

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

PCF8883

Capacitive touch/proximity switch with auto-calibration, large voltage operating range, and very low power consumption

Rev. 4.1 — 14 September 2016

Product data sheet

1. General description

The integrated circuit PCF8883 is a capacitive touch and proximity switch that uses a patented (EDISEN) digital method to detect a change in capacitance on a remote sensing plate. Changes in the static capacitance (as opposed to dynamic capacitance changes) are automatically compensated using continuous auto-calibration. Remote sensing plates (e.g. conductive foil) can be connected directly to the IC¹ or remotely using a coaxial cable.

2. Features and benefits

- Dynamic proximity switch
- Digital processing method
- Adjustable sensitivity, can be made very high
- Adjustable response time
- Wide input capacitance range (10 pF to 60 pF)
- Automatic calibration
- A large distance (several meters) between the sensing plate and the IC is possible
- Open-drain output (P-type MOSFET, external load between pin and ground)
- Designed for battery powered applications ($I_{DD} = 3 \mu A$, typical)
- Output configurable as push-button, toggle, or pulse
- Wide voltage operating range (V_{DD} = 3 V to 9 V)
- Large temperature operating range (T_{amb} = -40 °C to +85 °C)
- Internal voltage regulator
- Available in SOIC8 and wafer level chip-size package

3. Applications

- Proximity detection
- Proximity sensing in
 - Mobile phones
 - Portable entertainment units
- Switch for medical applications
- Switch for use in explosive environments
- Vandal proof switches
- Transportation: Switches in or under upholstery, leather, handles, mats, and glass

^{1.} The definition of the abbreviations and acronyms used in this data sheet can be found in Section 21.

Capacitive touch/proximity switch with auto-calibration

- Buildings: switch in or under carpets, glass, or tiles
- Sanitary applications: use of standard metal sanitary parts (e.g. tap) as switch
- Hermetically sealed keys on a keyboard

4. Ordering information

Table 1. Ordering information

Type number	Package					
	Name	Description	Version			
PCF8883T	SOIC8	plastic small outline package; 8 leads; body width 3.9 mm	PCF8883T			
PCF8883US	WLCSP8	wafer level chip-size package; 8 bumps	PCF8883US			

4.1 Ordering options

Table 2. Ordering options

Product type number	Orderable part number	Sales item (12NC)	Delivery form	IC revision
PCF8883T/1	PCF8883T/1,118	935289766118	tape and reel, 13 inch	1
PCF8883US/7EA/1	PCF8883US/7EA/1Y	935300777518	dry pack, tape and reel, 13 inch	1

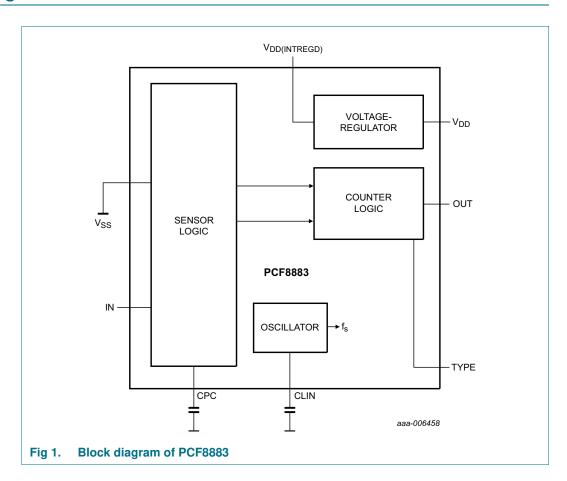
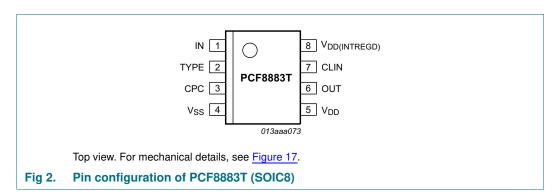
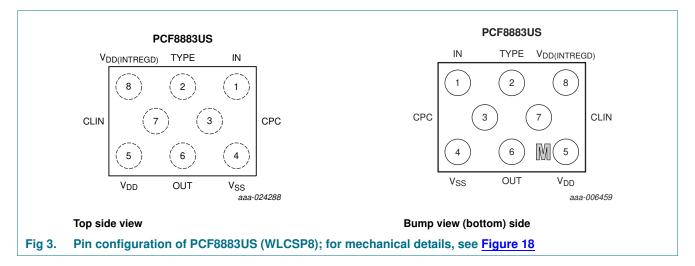

