imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Tiny Real-Time Clock/calendar with 64 byte RAM, alarm function, battery switch-over time stamp input, and I²C-bus

Rev. 3 — 18 November 2015

Product data sheet

General description 1.

The PCF85363A is a CMOS¹ Real-Time Clock (RTC) and calendar optimized for low power consumption and with automatic switching to battery on main power loss. The RTC can also be configured as a stop-watch (elapsed time counter). Three time log registers triggered from battery switch-over as well as input driven events. Featuring clock output and two independent interrupt signals, two alarms, I²C interface and guartz crystal calibration, 64 byte battery backed-up RAM.

For a selection of NXP Real-Time Clocks, see Table 72 on page 86.

Features and benefits 2.

- UL Recognized Component (PCF85363ATL)
- Provides year, month, day, weekday, hours, minutes, seconds and 100th seconds based on a 32.768 kHz quartz crystal
- Stop-watch mode for elapsed time counting. From 100th seconds to 999999 hours
- Two independent alarms
- Battery back-up circuit
- WatchDog timer
- Three timestamp registers
- Two independent interrupt generators plus predefined interrupts at every second, minute, or hour
- 64 byte battery backed-up RAM
- Frequency adjustment via programmable offset register
- Clock operating voltage: 0.9 V to 5.5 V
- Low current; typical 0.28 μA at V_{DD} = 3.0 V and T_{amb} = 25 °C
- 400 kHz two-line I²C-bus interface (at V_{DD} = 1.8 V to 5.5 V)
- Programmable clock output for peripheral devices (32.768 kHz, 16.384 kHz, 8.192 kHz, 4.096 kHz, 2.048 kHz, 1.024 kHz, and 1 Hz)
- Configurable oscillator circuit for a wide variety of quartzes: C_L = 6 pF, C_L = 7 pF, and $C_{L} = 12.5 \, pF$

The definition of the abbreviations and acronyms used in this data sheet can be found in Section 24. 1.

PCF85363A

Tiny RTC with 64 byte RAM, alarm, battery switch-over and I²C-bus

3. Applications

- Elapsed time counter
- Printers and copiers
- Digital voice recorders
- Mobile equipment
- Digital cameras

- Network powered devices
- Battery backed up systems
- Data loggers
- White goods
- Accurate high duration timer

4. Ordering information

Table 1.Ordering information

Type number	Package								
	Name	Description	Version						
PCF85363ATL	DFN2626-10	plastic thermal enhanced extremely thin small outline package; no leads; 10 terminals; body $2.6 \times 2.6 \times 0.5$ mm	SOT1197-1						
PCF85363ATT	TSSOP8	plastic thin shrink small outline package; 8 leads; body width 3 mm	SOT505-1						
PCF85363ATT1	TSSOP10	plastic thin shrink small outline package; 10 leads; body width 3 mm	SOT552-1						

4.1 Ordering options

Table 2. Ordering options

Product type number	Orderable part number	Sales item (12NC)	Delivery form	IC revision
PCF85363ATL/A	PCF85363ATL/AX	935304648115	tape and reel, 7 inch	1
PCF85363ATT/A	PCF85363ATT/AJ	935304751118	tape and reel, 13 inch	1
PCF85363ATT1/A	PCF85363ATT1/AJ	935304752118	tape and reel, 13 inch	1

5. Marking

Product type numberMarking codePCF85363ATL/A363APCF85363ATT/A363APCF85363ATT1/A363A

PCF85363A

Tiny RTC with 64 byte RAM, alarm, battery switch-over and I²C-bus

6. Block diagram

7. Pinning information

7.1 Pinning

PCF85363A

NXP Semiconductors

Tiny RTC with 64 byte RAM, alarm, battery switch-over and I²C-bus τ CF85363A

7.2 Pin description

Table 4. **Pin description**

Input or input/output pins must always be at a defined level (V_{SS} or V_{DD}) unless otherwise specified.

	Symbol				Туре	Description	
		PCF85363ATL (DFN2626-10)	PCF85363ATT (TSSOP8)	PCF85363ATT1 (TSSOP10)		Primary use	Secondary use
	OSCI	1	1	1	input	oscillator input	-
	OSCO	2	2	2	output	oscillator output	-
	VBAT	3	3	3	supply	battery backup supply voltage ^[1]	-
	TS (CLK/INTB)	4	-	4	input/	can be configured with TSPM	I[1:0] ^[2]
All information					output	timestamp input	INTB and CLK output (push-pull); stop-watch control
provic	VSS	5 <u>[3]</u>	4	5	supply	ground supply voltage	-
led in this d	SDA	6	5	6	input/ output	serial data line	-
ocume	SCL	7	6	7	input	serial clock input	-
nt is su	CLK	8	-	8	output	CLK (push-pull)	-
bject to	INTA (CLK)	9	7	9	output	can be configured with INTAF	PM[1:0][4]
) legal discla						interrupt output (open-drain)	CLK output (open-drain)
imers.	VDD	10	8	10	supply	supply voltage	-

[1] Connect to V_{DD} if not used.

