

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

PCF8562

Universal LCD driver for low multiplex rates

Rev. 7 — 21 July 2015

Product data sheet

1. General description

The PCF8562 is a peripheral device which interfaces to almost any Liquid Crystal Display (LCD)¹ with low multiplex rates. It generates the drive signals for any static or multiplexed LCD containing up to four backplanes and up to 32 segments. The PCF8562 is compatible with most microcontrollers and communicates via the two-line bidirectional I²C-bus. Communication overheads are minimized by a display RAM with auto-incremented addressing, by hardware subaddressing and by display memory switching (static and duplex drive modes).

2. Features and benefits

- AEC-Q100 compliant (PCF8562TT/S400/2) for automotive applications
- Single chip LCD controller and driver
- Selectable backplane drive configuration: static, 2, 3, or 4 backplane multiplexing
- Selectable display bias configuration: static, ½, or ½
- Internal LCD bias generation with voltage-follower buffers
- 32 segment drives:
 - ◆ Up to sixteen 7-segment numeric characters
 - Up to eight 14-segment alphanumeric characters
 - ◆ Any graphics of up to 128 elements
- 32 × 4-bit RAM for display data storage
- Auto-incremented display data loading across device subaddress boundaries
- Display memory bank switching in static and duplex drive modes
- Versatile blinking modes
- Independent supplies possible for LCD and logic voltages
- Wide power supply range: from 1.8 V to 5.5 V
- Wide logic LCD supply range:
 - ◆ From 2.5 V for low-threshold LCDs
 - ◆ Up to 6.5 V for guest-host LCDs and high-threshold twisted nematic LCDs
- Low power consumption
- 400 kHz I²C-bus interface
- No external components required
- Manufactured in silicon gate CMOS process

^{1.} The definition of the abbreviations and acronyms used in this data sheet can be found in Section 18.

Universal LCD driver for low multiplex rates

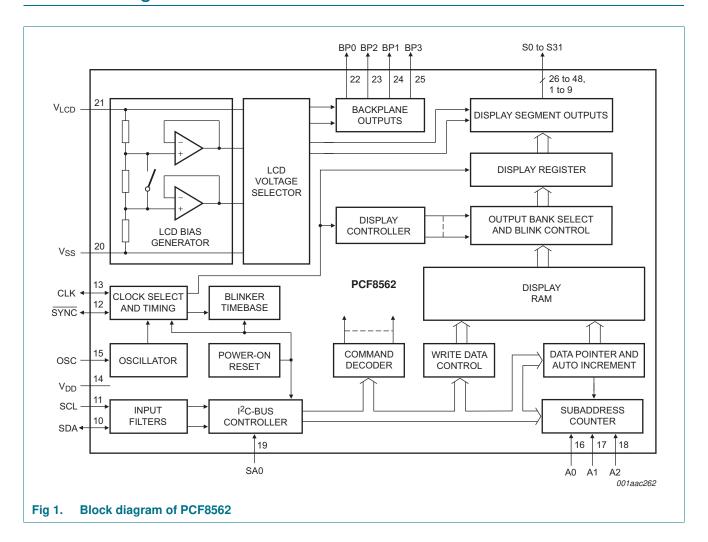
3. Ordering information

Table 1. Ordering information

Type number	Package							
	Name	Description	Version					
PCF8562TT/2[1]	TSSOP48	plastic thin shrink small outline package; 48 leads; body width 6.1 mm	SOT362-1					
PCF8562TT/S400/2[2]	TSSOP48	plastic thin shrink small outline package; 48 leads; body width 6.1 mm	SOT362-1					

^[1] Not to be used for new designs. Replacement part is PCF85162T/1 for industrial applications.

4. Marking

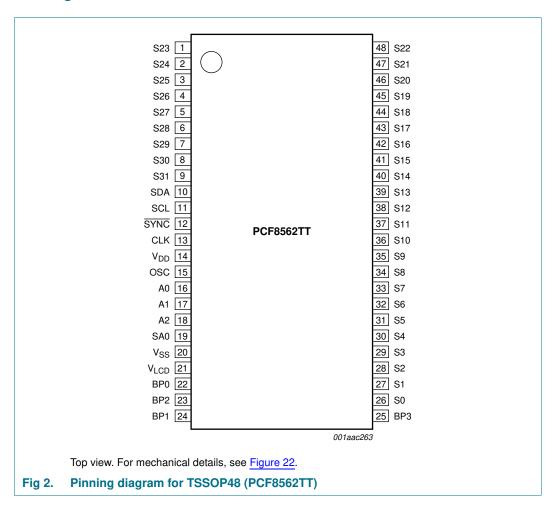

Table 2. Marking codes

Type number	Marking code
PCF8562TT/2	PCF8562TT
PCF8562TT/S400/2	PCF8562TT/S400

^[2] Not to be used for new designs. Replacement part is PCA85162T/Q900/1 for automotive applications.

