mail

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

PCF8576D 40 × 4 universal LCD driver for low multiplex rates Rev. 15 – 12 February 2015 Produ

Product data sheet

1. General description

The PCF8576D is a peripheral device which interfaces to almost any Liquid Crystal Display (LCD)¹ with low multiplex rates. It generates the drive signals for any static or multiplexed LCD containing up to four backplanes and up to 40 segments. It can be easily cascaded for larger LCD applications. The PCF8576D is compatible with most microcontrollers and communicates via the two-line bidirectional I²C-bus. Communication overheads are minimized by a display RAM with auto-incremented addressing, by hardware subaddressing and by display memory switching (static and duplex drive modes).

- PCF8576DT/2 should not be used for new design-ins. Replacement part is PCF85176T/1 for industrial applications
- PCF8576DT/S400/2 should not be used for new design-ins. Replacement part is PCA85176T/Q900/1 for automotive applications

For a selection of NXP LCD segment drivers, see Table 30 on page 50.

2. Features and benefits

- AEC-Q100 compliant (PCF8576DT/S400/2) for automotive applications
- Single chip LCD controller and driver
- Selectable backplane drive configuration: static or 2, 3, 4 backplane multiplexing
- Selectable display bias configuration: static, ¹/₂, or ¹/₃
- Internal LCD bias generation with voltage-follower buffers
- 40 segment drives:
 - Up to 20 7-segment numeric characters
 - Up to 10 14-segment alphanumeric characters
 - Any graphics of up to 160 segments/elements
- 40 × 4-bit RAM for display data storage
- Auto-incremented display data loading across device subaddress boundaries
- Display memory bank switching in static and duplex drive modes
- Versatile blinking modes
- Independent supplies possible for LCD and logic voltages
- Wide power supply range: from 1.8 V to 5.5 V
- Wide logic LCD supply range:
 - From 2.5 V for low-threshold LCDs
 - ◆ Up to 6.5 V for high-threshold twisted nematic LCDs

^{1.} The definition of the abbreviations and acronyms used in this data sheet can be found in <u>Section 22</u>.

- Low power consumption
- 400 kHz l²C-bus interface
- May be cascaded for large LCD applications (up to 2560 segments/elements possible)
- No external components required
- Compatible with chip-on-glass and chip-on-board technology
- Manufactured in silicon gate CMOS process

3. Ordering information

Table 1.Ordering information

Product type number	Package								
	Name	Version							
PCF8576DT/2[1]	TSSOP56	plastic thin shrink small outline package, 56 leads; body width 6.1 mm	SOT364-1						
PCF8576DT/S400/2 ^[2]	TSSOP56	plastic thin shrink small outline package, 56 leads; body width 6.1 mm	SOT364-1						
PCF8576DU/DA/2	wire bond die	59 bonding pads	PCF8576DU/DA						
PCF8576DU/2DA/2	bare die	59 bumps	PCF8576DU/2DA						

[1] Not to be used for new designs. Replacement part is PCF85176T/1 for industrial applications.

[2] Not to be used for new designs. Replacement part is PCA85176T/Q900/1 for automotive applications.

3.1 Ordering options

PCF8576DU/2DA/2

Table 2.Ordering options

Product type number	Orderable part number	Sales item (12NC)	Delivery form	IC revision
PCF8576DT/2	PCF8576DT/2,118	935276166118	tape and reel, 13 inch	2
PCF8576DT/S400/2	PCF8576DT/S400/2,1	935287131118	tape and reel, 13 inch	2
PCF8576DU/DA/2	PCF8576DU/DA/2,026	935276239026	chips in tray	2
PCF8576DU/2DA/2	PCF8576DU/2DA/2,02	935276249026	chips in tray	2

4. Marking

Table 3. Marking codes Product type number Marking code PCF8576DT/2 PCF8576DT PCF8576DT/S400/2 PCF8576DT/S400 PCF8576DU/DA/2 PC8576D-2

PC8576D-2

40 × 4 universal LCD driver for low multiplex rates

5. Block diagram

40 × 4 universal LCD driver for low multiplex rates

6. Pinning information

6.1 Pinning

PCF8576D Product data sheet

40 × 4 universal LCD driver for low multiplex rates

6.2 Pin description

Table 4. Pin description

Input or input/output pins must always be at a defined level (V_{SS} or V_{DD}) unless otherwise specified.