5. Marking

Table 3. Marking codes

Product type number	Marking code
PCF8883T	PCF8883
PCF8883US	PC 8883-1

Capacitive touch/proximity switch with auto-calibration


6. Block diagram



Capacitive touch/proximity switch with auto-calibration

7. Pinning information

7.1 Pinning

Capacitive touch/proximity switch with auto-calibration

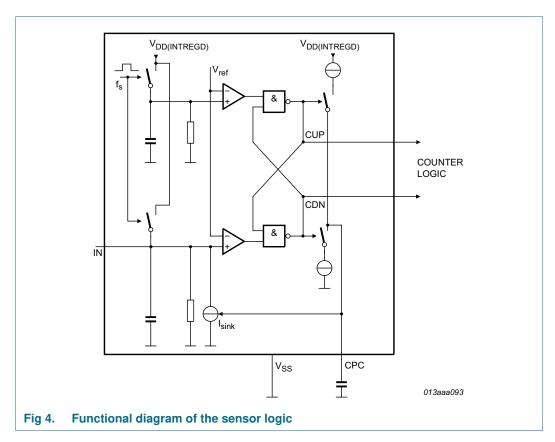
7.2 Pin description

Table 4. Pin description

Input or input/output pins must always be at a defined level (V_{SS} or V_{DD}) unless otherwise specified.

Symbol	Pin		Туре	Description
	PCF8883T	PCF8883US		
IN	1	1	analog input/output	sensor input
TYPE	2	2	input	pin OUT behavior configuration input
CPC	3	3	analog input/output	sensitivity setting
V _{SS} [1]	4	4	supply	ground supply voltage
V_{DD}	5	5	supply	supply voltage
OUT	6	6	output	switch output
CLIN	7	7	analog input/output	sampling rate setting
V _{DD(INTREGD)} [2]	8	8	supply	internal regulated supply voltage output

^[1] The substrate (rear side of the die) is connected to V_{SS} and should be electrically isolated.


^[2] The internal regulated supply voltage output must be decoupled with a decoupling capacitor to $V_{\rm SS}$.

Capacitive touch/proximity switch with auto-calibration

8. Functional description

Figure 4 and Figure 5 show the functional principle of the PCF8883.

The discharge time (t_{dch}) of a chip-internal RC timing circuit, to which the external sensing plate is connected via pin IN, is compared to the discharge time ($t_{dch(ref)}$) of a second chip-internal reference RC timing circuit. Both RC timing circuits are periodically charged from $V_{DD(INTREGD)}$ via identical switches and then discharged via a resistor to ground (V_{SS}). Both switches are synchronized.

The charge-discharge cycle is governed by the sampling rate (f_s). If the voltage of one of the RC timing circuits falls below the internal reference voltage V_{ref} , the respective comparator output becomes LOW. The logic following the comparators determines which comparator switches first. If the upper (reference) comparator switches, then a pulse is given on CUP. If the lower (input) comparator switches first, then a pulse is given on CDN (see Figure 4).


The pulses control the charge on the external capacitor C_{CPC} on pin CPC. Every time a pulse is given on CUP, capacitor C_{CPC} is charged from $V_{DD(INTREGD)}$ for a fixed time causing the voltage on C_{CPC} to rise. Likewise when a pulse occurs on CDN, capacitor C_{CPC} is connected to a current sink to ground for a fixed time causing the voltage on C_{CPC} to fall.

Capacitive touch/proximity switch with auto-calibration

If the capacitance on pin IN increases, the discharge time $t_{\rm dch}$ increases too. Therefore it takes longer for the voltage on the corresponding comparator to drop below $V_{\rm ref}$. Only once this happens, the comparator output becomes LOW and this results in a pulse on CDN discharging the external capacitor $C_{\rm CPC}$ slightly. Thus most pulses will now be given by CUP. Without further action, capacitor $C_{\rm CPC}$ would then fully charge.

However, a chip-internal automatic calibration mechanism that is based on a voltage controlled sink current (I_{sink}) connected to pin IN attempts to equalize the discharge time t_{dch} with the internal reference discharge time $t_{dch(ref)}$. The current source is controlled by the voltage on C_{CPC} which causes the capacitance on pin IN to be discharged more quickly in the case that the voltage on C_{CPC} is rising, thereby compensating for the increase in capacitance on input pin IN. This arrangement constitutes a closed-loop control system that constantly attempts to equalize the discharge time t_{dch} with $t_{dch(ref)}$. This allows compensating for slow changes in capacitance on input pin IN. Fast changes due to an approaching hand for example will not be compensated. In the equilibrium state, the discharge times are equal and the pulses alternate between CUP and CDN.