Universal LCD driver for low multiplex rates

5. Block diagram



Product data sheet

Universal LCD driver for low multiplex rates

6. Pinning information

6.1 Pinning

6.2 Pin description

Table 3. Pin description

Symbol	Pin	Туре	Description
SDA	10	input/output	I ² C-bus serial data line
SCL	11	input	I ² C-bus serial clock
SYNC	12	input/output	cascade synchronization
CLK	13	input/output	clock line
V_{DD}	14	supply	supply voltage
OSC	15	input	internal oscillator enable
A0 to A2	16 to 18	input	subaddress inputs
SA0	19	input	I ² C-bus address input
V _{SS}	20	supply	ground supply voltage

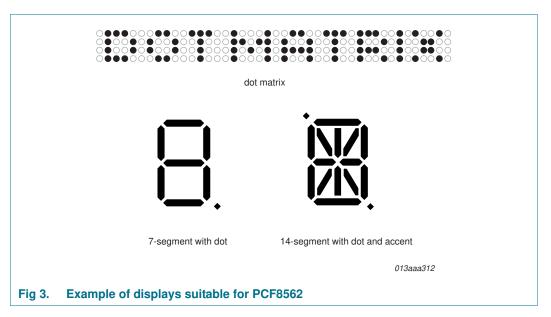
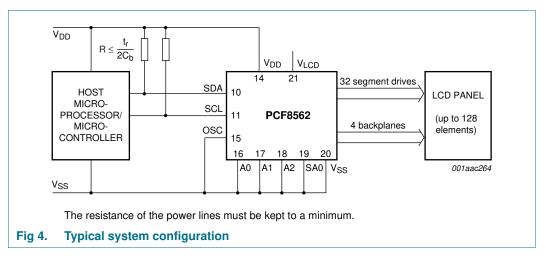

Universal LCD driver for low multiplex rates

 Table 3.
 Pin description ...continued

Symbol	Pin	Туре	Description
V_{LCD}	21	supply	LCD supply voltage
BP0 to BP3	22 to 25	output	LCD backplane outputs
S0 to S22, S23 to S31	26 to 48, 1 to 9	output	LCD segment outputs

7. Functional description

The PCF8562 is a versatile peripheral device designed to interface between any microcontroller to a wide variety of LCD segment or dot matrix displays (see <u>Figure 3</u>). It can directly drive any static or multiplexed LCD containing up to four backplanes and up to 32 segments.



The possible display configurations of the PCF8562 depend on the number of active backplane outputs required. A selection of display configurations is shown in <u>Table 4</u>. All of these configurations can be implemented in the typical system shown in <u>Figure 4</u>.

Table 4. Selection of possible display configurations

Number of									
Backplanes	Icons	Digits/Charact	Dot matrix/						
		7-segment	14-segment	Elements					
4	128	16	8	128 dots (4 × 32)					
3	96	12	6	96 dots (3 × 32)					
2	64	8	4	64 dots (2 × 32)					
1	32	4	2	32 dots (1 × 32)					

Universal LCD driver for low multiplex rates

The host microcontroller maintains the 2-line I^2C -bus communication channel with the PCF8562. The internal oscillator is enabled by connecting pin OSC to pin V_{SS} . The appropriate biasing voltages for the multiplexed LCD waveforms are generated internally. The only other connections required to complete the system are to the power supplies $(V_{DD}, V_{SS}, \text{ and } V_{LCD})$ and the LCD panel chosen for the application.

7.1 Power-On Reset (POR)

At power-on the PCF8562 resets to the following starting conditions:

- All backplane and segment outputs are set to V_{LCD}
- The selected drive mode is: 1:4 multiplex with ½ bias
- · Blinking is switched off
- · Input and output bank selectors are reset
- The I²C-bus interface is initialized
- The data pointer and the subaddress counter are cleared (set to logic 0)
- · Display is disabled

Remark: Do not transfer data on the I^2C -bus for at least 1 ms after a power-on to allow the reset action to complete.

7.2 LCD bias generator

Fractional LCD biasing voltages are obtained from an internal voltage divider consisting of three impedances connected in series between V_{LCD} and $V_{SS}.$ The center impedance is bypassed by switch if the $^{1}\!\!/_{2}$ bias voltage level for the 1:2 multiplex drive mode configuration is selected. The LCD voltage can be temperature compensated externally, using the supply to pin $V_{LCD}.$

7.3 LCD voltage selector

The LCD voltage selector coordinates the multiplexing of the LCD in accordance with the selected LCD drive configuration. The operation of the voltage selector is controlled by the mode-set command from the command decoder. The biasing configurations that apply to the preferred modes of operation, together with the biasing characteristics as functions of V_{LCD} and the resulting discrimination ratios (D) are given in <u>Table 5</u>.

Universal LCD driver for low multiplex rates

Discrimination is a term which is defined as the ratio of the on and off RMS voltage across a segment. It can be thought of as a measurement of contrast.

Table 5. Biasing characteristics

LCD drive	Number of:		LCD bias	$V_{off(RMS)}$	$V_{on(RMS)}$	$D = \frac{V_{on(RMS)}}{}$
mode	Backplanes	Levels		V_{LCD}	V _{LCD}	$D = \frac{on(RMS)}{V_{off(RMS)}}$
static	1	2	static	0	1	∞
1:2 multiplex	2	3	1/2	0.354	0.791	2.236
1:2 multiplex	2	4	1/3	0.333	0.745	2.236
1:3 multiplex	3	4	1/3	0.333	0.638	1.915
1:4 multiplex	4	4	1/3	0.333	0.577	1.732

A practical value for V_{LCD} is determined by equating $V_{off(RMS)}$ with a defined LCD threshold voltage $(V_{th(off)})$, typically when the LCD exhibits approximately 10 % contrast. In the static drive mode a suitable choice is $V_{LCD} > 3V_{th(off)}$.