Symbol	Pin		Description		
	PCF8576DT	PCF8576DU			
SDA	44	1, 58, 59	I ² C-bus serial data input and output		
SCL	45	2, 3	I ² C-bus serial clock input		
CLK	47	5	external clock input or output		
V _{DD}	48	6	supply voltage		
SYNC	46	4	cascade synchronization input or output; if not used it must be left open		
OSC	49	7	internal oscillator enable input		
A0 to A2	50 to 52	8 to 10	subaddress inputs		
SA0	53	11	I ² C-bus address input; bit 0		
V _{SS}	54	12 ^[1]	ground supply voltage		
V _{LCD}	55	13	LCD supply voltage		
BP0, BP2, BP1, BP3	56, 1, 2, 3	14 to 17	LCD backplane outputs		
S0 to S39	4 to 43	18 to 57	LCD segment outputs		
n.c.	-	-	not connected		

[1] The substrate (rear side of the die) is connected to V_{SS} and should be electrically isolated.

7. Functional description

The PCF8576D is a versatile peripheral device designed to interface between any microcontroller to a wide variety of LCD segment or dot matrix displays (see Figure 4). It can directly drive any static or multiplexed LCD containing up to four backplanes and up to 40 segments.

The possible display configurations of the PCF8576D depend on the number of active backplane outputs required. A selection of display configurations is shown in <u>Table 5</u>. All of these configurations can be implemented in the typical system shown in <u>Figure 5</u>.

Table 5.	Selection	of	possible	display	configurations
	OCICCUOI	U 1	possible	uispiuj	configurations

Number of							
Backplanes	Icons	Digits/Characters		Dot matrix: segments/ elements			
		7-segment ^[1]	14-segment ^[2]				
4	160	20	10	160 (4 × 40)			
3	120	15	7	120 (3 × 40)			
2	80	10	5	80 (2 × 40)			
1	40	5	2	40 (1 × 40)			

[1] 7 segment display has 8 segments/elements including the decimal point.

[2] 14 segment display has 16 segments/elements including decimal point and accent dot.

PCF8576D

40 × 4 universal LCD driver for low multiplex rates

The host microcontroller maintains the 2-line I²C-bus communication channel with the PCF8576D. The internal oscillator is enabled by connecting pin OSC to pin V_{SS}. The appropriate biasing voltages for the multiplexed LCD waveforms are generated internally. The only other connections required to complete the system are to the power supplies (V_{DD}, V_{SS}, and V_{LCD}) and the LCD panel chosen for the application.

7.1 Power-On Reset (POR)

At power-on the PCF8576D resets to the following starting conditions:

- All backplane and segment outputs are set to V_{LCD}
- The selected drive mode is: 1:4 multiplex with $\frac{1}{3}$ bias
- · Blinking is switched off
- · Input and output bank selectors are reset
- The I²C-bus interface is initialized
- The data pointer and the subaddress counter are cleared (set to logic 0)
- The display is disabled (bit E = 0, see <u>Table 12</u>)

Remark: Do not transfer data on the I^2C -bus for at least 1 ms after a power-on to allow the reset action to complete.

7.2 LCD bias generator

Fractional LCD biasing voltages are obtained from an internal voltage divider of three impedances connected between pins V_{LCD} and V_{SS}. The center impedance is bypassed by switch if the $1/_2$ bias voltage level for the 1:2 multiplex drive mode configuration is selected. The LCD voltage can be temperature compensated externally using the supply to pin V_{LCD}.

7.3 LCD voltage selector

The LCD voltage selector coordinates the multiplexing of the LCD in accordance with the selected LCD drive configuration. The operation of the voltage selector is controlled by the mode-set command from the command decoder. The biasing configurations that apply to the preferred modes of operation, together with the biasing characteristics as functions of V_{LCD} and the resulting discrimination ratios (D) are given in Table 6.

Discrimination is a term which is defined as the ratio of the on and off RMS voltage across a segment. It can be thought of as a measurement of contrast.