See Table 7 and Table 47. [2]

[3] The die paddle (exposed pad) is connected to V_{SS} through high ohmic (non-conductive) silicon attach and should be electrically isolated. It is good engineering practice to solder the exposed pad to an electrically isolated PCB copper pad as shown in Figure 43 "Package outline SOT1197-1 (DFN2626-10), PCF85363ATL" for better heat transfer but it is not required as the RTC doesn't consume much power. In no case should traces be run under the package exposed pad.

See Table 7 and Table 49. [4]

PCF85363/

© NXP Semiconductors N.V. 2015. All rights reserved. 5 of 95

8. Functional description

The PCF85363A contains 8-bit registers for time information, for timestamp information and registers for system configuration. Included is an auto-incrementing register address, an on-chip 32.768 kHz oscillator with integrated capacitors, a frequency divider which provides the source clock for the Real-Time Clock (RTC) and calender, and an I²C-bus interface with a maximum data rate of 400 kbit/s.

The built-in address register will increment automatically after each read or write of a data byte. After register 2Fh, the auto-incrementing will wrap around to address 00h. When the RAM is accessed, the wrap around will happen after address 7Fh, (see Figure 5).

Product data sheet

PCF85363A

All registers (see Table 5 on page 8, Table 6 on page 10, and Table 7 on page 12) are designed as addressable 8-bit parallel registers although not all bits are implemented. Figure 6 gives an overview of the address map.

The 100th seconds, seconds, minutes, hours, days, months, and years as well as the corresponding alarm registers are all coded in Binary Coded Decimal (BCD) format. When one of the RTC registers is read, the contents of all time counters are frozen. Therefore, faulty reading of the clock and calendar during a carry condition is prevented.

8.1 Registers organization overview

8.1.1 Time mode registers

The PCF85363A has two time mode register sets, one for the real-time clock mode and one for the stopwatch clock mode. The access to these registers can be switched by the RTCM bit in the Function control register (28h), see Table 7 on page 12 and Table 54 on page 54.

PCF85363A Product data sheet

8.1.1.1 RTC mode time registers overview (RTCM = 0)

8.1.1.1 RTC mode t Table 5. RTC mode time registers

Bit positions labeled as - are not implemented. After reset, all registers are set according to Table 62 on page 58.

Address	Register name	Bit										Reference
		7	6	5	4	3	2	1		0		-
RTC time	and date registers	S		I								1
00h	100th_seconds	100TH_SEC	ONDS (0 to 9	9)								Section 8.2
01h	Seconds	OS	SECONDS	ONDS (0 to 59)								_
02h	Minutes	EMON	MINUTES (UTES (0 to 59)								_
03h	Hours	-	-	AMPM HOURS (1 to 12) in 12 hour mode								_
				HOURS (0 to 23) in 24 hour mode								_
04h	Days	-	-	DAYS (1 to	31)							_
05h	Weekdays	-	-	-	-	-	WEEKDAYS	(0 to 6))			_
06h	Months	-	-	-	MONTHS (1	to 12)						_
07h	Years	YEARS (0 to	99)								_	
RTC alarm	n1											
08h	Second_alarm1	-	SEC_ALAR	V1 (0 to 59)								Section 8.4
09h	Minute_alarm1	-	MIN_ALARM	/11 (0 to 59)								_
0Ah	Hour_alarm1	-	-	AMPM	HR_ALARM	1 (1 to 12) in 1	2 hour mode					
				HR_ALARM	11 (0 to 23) in 2	4 hour mode						
0Bh	Day_alarm1	-	-	DAY_ALAR	M1 (1 to 31)							
0Ch	Month_alarm1	-	-	-	MON_ALAR	M1 (1 to 12)						
RTC alarm	n2				·							
0Dh	Minute_alarm2	-	MIN_ALARM	/I2 (0 to 59)								Section 8.4
0Eh	Hour_alarm2	-	-	AMPM	HR_ALARM	2 (1 to 12) in 1	2 hour mode					
0Fh	Weekday_alarm 2	-	-	-	-	-	WDAY_ALAF	RM2 (0	to 6)			
RTC alarm	n enables		·									
10h	Alarm_enables	WDAY_A2E	HR_A2E	MIN_A2E	MON_A1E	DAY_A1E	HR_A1E	MIN_	A1E	SEC_	_A1E	Section 8.4

N.V. 2015. All rights reserved. 8 of 95

Product data sheet

Rev. 3 ---

18 November 2015

NXP Semiconductors

Reference

0

τ CF85363A

Tiny RTC with 64 byte RAM, alarm, battery switch-over and I²C-bus

5 4

3

2

1

Bit positions labeled as - are not implemented. After reset, all registers are set according to Table 62 on page 58.