Multiplex drive modes of 1:3 and 1:4 with $\frac{1}{2}$ bias are possible but the discrimination and hence the contrast ratios are smaller.

Bias is calculated by $\frac{1}{1+a}$, where the values for a are

a = 1 for $\frac{1}{2}$ bias

a = 2 for $\frac{1}{3}$ bias

The RMS on-state voltage (V_{on(RMS)}) for the LCD is calculated with Equation 1:

$$V_{on(RMS)} = V_{LCD} \sqrt{\frac{a^2 + 2a + n}{n \times (1 + a)^2}}$$
 (1)

where the values for n are

n = 1 for static drive mode

n = 2 for 1:2 multiplex drive mode

n = 3 for 1:3 multiplex drive mode

n = 4 for 1:4 multiplex drive mode

The RMS off-state voltage (V_{off(RMS)}) for the LCD is calculated with Equation 2:

$$V_{off(RMS)} = V_{LCD} \sqrt{\frac{a^2 - 2a + n}{n \times (1 + a)^2}}$$
 (2)

Discrimination is the ratio of $V_{on(RMS)}$ to $V_{off(RMS)}$ and is determined from Equation 3:

$$D = \frac{V_{on(RMS)}}{V_{off(RMS)}} = \sqrt{\frac{a^2 + 2a + n}{a^2 - 2a + n}}$$
 (3)

Universal LCD driver for low multiplex rates

Using Equation 3, the discrimination for an LCD drive mode of 1:3 multiplex with $\frac{1}{2}$ bias is $\sqrt{3} = 1.732$ and the discrimination for an LCD drive mode of 1:4 multiplex with $\frac{1}{2}$ bias is $\frac{\sqrt{21}}{3} = 1.528$.

The advantage of these LCD drive modes is a reduction of the LCD full scale voltage V_{LCD} as follows:

- 1:3 multiplex ($\frac{1}{2}$ bias): $V_{LCD} = \sqrt{6} \times V_{off(RMS)} = 2.449 V_{off(RMS)}$
- 1:4 multiplex (½ bias): $V_{LCD} = \left[\frac{(4 \times \sqrt{3})}{3}\right] = 2.309 V_{off(RMS)}$

These compare with $V_{LCD} = 3V_{off(RMS)}$ when $\frac{1}{3}$ bias is used.

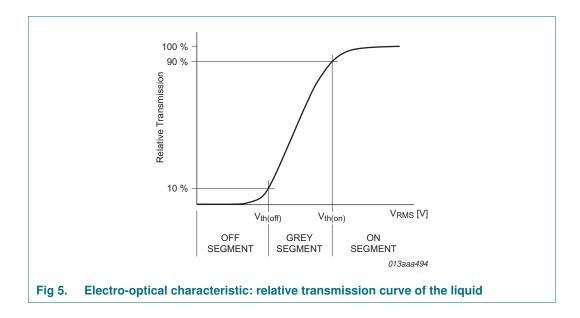
It should be noted that V_{LCD} is sometimes referred as the LCD operating voltage.

7.3.1 Electro-optical performance

Suitable values for $V_{\text{on}(RMS)}$ and $V_{\text{off}(RMS)}$ are dependent on the LCD liquid used. The RMS voltage, at which a pixel will be switched on or off, determine the transmissibility of the pixel.

For any given liquid, there are two threshold values defined. One point is at 10 % relative transmission (at $V_{th(off)}$) and the other at 90 % relative transmission (at $V_{th(on)}$), see Figure 5. For a good contrast performance, the following rules should be followed:

$$V_{on(RMS)} \ge V_{th(on)} \tag{4}$$

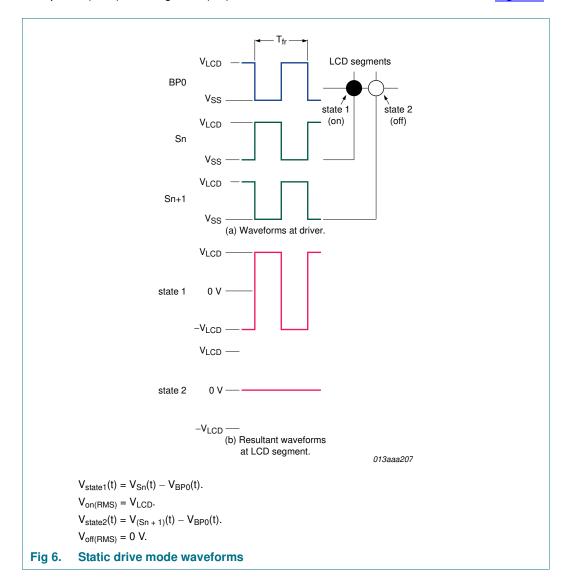

$$V_{off(RMS)} \le V_{th(off)} \tag{5}$$

 $V_{on(RMS)}$ and $V_{off(RMS)}$ are properties of the display driver and are affected by the selection of a, n (see Equation 1 to Equation 3) and the V_{LCD} voltage.