LCD drive	Number of:		LCD bias	$V_{off(RMS)}$	$V_{on(RMS)}$	$D = \frac{V_{on(RMS)}}{V_{off(RMS)}}$	
mode	Backplanes	Levels	configuration	V _{LCD}	V _{LCD}		
static	1	2	static	0	1	∞	
1:2 multiplex	2	3	1/2	0.354	0.791	2.236	
1:2 multiplex	2	4	1⁄3	0.333	0.745	2.236	
1:3 multiplex	3	4	1⁄3	0.333	0.638	1.915	
1:4 multiplex	4	4	1/3	0.333	0.577	1.732	

Table 6.Biasing characteristics

A practical value for V_{LCD} is determined by equating V_{off(RMS)} with a defined LCD threshold voltage (V_{th(off)}), typically when the LCD exhibits approximately 10 % contrast. In the static drive mode a suitable choice is V_{LCD} > $3V_{th(off)}$.

Multiplex drive modes of 1:3 and 1:4 with $\frac{1}{2}$ bias are possible but the discrimination and hence the contrast ratios are smaller.

Bias is calculated by $\frac{1}{1+a}$, where the values for a are

a = 1 for $\frac{1}{2}$ bias

a = 2 for $\frac{1}{3}$ bias

The RMS on-state voltage (Von(RMS)) for the LCD is calculated with Equation 1:

$$V_{on(RMS)} = V_{LCD} \sqrt{\frac{a^2 + 2a + n}{n \times (1 + a)^2}}$$
(1)

where the values for n are

- n = 1 for static drive mode
- n = 2 for 1:2 multiplex drive mode
- n = 3 for 1:3 multiplex drive mode
- n = 4 for 1:4 multiplex drive mode

The RMS off-state voltage (V_{off(RMS)}) for the LCD is calculated with Equation 2:

$$V_{off(RMS)} = V_{LCD} \sqrt{\frac{a^2 - 2a + n}{n \times (1 + a)^2}}$$
 (2)

Discrimination is the ratio of $V_{on(RMS)}$ to $V_{off(RMS)}$ and is determined from Equation 3:

PCF8576D

40 × 4 universal LCD driver for low multiplex rates

$$D = \frac{V_{on(RMS)}}{V_{off(RMS)}} = \sqrt{\frac{a^2 + 2a + n}{a^2 - 2a + n}}$$
(3)

Using Equation 3, the discrimination for an LCD drive mode of 1:3 multiplex with $\frac{1}{2}$ bias is $\sqrt{3} = 1.732$ and the discrimination for an LCD drive mode of 1:4 multiplex with $\frac{1}{2}$ bias is $\frac{\sqrt{21}}{3} = 1.528$.

The advantage of these LCD drive modes is a reduction of the LCD full scale voltage V_{LCD} as follows:

- 1:3 multiplex (1/2 bias): $V_{LCD} = \sqrt{6} \times V_{off(RMS)} = 2.449 V_{off(RMS)}$
- 1:4 multiplex (¹/₂ bias): $V_{LCD} = \left[\frac{(4 \times \sqrt{3})}{3}\right] = 2.309 V_{off(RMS)}$

These compare with $V_{LCD} = 3V_{off(RMS)}$ when $\frac{1}{3}$ bias is used.

It should be noted that V_{LCD} is sometimes referred as the LCD operating voltage.

7.3.1 Electro-optical performance

Suitable values for $V_{on(RMS)}$ and $V_{off(RMS)}$ are dependent on the LCD liquid used. The RMS voltage, at which a pixel will be switched on or off, determine the transmissibility of the pixel.

For any given liquid, there are two threshold values defined. One point is at 10 % relative transmission (at $V_{th(off)}$) and the other at 90 % relative transmission (at $V_{th(on)}$), see <u>Figure 6</u>. For a good contrast performance, the following rules should be followed:

$$V_{on(RMS)} \ge V_{th(on)} \tag{4}$$

 $V_{off(RMS)} \le V_{th(off)}$

 $V_{on(RMS)}$ and $V_{off(RMS)}$ are properties of the display driver and are affected by the selection of a, n (see <u>Equation 1</u> to <u>Equation 3</u>) and the V_{LCD} voltage.

 $V_{th(off)}$ and $V_{th(on)}$ are properties of the LCD liquid and can be provided by the module manufacturer. $V_{th(off)}$ is sometimes just named $V_{th}.$ $V_{th(on)}$ is sometimes named saturation voltage $V_{sat}.$

It is important to match the module properties to those of the driver in order to achieve optimum performance.

PCF8576D

(5)

40 × 4 universal LCD driver for low multiplex rates

40 × 4 universal LCD driver for low multiplex rates

7.4 LCD drive mode waveforms

7.4.1 Static drive mode

The static LCD drive mode is used when a single backplane is provided in the LCD. The backplane (BPn) and segment drive (S_n) waveforms for this mode are shown in Figure 7.