6

RTC tir	nestamp1 (TSR1)					
11h	TSR1_seconds	-	TSR1_S	SECONDS (0 to 5	59)	Section 8.7
12h	TSR1_minutes	-	TSR1_N	AINUTES (0 to 59		
13h	TSR1_hours	-	-	AMPM	TSR1_HOURS (1 to 12) in 12 hour mode	
				TSR1_HO	URS (0 to 23) in 24 hour mode	
14h	TSR1_days	-	-	TSR1_DA	YS (1 to 31)	
15h	TSR1_months	-	-	-	TSR1_MONTHS (1 to 12)	
16h	TSR1_years	TSR1_Y	EARS (0 to 99	9)		
RTC tir	mestamp2 (TSR2)					
17h	TSR2_seconds	-	TSR2_S	SECONDS (0 to 5	59)	Section 8.7
18h	TSR2_minutes	-	TSR2_N	AINUTES (0 to 59	9)	
19h	TSR2_hours	-	-	AMPM	TSR2_HOURS (1 to 12) in 12 hour mode	
				TSR2_HO	URS (0 to 23) in 24 hour mode	
1Ah	TSR2_days	-	-	TSR2_DA	YS (1 to 31)	
1Bh	TSR2_months	-	-	-	TSR2_MONTHS (1 to 12)	
1Ch	TSR2_years	TSR2_YI	EARS (0 to 99	9)		
RTC tir	mestamp3 (TSR3)					
1Dh	TSR3_seconds	-	TSR3_S	SECONDS (0 to 5	Section 8.7	

Ø								
claime	1Dh	TSR3_seconds	-	TSR3_SECO	NDS (0 to 59)			Section 8.7
S.	1Eh	TSR3_minutes	-	TSR3_MINU	TES (0 to 59)			
	1Fh	TSR3_hours	-	-	AMPM	TSR3_HOURS (1 to 12) in 12 hour	mode	
					TSR3_HOUF	IS (0 to 23) in 24 hour mode		
0	20h	TSR3_days	-	-	TSR3_DAYS	(1 to 31)		
NXPS	21h	TSR3_months	-	-	-	TSR3_MONTHS (1 to 12)		
emicon	22h	TSR3_years	TSR3_YEAR	S (0 to 99)				
ductor	RTC times	stamp mode conti	rol					'
s Z <	23h	TSR mode	TSR3M[1:0]		-	TSR2M[2:0]	TSR1M[1:0]	Section 8.7

Product data sheet

Table 5.

Address Register name

RTC mode time registers ... continued

Bit

7

All information provided in this document is subject to legal c Rev. 3 18 November 2015

v. 2015. All rights reserved. 9 of 95

8.1.1.2 Stop-watch mode time registers (RTCM = 1)

8.1.1.2 Stop-watch mode

Table 6.Stop-watch mode time registersBit positions labeled as - are not implemented. After reset, all registers are set according to Table 62 on page 58.

Address	Register name	Bit								Reference
		7	6	5	4	3	2	1	0	_
Stop-wate	ch time registers			I						
00h	100th_seconds	100TH_SEC	ONDS (0 to 99	9)						Section 8.3
01h	Seconds	OS	SECONDS (0 to 59)						
02h	Minutes	EMON	MINUTES (0	to 59)						
03h	Hours_xx_xx_00	HR_XX_XX_	00 (0 to 99)							
04h	Hours_xx_00_xx	HR_XX_00_	XX (0 to 99)							
05h	Hours_00_xx_xx	HR_00_XX_	XX (0 to 99)							
06h	not used	-	-	-	-	-	-	-	-	
07h	not used	-	-	-	-	-	-	-	-	
Stop-wato	ch alarm1									
08h	Second_alm1	-	SEC_ALM1 ((0 to 59)						Section 8.4
09h	Minute_alm1	-	MIN_ALM1 (0 to 59)						
0Ah	Hr_xx_xx_00_alm1	HR_XX_XX_	00_ALM1 (0 to	o 99)						
0Bh	Hr_xx_00_xx_alm1	HR_XX_00_	XX_ALM1 (0 t	o 99)						
0Ch	Hr_00_xx_xx_alm1	HR_00_XX_	XX_ALM1 (0 to	o 99)						
Stop-wato	ch alarm2									
0Dh	Minute_alm2	-	MIN_ALM2 (0 to 59)						Section 8.4
0Eh	Hr_xx_00_alm2	HR_XX_00_	ALM2 (0 to 99)						
0Fh	Hr_00_xx_alm2	HR_00_XX_	ALM2 (0 to 99)						
Stop-wate	ch alarm enables									
10h	Alarm_enables	HR_00_XX _A2E	HR_XX_00 _A2E	MIN_A2E	HR_00_XX _XX_A1E	HR_XX_00 _XX_A1E	HR_XX_XX _00_A1E	MIN_A1E	SEC_A1E	Section 8.4