 $V_{th(off)}$ and $V_{th(on)}$ are properties of the LCD liquid and can be provided by the module manufacturer.

It is important to match the module properties to those of the driver in order to achieve optimum performance.

Universal LCD driver for low multiplex rates

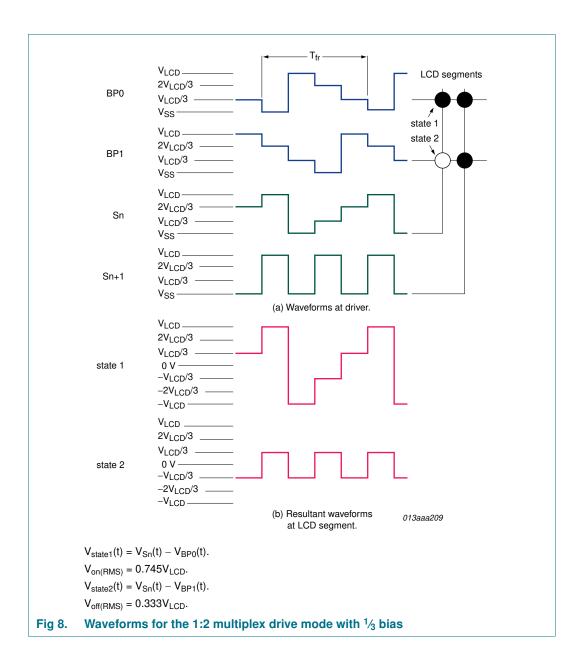


Universal LCD driver for low multiplex rates

7.4 LCD drive mode waveforms

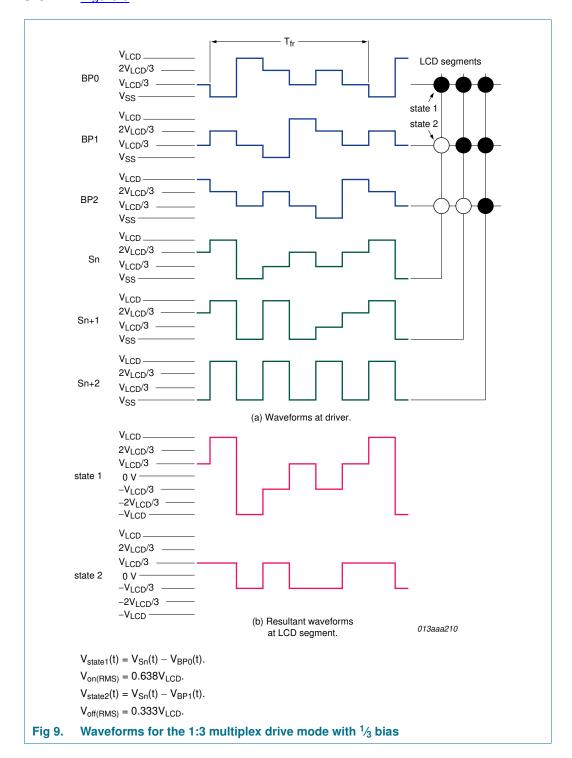
7.4.1 Static drive mode

The static LCD drive mode is used when a single backplane is provided in the LCD. The backplane (BPn) and segment (Sn) drive waveforms for this mode are shown in <u>Figure 6</u>.


Universal LCD driver for low multiplex rates

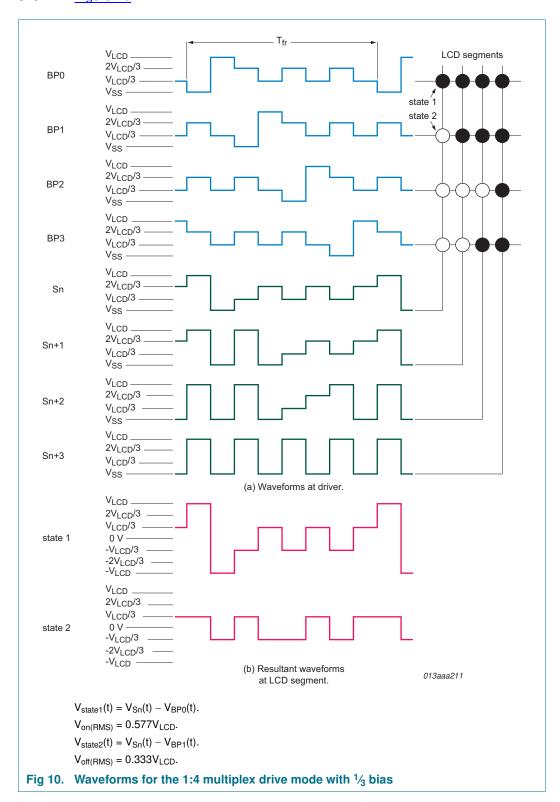
7.4.2 1:2 Multiplex drive mode

When two backplanes are provided in the LCD, the 1:2 multiplex mode applies. The PCF8562 allows the use of $\frac{1}{2}$ bias or $\frac{1}{3}$ bias in this mode as shown in Figure 7 and Figure 8.