From this also follows, that an increase in capacitor value C_{CPC} results in a smaller voltage change per pulse CUP or CDN. Thus the compensation due to internal current sink source I_{sink} is slower and therefore the sensitivity of the sensor increases. Likewise a decrease in capacitor C_{CPC} results in a lower sensitivity. (For further information see Section 14.)

Capacitive touch/proximity switch with auto-calibration

The counter, following the sensor logic depicted in Figure 4, counts the pulses of CUP or CDN respectively. The counter is reset every time the pulse sequence changes from CUP to CDN or the other way around. Pin OUT will only be activated when enough consecutive CUP or CDN pulses occur. Low-level interference or slow changes in the input capacitance do not cause the output to switch.

Various measures, such as asymmetrical charge and discharge steps, are taken to ensure that the output switches off correctly. A special start-up circuit ensures that the device reaches equilibrium quickly when the supply is attached.

Pin OUT is an open-drain output capable of pulling an external load R_{ext} (at maximum current of 20 mA) up to V_{DD} . The load resistor must be dimensioned appropriately, taking the maximum expected V_{DD} voltage into account. The output is automatically deactivated (short circuit protection) for loads in excess of 30 mA. Pin OUT can also drive a CMOS input without connection of the external load.

A small internal 150 nA current sink I_{sink} enables a full voltage swing to take place on pin OUT, even if no load resistor is connected. This is useful for driving purely capacitive CMOS inputs. The falling slope can be fairly slow in this mode, depending on load capacitance.

The sampling rate (f_s) corresponds to half of the frequency used in the RC timing circuit. The sampling rate can be adjusted within a specified range by selecting the value of C_{CLIN} . The oscillator frequency is internally modulated by 4 % using a pseudo random signal. This prevents interference caused by local AC-fields.

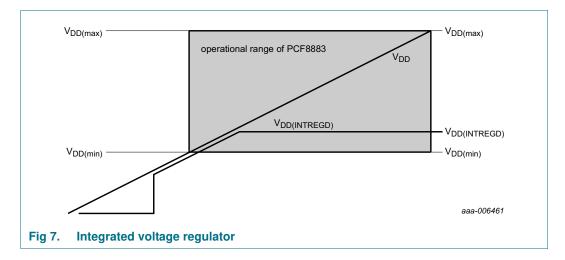
8.1 Output switching modes

The output switching behavior can be selected using pin TYPE (see Figure 6).


- Push-button (TYPE connected to V_{SS}): The output OUT is active as long as the capacitive event² lasts.
- Toggle (TYPE connected to V_{DD(INTREGD)}): The output OUT is activated by the first capacitive event and deactivated by a following capacitive event.
- Pulse (C_{TYPE} connected between TYPE and V_{SS}): The output OUT is activated for a
 defined time at each capacitive event. The pulse duration is determined by the value
 of C_{TYPE} and is approximately 2.5 ms/nF.

A typical value for C_{TYPE} is 4.7 nF which results in an output pulse duration of about 10 ms. The maximum value of C_{TYPE} is 470 nF which results in a pulse duration of about 1 s. Capacitive events are ignored that occur during the time the output is active.

<u>Figure 6</u> illustrates the switching behavior for the output switching modes. Additionally the graph illustrates, that short-term disturbances on the sensor are suppressed by the circuit.


^{2.} A capacitive event is a dynamic increase of capacitance at the sensor input pin IN.

Capacitive touch/proximity switch with auto-calibration

8.2 Voltage regulator

The PCF8883 implements a chip-internal voltage regulator supplied by pin V_{DD} that provides an internal supply ($V_{DD(INTREGD)}$) limited to a maximum of 4.6 V. The lock-in voltage V_{lockin} on V_{DD} is typically 4.0 V. <u>Figure 7</u> shows the relationship between V_{DD} and $V_{DD(INTREGD)}$.

Capacitive touch/proximity switch with auto-calibration

9. Safety notes

CAUTION

This device is sensitive to ElectroStatic Discharge (ESD). Observe precautions for handling electrostatic sensitive devices.

Such precautions are described in the ANSI/ESD S20.20, IEC/ST 61340-5, JESD625-A or equivalent standards.

CAUTION

Semiconductors are light sensitive. Exposure to light sources can cause the IC to malfunction. The IC must be protected against light. The protection must be applied to all sides of the IC.