Tiny RTC with 64 byte RAM, alarm, battery switch-over and I²C-bus

PCF85363A

Product data sheet

© NXP Semiconductors N.V. 2015. All rights reserved. 10 of 95

NXP Semiconductors

PCF85363A

Tiny RTC with 64 byte RAM, alarm, battery switch-over and I²C-bus

ਨੂ Table 6. Stop-watch mode time registers ...continued

Bit positions labeled as - are not implemented. After reset, all registers are set according to Table 62 on page 58. ...continued

Address	Register name	Bit								Reference
		7	6	5	4	3	2	1	0	
Stop-wate	ch timestamp1 (TSR1)	I		i			I		·
11h	TSR1_seconds	-	TSR1_SE	CONDS (0 t	o 59)					Section 8.7
12h	TSR1_minutes	-	TSR1_MI	NUTES (0 to	59)					
13h	TSR1_hr_xx_xx_00	TSR1_HF	_XX_XX_00 (0 to 99)						
14h	TSR1_hr_xx_00_xx	TSR1_HF	_XX_00_XX (0 to 99)						
15h	TSR1_hr_00_xx_xx	TSR1_HF	2_00_XX_XX (0 to 99)						
16h	not used	-	-	-	-	-	-	-	-	
Stop-wate	ch timestamp2 (TSR2)						i		L
17h	TSR2_seconds	-	TSR2_SE	CONDS (0 t	o 59)					Section 8.7
18h	TSR2_minutes	-	TSR2_MI	NUTES (0 to	59)					
19h	TSR2_hr_xx_xx_00	TSR2_HF	_XX_XX_00 (0 to 99)						
1Ah	TSR2_hr_xx_00_xx	TSR2_HF	_XX_00_XX (0 to 99)						
1Bh	TSR2_hr_00_xx_xx	TSR2_HF	2_00_XX_XX (0 to 99)						
1Ch	not used	-	-	-	-	-	-	-	-	
Stop-wate	ch timestamp3 (TSR3)	I		i			I	i	
1Dh	TSR3_seconds	-	TSR3_SE	CONDS (0 t	o 59)					Section 8.7
1Eh	TSR3_minutes	-	TSR3_MI	NUTES (0 to	59)					
1Fh	TSR3_hr_xx_xx_00	TSR3_HF	_XX_XX_00 (0 to 99)						
20h	TSR3_hr_xx_00_xx	TSR3_HF	_XX_00_XX (0 to 99)						
21h	TSR3_hr_00_xx_xx	TSR3_HF	2_00_XX_XX (0 to 99)						
22h	not used	-	-	-	-	-	-	-	-	
Stop-wate	ch timestamp mode c	ontrol						I		L
23h	TSR_mode	TSR3M[1	:0]	-	TSR2M	[2:0]		TSR1M	[1:0]	Section 8.7

Product data sheet

Rev. 3 — 18 November 2015

iconductors N.V. 2015. All rights reserved. 11 of 95

NXP Semiconductors

PCF85363A

Tiny RTC with 64 byte RAM, alarm, battery switch-over and I²C-bus

8.1.2 Control registers overview

PCF85363A

 Table 7.
 Control and function registers overview

 Bit positions labeled as a are not implemented. After reset all registers are set according to Table 62 on page 58

Address	Register name	Bit								Reference
		7	6	5	4	3	2	1	0	
Offset reg	gister					·				
24h	Offset	OFFSET[7	:0]							Section 8.8
Control re	egisters									
25h	Oscillator	CLKIV	OFFM	12_24	LOWJ	OSCD[1:0]		CL[1:0]		Section 8.10
26h	Battery_switch	-	-	-	BSOFF	BSRR	BSM[1:0]		BSTH	Section 8.11
27h	Pin_IO	CLKPM	TSPULL	TSL	TSIM	TSPM[1:0]		INTAPM[1:	0]	Section 8.12
28h	Function	100TH	PI[1:0]		RTCM	STOPM	COF[2:0]			Section 8.13
29h	INTA_enable	ILPA	PIEA	OIEA	A1IEA	A2IEA	TSRIEA	BSIEA	WDIEA	Section 8.9
2Ah	INTB_enable	ILPB	PIEB	OIEB	A1IEB	A2IEB	TSRIEB	BSIEB	WDIEB	Section 8.9
2Bh	Flags	PIF	A2F	A1F	WDF	BSF	TSR3F	TSR2F	TSR1F	Section 8.14
Single RA	M byte				1	I				
2Ch	RAM_byte	B[7:0]								Section 8.6
WatchDog	g registers									
2Dh	WatchDog	WDM	WDR[4:0]					WDS[1:0]		Section 8.5
Stop										
2Eh	Stop_enable	-	-	-	-	-	-	-	STOP	Section 8.16
Reset										
2Fh	Resets	CPR	0	1	0	SR	1	0	CTS	Section 8.15
RAM (64 b	byte)									
40h to 7Fh	RAM	B[7:0]								Section 8.17

