRAM controller supports accesses to main SDRAM memory from any internal master. It supports either standard SDRAM or double data rate (DDR) SDRAM, but it does not support both at the same time.

5.7.2.1 SDR SDRAM AC Timing Specifications

The following timing numbers indicate when data will be latched or driven onto the external bus, relative to the memory bus clock, when operating in SDR mode on write cycles and relative to SD_DQS on read cycles. The device's SDRAM controller is a DDR controller that has an SDR mode. Because it is designed to support DDR, a DQS pulse must still be supplied to the device for each data beat of an SDR read. The processor accomplishes this by asserting a signal named SD_SDR_DQS during read cycles. Care must be taken during board design to adhere to the following guidelines and specs with regard to the SD_SDR_DQS signal and its usage.

Num	Characteristic	Symbol	Min	Мах	Unit	Notes
	Frequency of Operation		60	83.33	MHz	1
SD1	Clock Period	t _{SDCK}	12.0	16.67	ns	2
SD2	Pulse Width High	t _{SDCKH}	0.45	0.55	SD_CLK	3
SD3	Pulse Width Low	t _{SDCKH}	0.45	0.55	SD_CLK	3
SD4	Address, SD_CKE, <u>SD_CAS</u> , <u>SD_RAS</u> , <u>SD_WE</u> , SD_BA, SD_CS[1:0] - Output Valid	t _{SDCHACV}	—	0.5 × SD_CLK + 1.0	ns	
SD5	Address, SD_CKE, <u>SD_CAS</u> , <u>SD_RAS</u> , <u>SD_WE</u> , SD_BA, SD_CS[1:0] - Output Hold	t _{SDCHACI}	2.0	—	ns	
SD6	SD_SDR_DQS Output Valid	t _{DQSOV}	—	Self timed	ns	4
SD7	SD_DQS[3:2] input setup relative to SD_CLK	t _{DQVSDCH}	0.25 × SD_CLK	0.40 × SD_CLK	ns	5

Table 14. SDR Timing Specifications

Num	Characteristic	Symbol	Min	Мах	Unit	Notes
SD8	SD_DQS[3:2] input hold relative to SD_CLK	t _{DQISDCH}	Does not	apply. 0.5×SD_C width.	LK fixed	6
SD9	Data (D[31:0]) Input Setup relative to SD_CLK (reference only)	t _{DVSDCH}	0.25 × SD_CLK	—	ns	7
SD10	Data Input Hold relative to SD_CLK (reference only)	t _{DISDCH}	1.0	_	ns	
SD11	Data (D[31:0]) and Data Mask(SD_DQM[3:0]) Output Valid	t _{SDCHDMV}	_	0.5 × SD_CLK + 2	ns	
SD12	Data (D[31:0]) and Data Mask (SD_DQM[3:0]) Output Hold	t _{SDCHDMI}	1.5	—	ns	

Table 14. SDR Timing Specifications (continued)

¹ The device supports same frequency of operation for both FlexBus and SDRAM clock operates as that of the internal bus clock. Please see the PLL chapter of the device reference manual for more information on setting the SDRAM clock rate.

² SD_CLK is one SDRAM clock in ns.

³ Pulse width high plus pulse width low cannot exceed min and max clock period.

⁴ SD_SDR_DQS is designed to pulse 0.25 clock before the rising edge of the memory clock. This is a guideline only. Subtle variation from this guideline is expected. SD_SDR_DQS will only pulse during a read cycle and one pulse will occur for each data beat.

⁵ SD_DQS is designed to pulse 0.25 clock before the rising edge of the memory clock. This spec is a guideline only. Subtle variation from this guideline is expected. SD_DQS will only pulse during a read cycle and one pulse will occur for each data beat.

⁶ The SD_DQS pulse is designed to be 0.5 clock in width. The timing of the rising edge is most important. The falling edge does not affect the memory controller.

⁷ Since a read cycle in SDR mode still uses the DQS circuit within the device, it is critical that the data valid window be centered 1/4 clk after the rising edge of DQS. Ensuring that this happens will result in successful SDR reads. The input setup spec is provided as guidance.

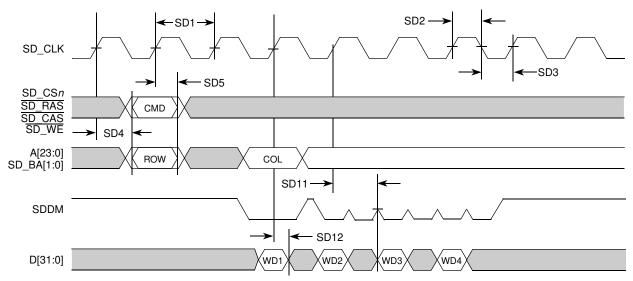
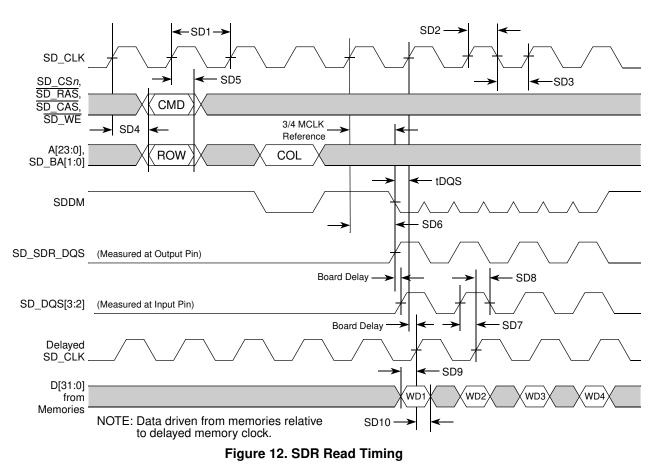



Figure 11. SDR Write Timing

5.7.2.2 DDR SDRAM AC Timing Specifications

When using the SDRAM controller in DDR mode, the following timing numbers must be followed to properly latch or drive data onto the memory bus. All timing numbers are relative to the two DQS byte lanes.

Num	Characteristic	Symbol	Min	Мах	Unit	Notes
	Frequency of Operation	t _{DDCK}	60	83.33	MHz	1
DD1	Clock Period	t _{DDSK}	12.0	16.67	ns	2
DD2	Pulse Width High	t _{DDCKH}	0.45	0.55	SD_CLK	3
DD3	Pulse Width Low	t _{DDCKL}	0.45	0.55	SD_CLK	3
DD4	Address, SD_CKE, SD_CAS, SD_RAS, SD_WE, SD_CS[1:0] - Output Valid	t _{SDCHACV}	—	0.5 × SD_CLK + 1.0	ns	4
DD5	Address, SD_CKE, <u>SD_CAS</u> , <u>SD_RAS</u> , <u>SD_WE</u> , <u>SD_CS</u> [1:0] - Output Hold	t _{SDCHACI}	2.0	—	ns	
DD6	Write Command to first DQS Latching Transition	t _{CMDVDQ}	_	1.25	SD_CLK	
DD7	Data and Data Mask Output Setup (DQ→DQS) Relative to DQS (DDR Write Mode)	t _{DQDMV}	1.5	—	ns	5 6

Table 15. DDR Timing Specifications