10. Limiting values

Table 5. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions		Min	Max	Unit
V_{DD}	supply voltage			-0.5	+9	٧
VI	input voltage	on pins IN, TYPE, CPC		-0.5	$V_{DD(INTREGD)} + 0.5$	٧
Io	output current	on pin OUT		-10	+50	mA
I _{SS}	ground supply current			-10	+50	mA
I _I	input current	on any other pin		-10	+10	mA
P _{tot}	total power dissipation			-	100	mW
V_{ESD}	electrostatic discharge	НВМ	1]	-	±2500	٧
	voltage	MM	2]	-	±200	٧
I _{lu}	latch-up current	1	[3]	-	100	mA
T _{stg}	storage temperature]	[4]	-60	+125	°C
T _{amb}	ambient temperature	operating device		-40	+85	°C

- [1] Pass level; Human Body Model (HBM) according to Ref. 9 "JESD22-A114".
- [2] Pass level; Machine Model (MM), according to Ref. 10 "JESD22-A115".
- [3] Pass level; latch-up testing, according to Ref. 11 "JESD78" at maximum ambient temperature (T_{amb(max)}).
- [4] According to the store and transport requirements (see Ref. 14 "UM10569") the devices have to be stored at a temperature of +8 °C to +45 °C and a humidity of 25 % to 75 %.

Capacitive touch/proximity switch with auto-calibration

11. Static characteristics

Table 6. Static characteristics

 $V_{DD} = 5 \text{ V}, T_{amb} = +25 \text{ °C}; \text{ unless otherwise specified.}$

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{DD}	supply voltage	$ \begin{array}{ll} 10 \text{ pF} \leq C_i \leq 40 \text{ pF}; & \underline{1} \\ -40 ^{\circ}\text{C} \leq T_{amb} \leq +85 ^{\circ}\text{C} \end{array} $	3.0	-	9.0	V
		$ \begin{array}{ll} 10 \text{ pF} \leq C_i \leq 35 \text{ pF}; & \underline{\text{I2}} \\ -20 \text{ °C} \leq T_{amb} \leq +85 \text{ °C} \end{array} $	2.8	-	9.0	V
$V_{DD(INTREGD)}$	internal regulated supply voltage		3.0	4.0	4.6	V
$\Delta V_{DD(INTREGD)}$	internal regulated supply voltage variation	regulator voltage drop	-	10	50	mV
I _{DD}	supply current	idle state; f _s = 1 kHz	l			
		V _{DD} = 5.0 V	-	3	5	μА
		V _{DD} = 3.0 V	-	2.2	3.5	μΑ
I _{sink}	sink current	internal constant current to V _{SS}	-	150	-	nA
V _O	output voltage	on pin OUT; pull-up voltage	0	V_{DD}	9.0	V
Io	output current	P-MOS	0	10	20	mA
		short circuit protection $V_O \ge 0.6 \text{ V}$	20	30	50	mA
V_{sat}	saturation voltage	on pin OUT; I _O = +10 mA				
		V _{DD} = 5.0 V	0.1	0.2	0.4	٧
		V _{DD} = 3.0 V	0.1	0.3	0.5	٧
C _{dec}	decoupling capacitance	on pin V _{DD(INTREGD)}	100	-	220	nF
V _{I(CPC)}	input voltage on pin CPC		0.6	-	$V_{DD(INTREGD)} - 0.5$	V

^[1] Alternatively an external discharge resistor R_C can be used (see Section 14).

^[2] Tested on sample basis.

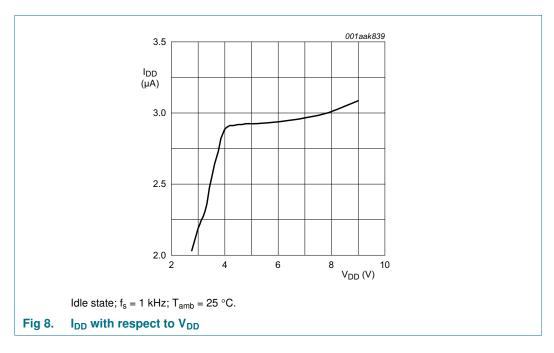
^[3] Idle state is the steady state after completed power-on without any activity on the sensor plate and the voltage on the reservoir capacitor C_{CPC} settled.

^[4] For reliability reasons, the average output current must be limited to 4.6 mA at 70 $^{\circ}$ C and 3.0 mA at 85 $^{\circ}$ C.