40 × 4 universal LCD driver for low multiplex rates

7.4.2 1:2 Multiplex drive mode

The 1:2 multiplex drive mode is used when two backplanes are provided in the LCD. This mode allows fractional LCD bias voltages of $\frac{1}{2}$ bias or $\frac{1}{3}$ bias as shown in Figure 8 and Figure 9.

NXP Semiconductors

PCF8576D

40 × 4 universal LCD driver for low multiplex rates

PCF8576D **Product data sheet**

40 × 4 universal LCD driver for low multiplex rates

7.4.3 1:3 Multiplex drive mode

When three backplanes are provided in the LCD, the 1:3 multiplex drive mode applies (see Figure 10).

40 × 4 universal LCD driver for low multiplex rates

7.4.4 1:4 Multiplex drive mode

When four backplanes are provided in the LCD, the 1:4 multiplex drive mode applies (see Figure 11).

7.5 Oscillator

7.5.1 Internal clock

The internal logic of the PCF8576D and its LCD drive signals are timed either by its internal oscillator or by an external clock. The internal oscillator is enabled by connecting pin OSC to pin V_{SS} . If the internal oscillator is used, the output from pin CLK can be used as the clock signal for several PCF8576Ds in the system that are connected in cascade.

7.5.2 External clock

Pin CLK is enabled as an external clock input by connecting pin OSC to V_{DD} . The LCD frame signal frequency is determined by the clock frequency (f_{clk}).

Remark: A clock signal must always be supplied to the device; removing the clock may freeze the LCD in a DC state, which is not suitable for the liquid crystal.

7.6 Timing

The PCF8576D timing controls the internal data flow of the device. This includes the transfer of display data from the display RAM to the display segment outputs. In cascaded applications, the correct timing relationship between each PCF8576D in the system is maintained by the synchronization signal at pin SYNC. The timing also generates the LCD frame signal whose frequency is derived from the clock frequency. The frame signal frequency is a fixed division of the clock frequency from either the internal or an external

clock:
$$f_{fr} = \frac{f_{clk}}{24}$$
.

7.7 Display register

The display latch holds the display data while the corresponding multiplex signals are generated.

7.8 Segment outputs

The LCD drive section includes 40 segment outputs S0 to S39 which should be connected directly to the LCD. The segment output signals are generated in accordance with the multiplexed backplane signals and with data residing in the display latch. When less than 40 segment outputs are required, the unused segment outputs should be left open-circuit.

7.9 Backplane outputs

The LCD drive section includes four backplane outputs BP0 to BP3 which must be connected directly to the LCD. The backplane output signals are generated in accordance with the selected LCD drive mode. If less than four backplane outputs are required, the unused outputs can be left open-circuit.

- In 1:3 multiplex drive mode, BP3 carries the same signal as BP1, therefore these two adjacent outputs can be tied together to give enhanced drive capabilities.
- In 1:2 multiplex drive mode, BP0 and BP2, respectively, BP1 and BP3 all carry the same signals and may also be paired to increase the drive capabilities.
- In static drive mode the same signal is carried by all four backplane outputs and they can be connected in parallel for very high drive requirements.

7.10 Display RAM

The display RAM is a static 40×4 -bit RAM which stores LCD data.

There is a one-to-one correspondence between

- · the bits in the RAM bitmap and the LCD segments/elements
- · the RAM columns and the segment outputs
- the RAM rows and the backplane outputs.

A logic 1 in the RAM bitmap indicates the on-state of the corresponding LCD element; similarly, a logic 0 indicates the off-state.

The display RAM bit map, Figure 12, shows the rows 0 to 3 which correspond with the backplane outputs BP0 to BP3, and the columns 0 to 39 which correspond with the segment outputs S0 to S39. In multiplexed LCD applications the segment data of the first, second, third and fourth row of the display RAM are time-multiplexed with BP0, BP1, BP2, and BP3 respectively.

When display data is transmitted to the PCF8576D, the received display bytes are stored in the display RAM in accordance with the selected LCD drive mode. The data is stored as it arrives and depending on the current multiplex drive mode the bits are stored singularly, in pairs, triples, or quadruples. To illustrate the filling order, an example of a 7-segment display showing all drive modes is given in Figure 13; the RAM filling organization depicted applies equally to other LCD types.