Product data sheet

Rev. 3 18 November 2015

Semiconductors N.V. 2015. All rights reserved. 12 of 95

8.2 RTC mode time and date registers

RTC mode is enabled by setting RTCM = 0. These registers are coded in the BCD format to simplify application use.

Default state is:

Time — 00:00:00.00

Date — 2000 01 01

Weekday — Saturday

Monitor bits — OS = 1, EMON = 0

Table 8. Time and date registers in RTC mode (RTCM = 0)

Bit positions labeled as - are not implemented and return 0 when read.

Address	Register name	Upper-o	digit (ter	ı's place	2)	Digit (unit place)				
		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
00h	100th_seconds ^[1]	0 to 9				0 to 9			·	
01h	Seconds	OS	0 to 5			0 to 9				
02h	Minutes	EMON	0 to 5			0 to 9				
03h	Hours ^[2]	-	-	AMPM	0 to 1	0 to 9				
				0 to 2		0 to 9				
04h	Days ^[3]	-	-	0 to 3		0 to 9				
05h	Weekdays	-	-	-	-	-	0 to 6			
06h	Months	-	-	-	0 to 1	0 to 9				
07h	Years	0 to 9				0 to 9				

[1] The 100th_seconds register is only available when the 100TH mode is enabled, see <u>Section 8.13.1</u>. When the 100TH mode is disabled, this register always returns 0.

- [2] Hour mode is set by the 12_24 bit in the Oscillator register, see Section 8.10 on page 41.
- [3] If the year counter contains a value, which is exactly divisible by 4, the PCF85363A compensates for leap years by adding a 29th day to February.

8.2.1 Definition of BCD

The Binary-Coded Decimal (BCD) is an encoding of numbers where each digit is represented by a separate bit field. Each bit field may only contain the values 0 to 9. In this way, decimal numbers and counting is implemented.

Example: 59 encoded as an entire number is represented by 3Bh or 111011. In BCD the 5 is represented as 5h or 0101 and the 9 as 9h or 1001 which combines to 59h.

PCF85363A

13 of 95

Table 9. BCD coding									
Value in	Upper-	digit (ten's	s place)		Digit (u	Digit (unit place)			
decimal	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
00	0	0	0	0	0	0	0	0	
01	0	0	0	1	0	0	0	1	
02	0	0	1	0	0	0	1	0	
:	:	:	:	:	:	:	:	:	
09	1	0	0	1	1	0	0	1	
10	0	0	0	0	0	0	0	0	
:	:	:	:	:	:	:	:	:	
98	1	0	0	1	1	0	0	0	
99	1	0	0	1	1	0	0	1	

8.2.2 OS: Oscillator stop

When the oscillator of the PCF85363A is stopped, the OS status bit is set. The oscillator can be stopped, for example, by connecting one of the oscillator pins OSCI or OSCO to ground. The oscillator is considered to be stopped during the time between power-on and stable crystal resonance. This time can be in the range of 200 ms to 2 s depending on crystal type, temperature, and supply voltage.

The status bit remains set until cleared by command (see <u>Figure 8</u>). If the bit cannot be cleared, then the oscillator is not running. This method can be used to monitor the oscillator and to determine if the supply voltage has reduced to the point where oscillation fails.

8.2.3 EMON: event monitor

The EMON can be used to monitor the status of all the flags in the Flags register, see <u>Section 8.14 on page 56</u>. When one or more of the flags is set, then the EMON bit returns a logic 1. The EMON bit cannot be cleared. EMON returns a logic 0 when all flags are cleared.

See Figure 21 on page 40 for a pictorial representation.

PCF85363A

8.2.4 Definition of weekdays

Definition may be reassigned by the user.