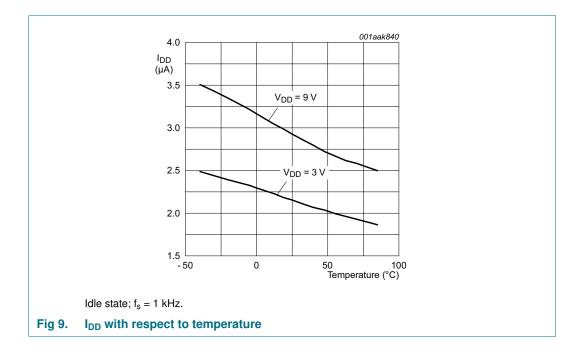
^[5] External ceramic chip capacitor recommended (see Figure 16).

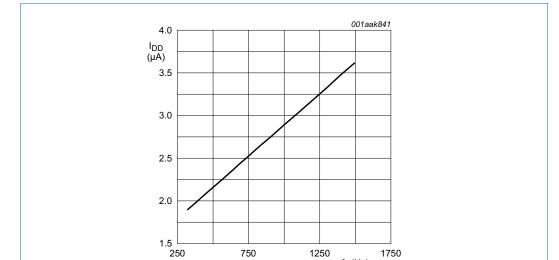
Capacitive touch/proximity switch with auto-calibration

12. Dynamic characteristics


Table 7. Dynamic characteristics

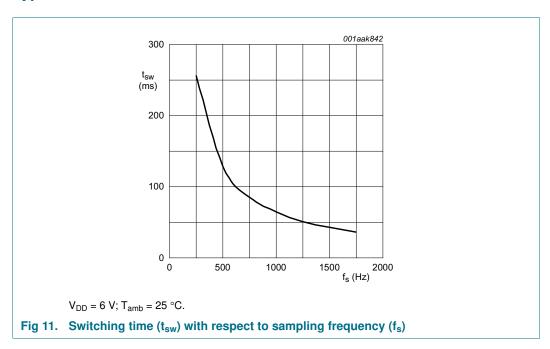
 V_{DD} = 5 V, C_{CLIN} = 22 pF, C_{CPC} = 470 nF, T_{amb} = +25 °C; unless otherwise specified.


Symbol	Parameter	Conditions	Min	Тур	Max	Unit
C _{CLIN}	capacitance on pin CLIN		0	22	100	pF
C _{CPC}	capacitance on pin CPC	X7R ceramic chip capacitor	90	470	2500	nF
N _{res(dig)eq}	equivalent digital resolution		-	14	-	bit
C _{TYPE}	capacitance on pin TYPE		0.1	-	470	nF
Ci	input capacitance	sensing plate and connecting cable				
		V _{DD} = 5.0 V	10	-	60	pF
		$T_{amb} = -40 ^{\circ}\text{C} \text{ to } +85 ^{\circ}\text{C};$ $V_{DD} = 3.0 ^{\circ}\text{V}$	10	-	40	pF
t _{startup}	start-up time	until normal operation is established	-	0.5	-	s
t _p	pulse duration	on pin OUT; in pulse mode; $C_{\text{TYPE}} \ge 10 \text{ nF}$	-	2.5	-	ms/nF
f _s	sampling frequency	C _{CLIN} = 0 pF	-	3.3	-	kHz
		C _{CLIN} = 22 pF (typical value)	-	1	-	kHz
		C _{CLIN} = 100 pF	-	275	-	Hz
t _{sw}	switching time	at f _s = 1 kHz	-	64	-	ms


13. Characteristic curves

13.1 Power consumption

Capacitive touch/proximity switch with auto-calibration


f_s (Hz)