PCF8576D Product data sheet

All information provided in this document is subject to legal disclaimers Rev. 5 12 February 2015

© NXP Semiconductors N.V. 2015. All rights 19 of 59 reserved.

NXP Semiconductors

40 × 4 universal LCD driver for low multiplex rates CF8576D

J

The following applies to Figure 13:

- In static drive mode the eight transmitted data bits are placed into row 0 as one byte.
- In 1:2 multiplex drive mode the eight transmitted data bits are placed in pairs into row 0 and 1 as four successive 2-bit RAM words.
- In 1:3 multiplex drive mode the eight bits are placed in triples into row 0, 1, and 2 as three successive 3-bit RAM words, with bit 3 of the third address left unchanged. It is not recommended to use this bit in a display because of the difficult addressing. This last bit may, if necessary, be controlled by an additional transfer to this address, but care should be taken to avoid overwriting adjacent data because always full bytes are transmitted (see Section 7.10.3).
- In 1:4 multiplex drive mode, the eight transmitted data bits are placed in quadruples into row 0, 1, 2, and 3 as two successive 4-bit RAM words.

7.10.1 Data pointer

The addressing mechanism for the display RAM is realized using the data pointer. This allows the loading of an individual display data byte, or a series of display data bytes, into any location of the display RAM. The sequence commences with the initialization of the data pointer by the load-data-pointer command (see <u>Table 13</u>). Following this command, an arriving data byte is stored at the display RAM address indicated by the data pointer. The filling order is shown in <u>Figure 13</u>. After each byte is stored, the content of the data pointer is automatically incremented by a value dependent on the selected LCD drive mode:

- · In static drive mode by eight.
- In 1:2 multiplex drive mode by four.
- In 1:3 multiplex drive mode by three.
- In 1:4 multiplex drive mode by two.

If an I²C-bus data access terminates early then the state of the data pointer is unknown. Consequently, the data pointer must be rewritten prior to further RAM accesses.

7.10.2 Subaddress counter

The storage of display data is determined by the contents of the subaddress counter. Storage is allowed only when the content of the subaddress counter match with the hardware subaddress applied to A0, A1, and A2. The subaddress counter value is defined by the device-select command (see <u>Table 14</u>). If the content of the subaddress counter and the hardware subaddress do not match then data storage is inhibited but the data pointer is incremented as if data storage had taken place. The subaddress counter is also incremented when the data pointer overflows.

The storage arrangements described lead to extremely efficient data loading in cascaded applications. When a series of display bytes are sent to the display RAM, automatic wrap-over to the next PCF8576D occurs when the last RAM address is exceeded. Subaddressing across device boundaries is successful even if the change to the next device in the cascade occurs within a transmitted character.

The hardware subaddress must not be changed while the device is being accessed on the I^2C -bus interface.

7.10.3 RAM writing in 1:3 multiplex drive mode

In 1:3 multiplex drive mode, the RAM is written as shown in <u>Table 7</u> (see <u>Figure 13</u> as well).

Table 7. Standard RAM filling in 1:3 multiplex drive mode

Assumption: BP2/S2, BP2/S5, BP2/S8 etc. **are not connected** to any segments/elements on the display.

Display RAM bits (rows)/ backplane outputs (BPn)	Displa	Display RAM addresses (columns)/segment outputs (Sn)											
	0	1	2	3	4	5	6	7	8	9	•		
0	a7	a4	a1	b7	b4	b1	c7	c4	c1	d7	:		
1	a6	a3	a0	b6	b3	b0	c6	сЗ	c0	d6	:		
2	a5	a2	-	b5	b2	-	c5	c2	-	d5	:		
3	-	-	-	-	-	-	-	-	-	-	-		

If the bit at position BP2/S2 would be written by a second byte transmitted, then the mapping of the segment bits would change as illustrated in Table 8.

Table 8.Entire RAM filling by rewriting in 1:3 multiplex drive modeAssumption: BP2/S2, BP2/S5, BP2/S8 etc. are connected to segments/elements on the display.