Universal LCD driver for low multiplex rates

Universal LCD driver for low multiplex rates

7.4.3 1:3 Multiplex drive mode


When three backplanes are provided in the LCD, the 1:3 multiplex drive mode applies, as shown in Figure 9.

Universal LCD driver for low multiplex rates

7.4.4 1:4 Multiplex drive mode

When four backplanes are provided in the LCD, the 1:4 multiplex drive mode applies as shown in Figure 10.

Universal LCD driver for low multiplex rates

7.5 Oscillator

7.5.1 Internal clock

The internal logic of the PCF8562 and its LCD drive signals are timed either by its internal oscillator or by an external clock. The internal oscillator is enabled by connecting pin OSC to pin V_{SS} .

7.5.2 External clock

Pin CLK is enabled as an external clock input by connecting pin OSC to V_{DD}.

The LCD frame signal frequency is determined by the clock frequency (f_{clk}).

Remark: A clock signal must always be supplied to the device; removing the clock may freeze the LCD in a DC state, which is not suitable for the liquid crystal.

7.6 Timing

The PCF8562 timing controls the internal data flow of the device. This includes the transfer of display data from the display RAM to the display segment outputs. The timing also generates the LCD frame signal whose frequency is derived from the clock frequency. The frame signal frequency is a fixed division of the clock frequency from either

the internal or an external clock: $f_{fr} = \frac{f_{clk}}{24}$.

7.7 Display register

The display register holds the display data while the corresponding multiplex signals are generated.

7.8 Segment outputs

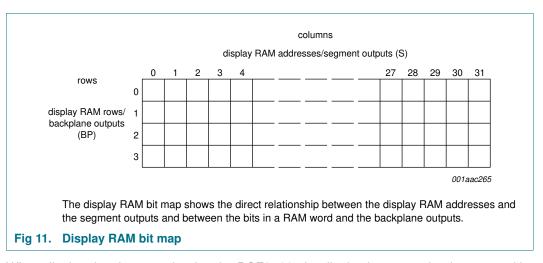
The LCD drive section includes 32 segment outputs S0 to S31 which should be connected directly to the LCD. The segment output signals are generated in accordance with the multiplexed backplane signals and with data residing in the display latch. When less than 32 segment outputs are required, the unused segment outputs should be left open-circuit.

7.9 Backplane outputs

The LCD drive section includes four backplane outputs BP0 to BP3 which must be connected directly to the LCD. The backplane output signals are generated in accordance with the selected LCD drive mode. If less than four backplane outputs are required, the unused outputs can be left open-circuit.

- In the 1:3 multiplex drive mode, BP3 carries the same signal as BP1, therefore these two adjacent outputs can be tied together to give enhanced drive capabilities.
- In the 1:2 multiplex drive mode, BP0 and BP2, respectively, BP1 and BP3 carry the same signals and may also be paired to increase the drive capabilities.
- In the static drive mode the same signal is carried by all four backplane outputs and they can be connected in parallel for very high drive requirements.

Universal LCD driver for low multiplex rates


7.10 Display RAM

The display RAM is a static 32×4 -bit RAM which stores LCD data. There is a one-to-one correspondence between

- the bits in the RAM bitmap and the LCD elements
- · the RAM columns and the segment outputs
- · the RAM rows and the backplane outputs.

A logic 1 in the RAM bitmap indicates the on-state of the corresponding LCD element; similarly, a logic 0 indicates the off-state.

The display RAM bit map Figure 11 shows the rows 0 to 3 which correspond with the backplane outputs BP0 to BP3, and the columns 0 to 31 which correspond with the segment outputs S0 to S31. In multiplexed LCD applications the segment data of the first, second, third, and fourth row of the display RAM are time-multiplexed with BP0, BP1, BP2, and BP3 respectively.

When display data is transmitted to the PCF8562, the display bytes received are stored in the display RAM in accordance with the selected LCD drive mode. The data is stored as it arrives and depending on the current multiplex drive mode the bits are stored singularly, in pairs, triples or quadruples. To illustrate the filling order, an example of a 7-segment numeric display showing all drive modes is given in Figure 12; the RAM filling organization depicted applies equally to other LCD types.

Universal LCD driver for low multiplex rates

drive mode	LCD segments	LCD backplanes	display RAM filling order	transmitted display byte
static	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	вро	Columns Colu	MSB LSB
	S _{n+5} - e c S _{n+7}		2 x x x x x x x x x x x x x x x x x x x	c b a f g e d DP
1:2 multiplex	S_{n} \xrightarrow{a} b S_{n+1} \xrightarrow{f} g S_{n+2} \xrightarrow{g} G	BP0 BP1	rows display RAM or rows/backplane outputs (BP) 2 x x x x x x	MSB LSB
1:3 multiplex	S_{n+3} Q DP S_{n+1} Q	BP0 BP1 BP2	Columns	MSB LSB
1:4 multiplex	S _n a b b g g C DP	BP0 BP2 BP3	Columns display RAM address/segment outputs (s) byte1 byte2 byte3 byte4 byte5	MSB LSB

x = data bit unchanged.