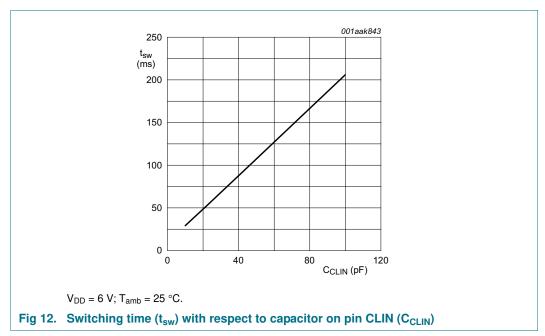
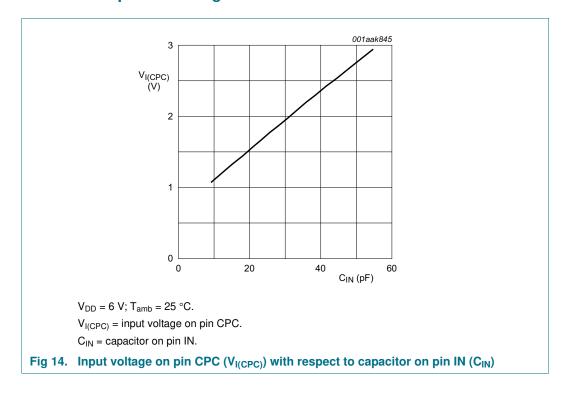
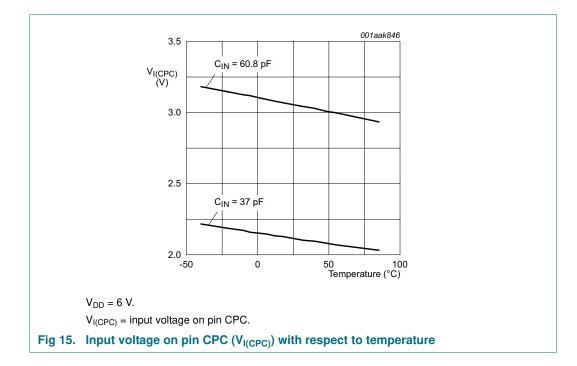

Idle state; $V_{DD} = 6 \text{ V}$; $T_{amb} = 25 \text{ °C}$.

Fig 10. I_{DD} with respect to sampling frequency (f_s)

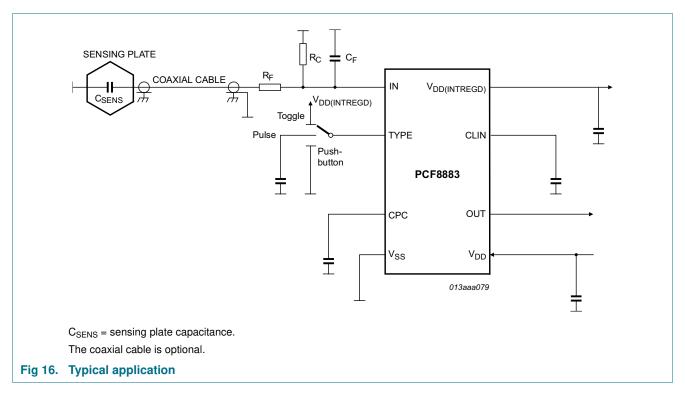
Capacitive touch/proximity switch with auto-calibration

13.2 Typical reaction time




Capacitive touch/proximity switch with auto-calibration

13.3 Reservoir capacitor voltage


Capacitive touch/proximity switch with auto-calibration

Capacitive touch/proximity switch with auto-calibration

14. Application information

<u>Figure 16</u> shows the typical connections for a general application³. The positive supply is connected to pin V_{DD} . It is recommended to connect smoothing capacitors to ground to both V_{DD} and $V_{DD(INTREGD)}$ (values for C_{dec} , see <u>Table 6</u>).

The sampling rate is determined by the capacitance C_{CLIN} on pin CLIN. A higher sampling rate reduces the reaction time and increases the current consumption.

The sensing plate capacitance C_{SENS} may consist of a small metal area, for example behind an isolating layer. The sensing plate can be connected to a coaxial cable (C_{CABLE}) which in turn is connected to the input pin IN. Alternatively, the sensing plate can be directly connected to the input pin IN. An internal low pass filter is used to reduce RF interference. An additional low pass filter consisting of a resistor R_F and capacitor C_F can be added to the input to further improve RF immunity as required. For good performance, the total amount of capacitance on the input ($C_{SENS} + C_{CABLE} + C_F$) should be in the proper range, the optimum point being around 30 pF. These conditions allow the control loop to adapt to the static capacitance on C_{SENS} and to compensate for slow changes in the sensing plate capacitance. A higher capacitive input loading is possible if an additional discharge resistor R_C is placed as shown in Figure 16. Resistor R_C simply reduces the discharge time such that the internal timing requirements are fulfilled.

The sensitivity of the sensor can be influenced by the sensing plate area and capacitor C_{CPC} . The sensitivity is significantly reduced when C_{CPC} is reduced. When maximum sensitivity is desired C_{CPC} can be increased, but this also increases sensitivity to interference. Pin CPC has high-impedance and is sensitive to leakage currents.

PCF8883

^{3.} For further information, see Ref. 4 "AN10832". Information about the appropriate evaluation board can be found in Ref. 13 "UM10370".

Capacitive touch/proximity switch with auto-calibration

Remark: C_{CPC} should be a high-quality foil or ceramic capacitor, for example an X7R type.