Display RAM bits (rows)/ backplane outputs (BPn)	Displa	iy RAM	addres	sses (c	olumns	s)/segn	nent ou	tputs (Sn)		
	0	1	2	3	4	5	6	7	8	9	:
0	a7	a4	a1/b7	b4	b1/c7	c4	c1/d7	d4	d1/e7	e4	:
1	a6	a3	a0/b6	b3	b0/c6	c3	c0/d6	d3	d0/e6	e3	:
2	a5	a2	b5	b2	c5	c2	d5	d2	e5	e2	:
3	-	-	-	-	-	-	-	-	-	-	:

In the case described in <u>Table 8</u> the RAM has to be written entirely and BP2/S2, BP2/S5, BP2/S8 etc. have to be connected to segments/elements on the display. This can be achieved by a combination of writing and rewriting the RAM like follows:

- In the first write to the RAM, bits a7 to a0 are written.
- In the second write, bits b7 to b0 are written, overwriting bits a1 and a0 with bits b7 and b6.
- In the third write, bits c7 to c0 are written, overwriting bits b1 and b0 with bits c7 and c6.

Depending on the method of writing to the RAM (standard or entire filling by rewriting), some segments/elements remain unused or can be used, but it has to be considered in the module layout process as well as in the driver software design.

7.10.4 Writing over the RAM address boundary

In all multiplex drive modes, depending on the setting of the data pointer, it is possible to fill the RAM over the RAM address boundary. If the PCF8576D is part of a cascade the additional bits fall into the next device that also generates the acknowledge signal. If the PCF8576D is a single device or the last device in a cascade the additional bits will be discarded and no acknowledge signal will be generated.

7.10.5 Output bank selector

The output bank selector (see <u>Table 15</u>) selects one of the four rows per display RAM address for transfer to the display register. The actual row selected depends on the selected LCD drive mode in operation and on the instant in the multiplex sequence.

- In 1:4 multiplex mode, all RAM addresses of row 0 are selected, these are followed by the contents of row 1, 2, and then 3
- In 1:3 multiplex mode, rows 0, 1, and 2 are selected sequentially
- In 1:2 multiplex mode, rows 0 and 1 are selected
- In static mode, row 0 is selected

The PCF8576D includes a RAM bank switching feature in the static and 1:2 multiplex drive modes. In the static drive mode, the bank-select command may request the contents of row 2 to be selected for display instead of the contents of row 0. In the 1:2 multiplex mode, the contents of rows 2 and 3 may be selected instead of rows 0 and 1. This gives the provision for preparing display information in an alternative bank and to be able to switch to it once it is assembled.

7.10.6 Input bank selector

The input bank selector loads display data into the display RAM in accordance with the selected LCD drive configuration. Display data can be loaded in row 2 in static drive mode or in rows 2 and 3 in 1:2 multiplex drive mode by using the bank-select command (see Table 15). The input bank selector functions independently to the output bank selector.

7.11 Blinking

The display blinking capabilities of the PCF8576D are very versatile. The whole display can blink at frequencies selected by the blink-select command (see <u>Table 16</u>). The blink frequencies are derived from the clock frequency. The ratio between the clock and blink frequencies depends on the blink mode selected (see <u>Table 16</u>).

An additional feature is for an arbitrary selection of LCD segments/elements to blink. This applies to the static and 1:2 multiplex drive modes and can be implemented without any communication overheads. By means of the output bank selector, the displayed RAM banks are exchanged with alternate RAM banks at the blink frequency. This mode can also be specified by the blink-select command.

In the 1:3 and 1:4 multiplex modes, where no alternative RAM bank is available, groups of LCD segments/elements can blink by selectively changing the display RAM data at fixed time intervals.

The entire display can blink at a frequency other than the nominal blink frequency. This can be effectively performed by resetting and setting the display enable bit E at the required rate using the mode-set command (see <u>Table 12</u>).

PCF8576D

Blink mode	Normal operating mode ratio	Nominal blink frequency ^[1]
off	-	blinking off
1	<u>f_{clk}</u> 768	2 Hz
2	$\frac{f_{clk}}{1536}$	1 Hz
3	$\frac{f_{clk}}{3072}$	0.5 Hz

Table 9. Blinking frequencies

 Blink modes 1, 2 and 3 and the nominal blink frequencies 0.5 Hz, 1 Hz and 2 Hz correspond to an oscillator frequency (f_{clk}) of 1536 Hz (see <u>Section 13</u>).

7.12 Command decoder

The command decoder identifies command bytes that arrive on the I^2 C-bus. The commands available to the PCF8576D are defined in Table 10.