Fig 12. Relationship between LCD layout, drive mode, display RAM filling order and display data transmitted over the I²C-bus

Universal LCD driver for low multiplex rates

The following applies to Figure 12:

- In static drive mode the eight transmitted data bits are placed in row 0 as one byte.
- In 1:2 multiplex drive mode the eight transmitted data bits are placed in pairs into row 0 and 1 as two successive 4-bit RAM words.
- In 1:3 multiplex drive mode the eight bits are placed in triples into row 0, 1, and 2 as three successive 3-bit RAM words, with bit 3 of the third address left unchanged. It is not recommended to use this bit in a display because of the difficult addressing. This last bit may, if necessary, be controlled by an additional transfer to this address but care should be taken to avoid overwriting adjacent data because always full bytes are transmitted (see Section 7.10.3).
- In 1:4 multiplex drive mode, the eight transmitted data bits are placed in quadruples into row 0, 1, 2, and 3 as two successive 4-bit RAM words.

7.10.1 Data pointer

The addressing mechanism for the display RAM is realized using the data pointer. This allows the loading of an individual display data byte, or a series of display data bytes, into any location of the display RAM. The sequence commences with the initialization of the data pointer by the load-data-pointer command (see <u>Table 12</u>). Following this command, an arriving data byte is stored at the display RAM address indicated by the data pointer. The filling order is shown in Figure 12.

After each byte is stored, the content of the data pointer is automatically incremented by a value dependent on the selected LCD drive mode:

- · In static drive mode by eight
- In 1:2 multiplex drive mode by four
- In 1:3 multiplex drive mode by three
- In 1:4 multiplex drive mode by two

If an I²C-bus data access is terminated early then the state of the data pointer is unknown. The data pointer should be re-written prior to further RAM accesses.

7.10.2 Subaddress counter

The storage of display data is determined by the content of the subaddress counter. Storage is allowed to take place only when the content of the subaddress counter matches with the hardware subaddress applied to A0, A1, and A2. The subaddress counter value is defined by the device-select command (see <u>Table 13</u>). If the content of the subaddress counter and the hardware subaddress do not match then data storage is inhibited but the data pointer is incremented as if data storage had taken place. The subaddress counter is also incremented when the data pointer overflows.

The hardware subaddress must not be changed while the device is being accessed on the I^2C -bus interface.

7.10.3 RAM writing in 1:3 multiplex drive mode

In 1:3 multiplex drive mode, the RAM is written as shown in $\underline{\text{Table 6}}$ (see $\underline{\text{Figure 12}}$ as well).

Universal LCD driver for low multiplex rates

Table 6. Standard RAM filling in 1:3 multiplex drive mode

Assumption: BP2/S2, BP2/S5, BP2/S8 etc. are not connected to any elements on the display.

Display RAM bits (rows)/ backplane outputs (BPn)	Display RAM addresses (columns)/segment outputs (Sn)										
	0	1	2	3	4	5	6	7	8	9	:
0	a7	a4	a1	b7	b4	b1	с7	c4	c1	d7	:
1	a6	a3	a0	b6	b3	b0	с6	сЗ	с0	d6	:
2	a5	a2	-	b5	b2	-	с5	c2	-	d5	:
3	-	-	-	-	-	-	-	-	-	-	:

If the bit at position BP2/S2 would be written by a second byte transmitted, then the mapping of the segment bits would change as illustrated in Table 7.

Table 7. Entire RAM filling by rewriting in 1:3 multiplex drive mode

Assumption: BP2/S2, BP2/S5, BP2/S8 etc. are connected to elements on the display.

Display RAM	Display RAM addresses (columns)/segment outputs (Sn)										
bits (rows)/ backplane outputs (BPn)	0	1	2	3	4	5	6	7	8	9	:
0	a7	a4	a1/b7	b4	b1/c7	с4	c1/d7	d4	d1/e7	e4	:
1	a6	a3	a0/b6	b3	b0/c6	сЗ	c0/d6	d3	d0/e6	еЗ	:
2	а5	a2	b5	b2	с5	c2	d5	d2	e5	e2	:
3	-	-	-	-	-	-	-	-	-	-	:

In the case described in <u>Table 7</u> the RAM has to be written entirely and BP2/S2, BP2/S5, BP2/S8 etc. have to be connected to elements on the display. This can be achieved by a combination of writing and rewriting the RAM like follows:

- In the first write to the RAM, bits a7 to a0 are written.
- In the second write, bits b7 to b0 are written, overwriting bits a1 and a0 with bits b7 and b6.
- In the third write, bits c7 to c0 are written, overwriting bits b1 and b0 with bits c7 and c6.

Depending on the method of writing to the RAM (standard or entire filling by rewriting), some elements remain unused or can be used, but it has to be considered in the module layout process as well as in the driver software design.

7.10.4 Output bank selector

The output bank selector (see <u>Table 14</u>) selects one of the four rows per display RAM address for transfer to the display register. The actual row selected depends on the particular LCD drive mode in operation and on the instant in the multiplex sequence.