Table 10. Weekday assignments

Day	Bit		
	2	1	0
Sunday	0	0	0
Monday	0	0	1
Tuesday	0	1	0
Wednesday	0	1	1
Thursday	1	0	0
Friday	1	0	1
Saturday	1	1	0

8.2.5 Definition of months

Table 11. Month assignments in BCD format

Month	Upper-digit (ten's place)	Digit (unit place)					
	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
January	0	0	0	0	1		
February	0	0	0	1	0		
March	0	0	0	1	1		
April	0	0	1	0	0		
Мау	0	0	1	0	1		
June	0	0	1	1	0		
July	0	0	1	1	1		
August	0	1	0	0	0		
September	0	1	0	0	1		
October	1	0	0	0	0		
November	1	0	0	0	1		
December	1	0	0	1	0		

PCF85363A

8.2.6 Setting and reading the time in RTC mode

Figure 9 shows the data flow and data dependencies starting from the 100 Hz clock tick.

During read operations, the time counting circuits (memory locations 00h through 07h) are copied into an output register. The RTC continues counting in the background.

When reading or writing the time it is very important to make a read or write access in one go, that is, setting or reading 100th seconds through to years should be made in one single access. Failing to comply with this method could result in the time becoming corrupted.

As an example, if the time (seconds through to hours) is set in one access and then in a second access the date is set, it is possible that the time increments between the two accesses. A similar problem exists when reading. A roll-over may occur between reads thus giving the minutes from one moment and the hours from the next.

Before setting the time, the STOP bit should be set and the prescalers should be cleared (see <u>Section 8.16 "Stop_enable register" on page 59</u>).

An example of setting the time: 14 hours, 23 minutes and 19 seconds.

- I²C START condition
- I²C slave address + write (A2h)
- register address (2Eh)
- write data (set STOP, 01h)

PCF85363A

Tiny RTC with 64 byte RAM, alarm, battery switch-over and I²C-bus

- write data (clear prescaler, A4h)
- write data (100th seconds, 00h)
- write data (Hours, 14h)
- write data (Minutes, 23h)
- write data (Seconds, 19h)
- I²C START condition
- I²C slave address + write (A2h)
- register address (2Eh)
- write data (clear STOP, 00h). Time starts counting from this point
- I²C STOP condition

8.3 Stop-watch mode time registers

These registers are coded in the BCD format to simplify application use.

Stop-watch mode is enabled by setting RTCM = 1. In stop-watch mode, the PCF85363A counts from 100th seconds to 999999 hours. There are no days, weekdays, months or year registers.

Default state is:

Time — 000000:00:00.00

Monitor bits — OS = 1, EMON = 0 (see Section 8.2.2 on page 14 and Section 8.2.3 on page 14)

Table 12. Time registers in stop-watch mode (RTCM = 1)

Bit positions labeled as - are not implemented and return 0 when read.

Address	Register name	Upper-digit (ten's place)				Digit (u	nit place	;)		
		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
00h	100th_seconds ^[1]	0 to 9			0 to 9					
01h	Seconds	OS	OS 0 to 5			0 to 9				
02h	Minutes	EMON	EMON 0 to 5			0 to 9				
03h	Hours_xx_xx_00	0 to 9				0 to 9				
04h	Hours_xx_00_xx	0 to 9	0 to 9				0 to 9			
05h	Hours_00_xx_xx	0 to 9	0 to 9							
06h	not used	-	-	-	-	-	-	-	-	
07h	not used	-	-	-	-	-	-	-	-	

 The 100th_seconds register is only available when the 100TH mode is enabled, see <u>Section 8.13.1 on</u> page 53. When the 100TH mode is disabled, this register always returns 0.

8.3.1 Setting and reading the time in stop-watch mode

Figure 10 shows the data flow and data dependencies starting from the 100 Hz clock tick.

During read operations, the time counting circuits (memory locations 00h through 07h) are copied into an output register. The RTC continues counting in the background.

When reading or writing the time it is very important to make a read or write access in one go, that is, setting or reading 100th_seconds through to HR_00_xx_xx should be made in one single access. Failing to comply with this method could result in the time becoming corrupted.

As an example, if the seconds value is set in one access and then in a following access the minutes value is set, it is possible that the time increments between the two accesses. A similar problem exists when reading. A roll-over may occur between reads thus giving the seconds from one moment and the minutes from the next.

8.4 Alarms

There are two independent alarms. Each is separately configured and may be used to generate an interrupt. In RTC mode, an alarm is configured for time and date. In stop-watch mode when the RTC is functioning as an elapsed time counter, an alarm is configured for time only.

8.4.1 Alarms in RTC mode

In RTC mode, Alarm 1 can be configured from seconds to months. Alarm 2 operates on minutes, hours and weekday. Each segment of the time is independently enabled. Alarms can be output on the INTA and INTB pins.

8.4.1.1 Alarm1 and alarm2 registers in RTC mode

Setting the time for alarm1: Only the information which is relevant for the alarm condition must to be programmed. The unused parts are ignored.