Table 10. Definition of PCF8576D commands

Command	Opera	Dperation code							Reference
Bit	7	6	5	4	3	2	1	0	
mode-set	С	1	0	- <u>[1]</u>	E	В	M[1:0]		Table 12
load-data-pointer	С	0	P[5:0] <u>Table 13</u>					Table 13	
device-select	С	1	1	0	0	A[2:0]			Table 14
bank-select	С	1	1	1	1	0	I	0	Table 15
blink-select	С	1	1	1	0	AB	BF[1:0]]	Table 16

[1] Not used.

All available commands carry a continuation bit C in their most significant bit position as shown in <u>Figure 19</u>. When this bit is set logic 1, it indicates that the next byte of the transfer to arrive will also represent a command. If this bit is set logic 0, it indicates that the command byte is the last in the transfer. Further bytes will be regarded as display data (see <u>Table 11</u>).

Table 11. C bit description

Bit	Symbol	Value	Description
7	С		continue bit
		0	last control byte in the transfer; next byte will be regarded as display data
		1	control bytes continue; next byte will be a command too

PCF8576D

Table 12.	Mode-set	command bit description					
Bit	Symbol	Value	Description				
7	С	0, 1	see Table 11				
6, 5	-	10	fixed value				
4	-	-	unused				
3	E		display status ^[1]				
		0[2]	disabled (blank) ^[3]				
		1	enabled				
2	В		LCD bias configuration ^[4]				
		0[2]	¹⁄₃ bias				
		1	1/2 bias				
1 to 0	M[1:0]		LCD drive mode selection				
		01	static; BP0				
		10	1:2 multiplex; BP0, BP1				
		11	1:3 multiplex; BP0, BP1, BP2				
		00[2]	1:4 multiplex; BP0, BP1, BP2, BP3				

d bit de rinti - L- 10

[1] The possibility to disable the display allows implementation of blinking under external control.

[2] Default value.

[3] The display is disabled by setting all backplane and segment outputs to V_{LCD} .

[4] Not applicable for static drive mode.

Table 13. Load-data-pointer command bit description See Section 7.10.1.

Bit	Symbol	Value	Description
7	С	0, 1	see Table 11
6	-	0	fixed value
5 to 0	P[5:0]	000000 <mark>[1]</mark> to 100111	6 bit binary value, 0 to 39; transferred to the data pointer to define one of forty display RAM addresses

[1] Default value.

Table 14. Device-select command bit description See Section 7.10.2.

Bit	Symbol	Value	Description
7	С	0, 1	see Table 11
6 to 3	-	1100	fixed value
2 to 0	A[2:0]	000 ^[1] to 111	3 bit binary value, 0 to 7; transferred to the subaddress counter to define one of eight hardware subaddresses

[1] Default value.

40 × 4 universal LCD driver for low multiplex rates

Bit	Symbol	Value	Description	
			Static	1:2 multiplex ^[1]
7	С	0, 1	see Table 11	
6 to 2	-	11110	fixed value	
1	I		input bank selection; storage of arriving display data	
		0[2]	RAM row 0	RAM rows 0 and 1
		1	RAM row 2	RAM rows 2 and 3
0	0		output bank selection; retrieval of LCD display data	
		0[2]	RAM row 0	RAM rows 0 and 1
		1	RAM row 2	RAM rows 2 and 3

Table 15. Bank-select command bit description See Section 7.10.5 and Section 7.10.6.

[1] The bank-select command has no effect in 1:3 and 1:4 multiplex drive modes.

[2] Default value.

Table 16. Blink-select command bit description

Bit	Symbol	Value	Description			
7	С	0, 1	see Table 11			
6 to 3	-	1110	fixed value			
2	AB		blink mode selection			
		0[2]	normal blinking ^[1]			
		1	alternate RAM bank blinking ^[3]			
1 to 0	BF[1:0]		blink frequency selection			
		00 <mark>[2]</mark>	off			
		01	1			
		10	2			
		11	3			

[1] Normal blinking is assumed when the LCD multiplex drive modes 1:3 or 1:4 are selected.

- [2] Default value.
- [3] Alternate RAM bank blinking does not apply in 1:3 and 1:4 multiplex drive modes.

7.13 Display controller

The display controller executes the commands identified by the command decoder. It contains the device's status registers and coordinates their effects. The display controller is also responsible for loading display data into the display RAM in the correct filling order.