- In 1:4 multiplex mode, all RAM addresses of row 0 are selected, these are followed by the content of row 1, 2, and then 3
- In 1:3 multiplex mode, rows 0, 1, and 2 are selected sequentially
- In 1:2 multiplex mode, rows 0 and 1 are selected
- · In static mode, row 0 is selected

Universal LCD driver for low multiplex rates

The PCF8562 includes a RAM bank switching feature in the static and 1:2 multiplex drive modes. In the static drive mode, the bank-select command may request the content of row 2 to be selected for display instead of the content of row 0. In the 1:2 multiplex mode, the content of rows 2 and 3 may be selected instead of rows 0 and 1. This gives the provision for preparing display information in an alternative bank and to be able to switch to it once it is assembled.

7.10.5 Input bank selector

The input bank selector loads display data into the display RAM in accordance with the selected LCD drive configuration.

The bank-select command (see <u>Table 14</u>) can be used to load display data in row 2 in static drive mode or in rows 2 and 3 in 1:2 mode. The input bank selector functions are independent of the output bank selector.

7.11 Blinking

The display blinking capabilities of the PCF8562 are very versatile. The whole display can blink at frequencies selected by the blink-select command (see <u>Table 15</u>). The blink frequencies are fractions of the clock frequency. The ratio between the clock and blink frequencies depends on the blink mode selected (see <u>Table 8</u>).

An additional feature is for an arbitrary selection of LCD elements to blink. This applies to the static and 1:2 multiplex drive modes and can be implemented without any communication overheads. By means of the output bank selector, the displayed RAM banks are exchanged with alternate RAM banks at the blink frequency. This mode can also be specified by the blink-select command.

In the 1:3 and 1:4 multiplex modes, where no alternative RAM bank is available, groups of LCD elements can blink by selectively changing the display RAM data at fixed time intervals.

Table 8.	Blinking	frequencies	1]
----------	----------	-------------	----

Blink mode	Normal operating mode ratio	Nominal blink frequency
off	-	blinking off
1	$\frac{f_{clk}}{768}$	2 Hz
2	$\frac{f_{clk}}{1536}$	1 Hz
3	$\frac{f_{clk}}{3072}$	0.5 Hz

^[1] Blink modes 1, 2, and 3 and the nominal blink frequencies 0.5 Hz, 1 Hz, and 2 Hz correspond to an oscillator frequency (f_{clk}) of 1536 Hz (see Section 12).

The entire display can blink at a frequency other than the nominal blink frequency. This can be effectively performed by resetting and setting the display enable bit E at the required rate using the mode-set command (see Table 11).

Universal LCD driver for low multiplex rates

7.12 Command decoder

The command decoder identifies command bytes that arrive on the I²C-bus. The commands available to the PCF8562 are defined in Table 9.

Table 9. Definition of PCF8562 commands

Command	Ope	Operation code							Reference
Bit	7	6	5	4	3	2	1	0	
mode-set	С	1	0	<u>-[1]</u>	E	B M[1:0]			Table 11
load-data-pointer	С	0	0	P[4:0	0]	Table 12			
device-select	С	1	1	0	0	A[2:0)]		Table 13
bank-select	С	1	1	1	1	0	I	0	Table 14
blink-select	С	1	1	1	0	AB	BF[1	:0]	Table 15

^[1] Not used.

All available commands carry a continuation bit C in their most significant bit position as shown in <u>Figure 18</u>. When this bit is set, it indicates that the next byte of the transfer to arrive will also represent a command. If this bit is reset, it indicates that the command byte is the last in the transfer. Further bytes will be regarded as display data (see <u>Table 10</u>).

Table 10. C bit description

Bit	Symbol	Value	Description
7	С		continue bit
		0	last control byte in the transfer; next byte will be regarded as display data
		1	control bytes continue; next byte will be a command too

Table 11. Mode-set command bit description

Bit	Symbol	Value	Description	
7	С	0, 1	see Table 10	
6, 5	-	10	fixed value	
4	-	-	unused	
3	E		display status	
		0	disabled (blank)[1]	
		1	enabled	
2	В		LCD bias configuration [2]	
		0	$\frac{1}{3}$ bias	
		1	$\frac{1}{2}$ bias	
1 to 0	M[1:0]		LCD drive mode selection	
		01	static; BP0	
		10	1:2 multiplex; BP0, BP1	
		11	1:3 multiplex; BP0, BP1, BP2	
		00	1:4 multiplex; BP0, BP1, BP2, BP3	

^[1] The possibility to disable the display allows implementation of blinking under external control.

^[2] Not applicable for static drive mode.