When limiting the maximum input capacitance to 35 pF and the minimum operating temperature to $-20\,^{\circ}\text{C}$ then the minimum operating voltage can be reduced to 2.8 V. The main limitation when lowering the supply voltage is a reduction in the range of the $V_{I(CPC)}$ voltage, which is specified from 0.6 V to $V_{DD}-0.3$ V. Reducing the $V_{I(CPC)}$ working range is equivalent to reducing the input capacitance range. Additionally, $V_{I(CPC)}$ increases with decreasing temperature, as illustrated in Figure 14 and Figure 15. This means that it is possible to lower the supply voltage if the minimum temperature will be raised accordingly.

For the choice of proper component values for a given application, the component specifications in <u>Table 6</u> and <u>Table 7</u> must be followed.

Capacitive touch/proximity switch with auto-calibration

15. Package outline

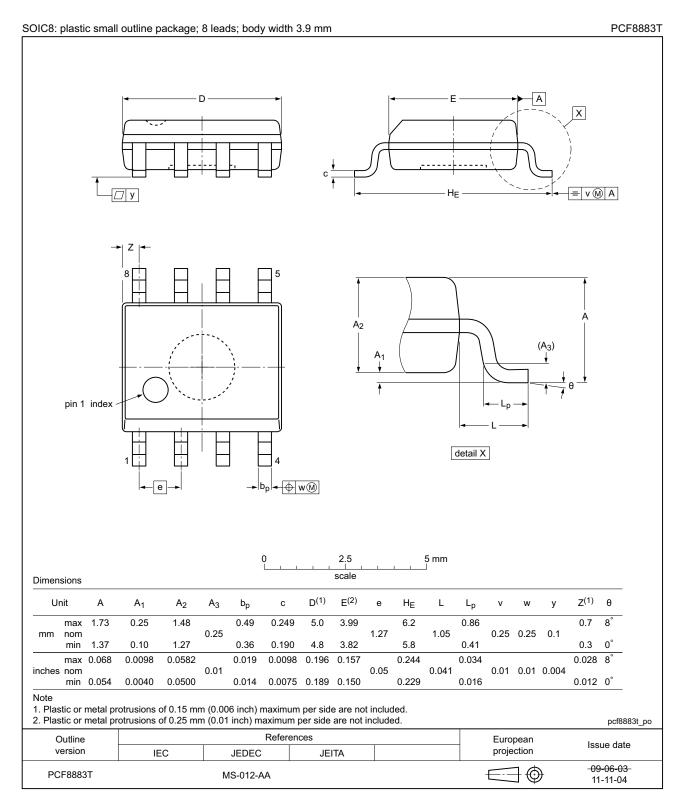


Fig 17. Package outline of PCF8883T (SOIC8)

Capacitive touch/proximity switch with auto-calibration

16. Bare die outline

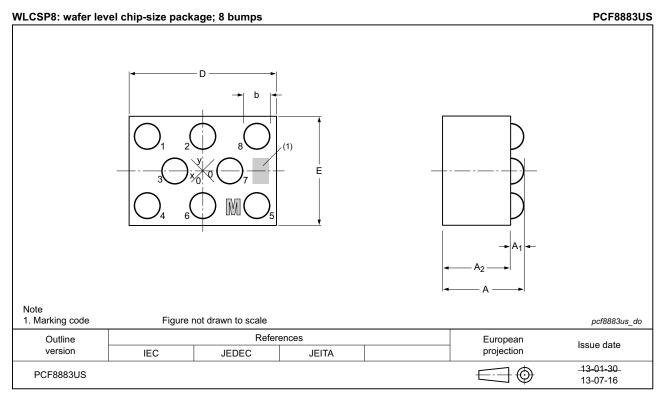


Fig 18. WLCSP8 outline of PCF8883US

Table 8. Dimension of PCF8883US

Original dimensions are in mm.

Unit (mm)	A	A ₁	A ₂	b	D	E
max	-	-	-	-	1.19	0.89
nom	0.55	0.11	0.44	0.2	1.16	0.86
min	-	-	-	-	1.13	0.83

Table 9. Solder bump locations

All coordinates are in μm and referenced to the center of the die (see Figure 18).