18 of 95

Address	Register name	Upper-digit (ten's place)			Digit (unit place)				
		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
RTC alarn	RTC alarm1 registers								
08h	Second_alarm1	-	0 to 5			0 to 9			
09h	Minute_alarm1	-	0 to 5			0 to 9			
0Ah	Hour_alarm1	-	-	AMPM	0 to 1	0 to 9			
				0 to 2		0 to 9			
0Bh	Day_alarm1	-	-	0 to 3		0 to 9			
0Ch	Month_alarm1	-	-	-	0 to 1	0 to 9			
RTC alarn	n2 registers								
0Dh	Minute_alarm2	-	0 to 5			0 to 9			
0Eh	Hour_alarm2	-	-	AMPM	0 to 1	0 to 9			
			0 to 2		0 to 9				
0Fh	Weekday_alarm2	-	-	-	-	-	0 to 6		

Table 13.Alarm1 and alarm2 registers in RTC mode coded in BCD (RTCM = 0)Bit positions labeled as - are not implemented.

8.4.1.2 Alarm1 and alarm2 control in RTC mode

Table 14. Alarm_enables- alarm enable control register (address 10h) bit description

Bit	Symbol	Value	Description
RTC ala	arm2		
7	WDAY_A2E		weekday alarm2 enable
		0[1]	disabled
		1	enabled
6	HR_A2E		hour alarm2 enable
		0[1]	disabled
		1	enabled
5	MIN_A2E		minute alarm2 enable
		0[1]	disabled
		1	enabled
RTC ala	arm1		
4	MON_A1E		month alarm1 enable
		0[1]	disabled
		1	enabled
3	DAY_A1E		day alarm1 enable
		0[1]	disabled
		1	enabled
2	HR_A1E		hour alarm1 enable
		0[1]	disabled
		1	enabled
1	MIN_A1E		minute alarm1 enable
		0[1]	disabled
		1	enabled

PCF85363A Product data sheet

Bit	Symbol	Value	Description
0	SEC_A1E		second alarm1 enable
		0[1]	disabled
		1	enabled

 Table 14.
 Alarm_enables- alarm enable control register (address 10h) bit description

[1] Default value.

8.4.1.3 Alarm1 and alarm2 function in RTC mode

The registers at addresses 08h through 0Ch contain alarm1 information. When one or more of these registers is loaded with second, minute, hour, day, or month, and its corresponding alarm enable bit (SEC_A1E to MON_A1E) is set logic 1, then that information is compared with the current second, minute, hour, day, and month.

The registers at addresses 0Dh through 0Fh contain alarm2 information. When one or more of these registers is loaded with minute, hour or weekday, and its corresponding alarm enable bit (MIN_A2E to WDAY_A2E) is set logic 1, then that information is compared with the current minute, hour and weekday.

Alarm registers which have their alarm enable bit at logic 0 are ignored.

When the time increments to match the enabled alarms, the alarm flag in the Flags register (Section 8.14 on page 56) is set. A1F for alarm1 and A2F for alarm2. The alarm flag is cleared by command.

When the time increments to match the enabled alarms, an interrupt can be generated. See <u>Section 8.4.3 "Alarm interrupts"</u>.

PCF85363A

Tiny RTC with 64 byte RAM, alarm, battery switch-over and I²C-bus

8.4.2 Alarms in stop-watch mode

In stop-watch mode, Alarm 1 can be configured from seconds to 999999 hours. Alarm 2 operates on minutes up to 9999 hours.

8.4.2.1 Alarm1 and alarm2 registers in stop-watch mode

Setting the time for alarm1 and alarm2: Only the information which is relevant for the alarm condition must to be programmed. The unused parts are ignored.

 Table 15.
 Alarm1 and alarm2 registers in stop-watch mode coded in BCD (RTCM = 1)

 Bit positions labeled as - are not implemented.

Address	Register name	Upper-digit (ten's place)			Digit (ı	unit plac	e)		
		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Stop-watc	h alarm1 registers						·	·	
08h	Second_alm1	-	0 to 5			0 to 9			
09h	Minute_alm1	-	- 0 to 5			0 to 9			
09h	Hr_xx_xx_00_alm1	0 to 9				0 to 9			
0Bh	Hr_xx_00_xx_alm1	0 to 9				0 to 9			
0Ch	Hr_00_xx_xx_alm1	0 to 9				0 to 9			
Stop-watc	h alarm2 registers								
0Dh	Minute_alm2	-	0 to 5			0 to 9			
0Eh	Hr_xx_00_alm2	0 to 9			0 to 9				
0Fh	Hr_00_xx_alm2	0 to 9				0 to 9			

8.4.2.2 Alarm1 and alarm2 control in stop-watch mode

Table 16. Alarm_enables- alarm enable control register (address 10h) bit description