Universal LCD driver for low multiplex rates

Table 12. Load-data-pointer command bit description

Bit	Symbol	Value	Description
7	С	0, 1	see <u>Table 10</u>
6, 5	-	00	fixed value
4 to 0	P[4:0]		5 bit binary value, 0 to 31; transferred to the data pointer to define one of 32 display RAM addresses

Table 13. Device-select command bit description

Bit	Symbol	Value	Description
7	С	0, 1	see Table 10
6 to 3	-	1100	fixed value
2 to 0	A[2:0]	000 to 111	3 bit binary value, 0 to 7; transferred to the subaddress counter to define one of eight hardware subaddresses

Table 14. Bank-select command bit description

Bit	Symbol	Value	Description	
			Static	1:2 multiplex[1]
7	С	0, 1	see <u>Table 10</u>	
6 to 2	-	11110	fixed value	
1	I		input bank selection; storage of arriving display data	
		0	RAM bit 0	RAM bits 0 and 1
		1	RAM bit 2	RAM bits 2 and 3
0	0		output bank selection; retrieval of LCD display data	
		0	RAM bit 0	RAM bits 0 and 1
		1	RAM bit 2	RAM bits 2 and 3

^[1] The bank-select command has no effect in 1:3 and 1:4 multiplex drive modes.

Table 15. Blink-select command bit description

Bit	Symbol	Value	Description
7	С	0, 1	see Table 10
6 to 3	-	1110	fixed value
2	AB		blink mode selection
		0	normal blinking[1]
		1	alternate RAM bank blinking[2]
1 to 0	BF[1:0]		blink frequency selection
		00	off
		01	1
		10	2
		11	3

^[1] Normal blinking is assumed when the LCD multiplex drive modes 1:3 or 1:4 are selected.

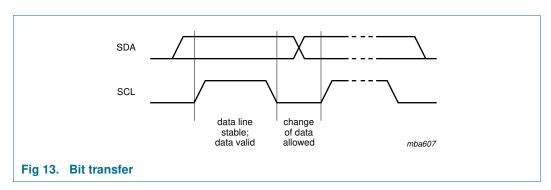
^[2] Alternate RAM bank blinking does not apply in 1:3 and 1:4 multiplex drive modes.

Universal LCD driver for low multiplex rates

7.13 Display controller

The display controller executes the commands identified by the command decoder. It contains the device's status registers and coordinates their effects. The display controller is also responsible for loading display data into the display RAM in the correct filling order.

Product data sheet

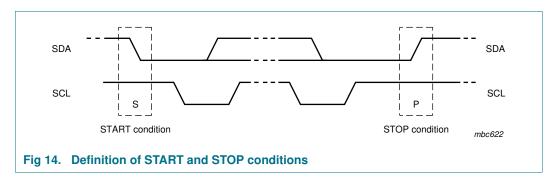

Universal LCD driver for low multiplex rates

8. Characteristics of the I²C-bus

The I²C-bus is for bidirectional, two-line communication between different ICs or modules. The two lines are a Serial DAta Line (SDA) and a Serial CLock line (SCL). Both lines must be connected to a positive supply via a pull-up resistor when connected to the output stages of a device. Data transfer may be initiated only when the bus is not busy.

8.1 Bit transfer

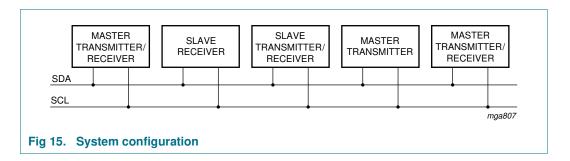
One data bit is transferred during each clock pulse. The data on the SDA line must remain stable during the HIGH period of the clock pulse as changes in the data line at this time will be interpreted as a control signal (see Figure 13).



8.2 START and STOP conditions

Both data and clock lines remain HIGH when the bus is not busy.

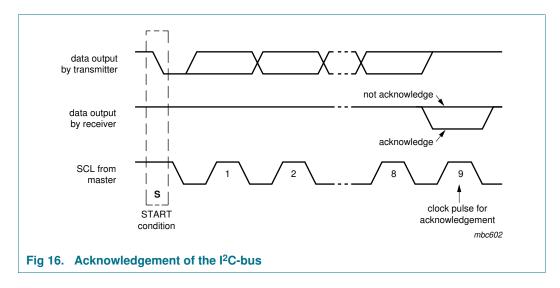
A HIGH-to-LOW transition of the data line while the clock is HIGH is defined as the START condition - S.


A LOW-to-HIGH transition of the data line while the clock is HIGH is defined as the STOP condition - P (see Figure 14).

8.3 System configuration

A device generating a message is a transmitter, a device receiving a message is the receiver. The device that controls the message is the master and the devices which are controlled by the master are the slaves (see Figure 15).

Universal LCD driver for low multiplex rates



8.4 Acknowledge

The number of data bytes transferred between the START and STOP conditions from transmitter to receiver is unlimited. Each byte of eight bits is followed by an acknowledge cycle.

- A slave receiver, which is addressed, must generate an acknowledge after the reception of each byte.
- A master receiver must generate an acknowledge after the reception of each byte that has been clocked out of the slave transmitter.
- The device that acknowledges must pull-down the SDA line during the acknowledge clock pulse, so that the SDA line is stable LOW during the HIGH period of the acknowledge related clock pulse (set-up and hold times must be taken into consideration).
- A master receiver must signal an end of data to the transmitter by not generating an
 acknowledge on the last byte that has been clocked out of the slave. In this event, the
 transmitter must leave the data line HIGH to enable the master to generate a STOP
 condition.

Acknowledgement on the I²C-bus is illustrated in Figure 16.