Bit	Symbol	Value	Description
Stop-w	atch alarm2		
7	HR_00_XX_A2E		thousands of hours alarm2 enable
		0[1]	disabled
		1	enabled
6	HR_XX_00_A2E		tens of hours alarm2 enable
		0[1]	disabled
		1	enabled
5	MIN_A2E		minute alarm2 enable
		0[1]	disabled
		1	enabled
Stop-w	atch alarm1		
4	HR_00_XX_XX_A1E		100 thousands of hours alarm1 enable
		0[1]	disabled
		1	enabled
3	HR_XX_00_XX_A1E		thousands of hours alarm1 enable
		0[1]	disabled
		1	enabled
2	HR_XX_XX_00_A1E		tens of hour alarm1 enable
		0[1]	disabled
		1	enabled

PCF85363A Product data sheet

Symbol	Value	Description				
MIN_A1E		minute alarm1 enable				
	0[1]	disabled				
	1	enabled				
SEC_A1E		second alarm1 enable				
	0[1]	disabled				
	1	enabled				
	Symbol MIN_A1E SEC_A1E	Symbol Value MIN_A1E 0[1] 0[1] 1 SEC_A1E 0[1] 0[1] 1				

 Table 16.
 Alarm_enables- alarm enable control register (address 10h) bit description

[1] Default value.

8.4.2.3 Alarm1 and alarm2 function in stop-watch mode

The registers at addresses 08h through 0Ch contain alarm1 information. When one or more of these registers is loaded with second, minute, and hours, and its corresponding alarm enable bit (SEC_A1E to HR_00_XX_XX_A1E) is set logic 1, then that information is compared with the current second, minute, and hours.

The registers at addresses 0Dh through 0Fh contain alarm2 information. When one or more of these registers is loaded with minute and hours, and its corresponding alarm enable bit (MIN_A2E to HR_00_XX_A2E) is set logic 1, then that information is compared with the current minute and hours.

Alarm registers which have their alarm enable bit at logic 0 are ignored.

When the time increments to match the enabled alarms, the alarm flag in the Flags register (<u>Section 8.14 on page 56</u>) is set. A1F for alarm1 and A2F for alarm2. The alarm flag is cleared by command.

When the time increments to match the enabled alarms, an interrupt can be generated. See <u>Section 8.4.3 "Alarm interrupts"</u>.

PCF85363A

23 of 95

PCF85363A

Tiny RTC with 64 byte RAM, alarm, battery switch-over and I²C-bus

8.4.3 Alarm interrupts

The generation of interrupts from the alarm functions is controlled via the alarm interrupt enable bits; A1IEA, A1IEB, A2IEA, A2IEB. These bits are in registers INTA_enable (address 29h) and INTB_enable (address 2Ah).

PCF85363A

24 of 95

The assertion of flags A1F or A2F can be used to generate an interrupt at the pins INTA and INTB. The interrupt may be generated as a pulse signal every time the time increments to match the alarm setting or as a permanently active signal which follows the condition of bit A1F and/or A2F. See Section 8.9 on page 37 for interrupt control.

A1F and A2F remain set until cleared by command. Once an alarm flag has been cleared, it will only be set again when the time increments to match the alarm condition once more.

When an interrupt pin is configured to pulse mode and if an alarm flag is not cleared and the time increments to match the alarm condition again, then a repeated interrupt pulse will be generated.

8.5 WatchDog

Bit	Symbol	Value	Description
7	WDM		WatchDog mode
		0[1]	single shot
		1	repeat mode
6 to 2	WDR[4:0]		WatchDog register bits
		0h ^[1] to 1Fh	Write: WatchDog counter load value
		0h to 1Fh	Read: current counter value
1 to 0	WDS[1:0]		WatchDog step size (source clock)
		00[1]	4 seconds (0.25 Hz)
		01	1 second (1 Hz)
		10	¹ / ₄ second (4 Hz)
		11	¹ / ₁₆ second (16 Hz)

Table 17. WatchDog - WatchDog control and register (address 2Dh) bit description

[1] Default value.

8.5.1 WatchDog functions

The WatchDog has four selectable step sizes allowing for periods in the range from 62.5 ms to 124 seconds. For periods greater than 2 minutes, the alarm function can be used.

WatchDog-duration = WDR × stepsize

(1)

Table 18. WatchDog durations

WDS[1:0]	WatchDog step	Delay				
	Size	Minimum WatchDog duration WDR = 1	Maximum WatchDog duration WDR = 31			
00	4 s	4 s	124 s			
01	1 s	1 s	31 s			
10	1⁄4 s	0.25 s	7.75 s			
11	¹ / ₁₆ s	0.0625 s	1.9375 s			

[1] Time periods can be affected by correction pulses.

PCF85363A Product data sheet