Symbol	Pin	X	Υ	Туре	Description
IN	1	-430	280	analog input/ output	sensor input
TYPE	2	0	280	input	pin OUT behavior configuration input
CPC	3	-225	0	analog input/ output	sensitivity setting
V_{SS}	4	-430	-280	supply	ground supply voltage
V_{DD}	5	430	-280	supply	supply voltage
OUT	6	0	-280	output	switch output
CLIN	7	225	0	analog input/ output	sampling rate setting
$V_{DD(INTREGD)}$	8	430	280	supply	internal regulated supply voltage output

Capacitive touch/proximity switch with auto-calibration

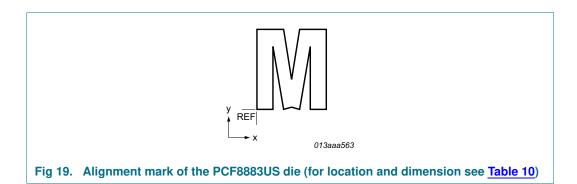


Table 10. Alignment mark dimension and location

Coordinates				
x	у			
Location[1]				
172 μm	–371 μm			
Dimension[2]				
117 μm	131 μm			

- [1] The x/y coordinates of the alignment mark location represent the position of the REF point (see <u>Figure 19</u>) with respect to the center (x/y = 0) of the chip.
- [2] The x/y values of the dimensions represent the extensions of the alignment mark in direction of the coordinate axis (see Figure 19).

17. Handling information

All input and output pins are protected against ElectroStatic Discharge (ESD) under normal handling. When handling Metal-Oxide Semiconductor (MOS) devices ensure that all normal precautions are taken as described in *JESD625-A*, *IEC 61340-5* or equivalent standards.

Capacitive touch/proximity switch with auto-calibration

18. Packing information

18.1 Tape and reel information

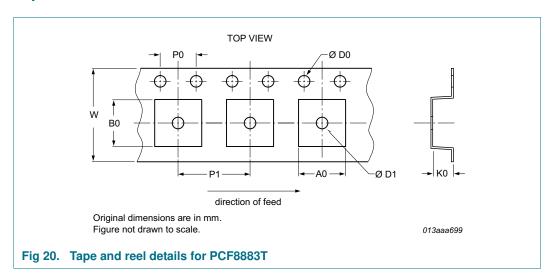


Table 11. Carrier tape dimensions of PCF8883T

Nominal values without production tolerances.

Symbol	Description	Value	Unit
Compartmen	ts	·	
A0	pocket width in x direction	6.3 to 6.5	mm
B0	pocket width in y direction	5.4	mm
K0	pocket depth	2.05 to 2.1	mm
P1	pocket hole pitch	8	mm
D1	pocket hole diameter	1.5	mm
Overall dime	nsions	·	
W	tape width	12	mm
D0	sprocket hole diameter	1.5 to 1.55	mm
P0	sprocket hole pitch	4	mm

NXP Semiconductors

Capacitive touch/proximity switch with auto-calibration

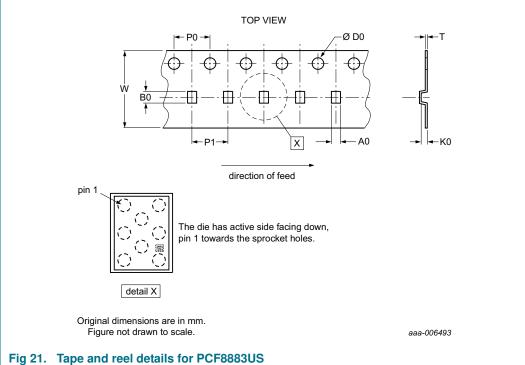


Table 12. Carrier tape dimensions of PCF8883US

Nominal values without production tolerances.

Symbol	Description	Value	Unit
Compartmen	ts		·
A0	pocket width in x direction	0.96	mm
B0	pocket width in y direction	1.37	mm
K0	pocket depth	0.77	mm
Overall dimer	nsions		·
W	tape width	8	mm
T	tape thickness	0.2	mm
D0	sprocket hole diameter	1.5	mm
P0	sprocket hole pitch	4	mm

Capacitive touch/proximity switch with auto-calibration

19. Soldering of SMD packages

This text provides a very brief insight into a complex technology. A more in-depth account of soldering ICs can be found in Application Note *AN10365 "Surface mount reflow soldering description"*.

19.1 Introduction to soldering

Soldering is one of the most common methods through which packages are attached to Printed Circuit Boards (PCBs), to form electrical circuits. The soldered joint provides both the mechanical and the electrical connection. There is no single soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and Surface Mount Devices (SMDs) are mixed on one printed wiring board; however, it is not suitable for fine pitch SMDs. Reflow soldering is ideal for the small pitches and high densities that come with increased miniaturization.

19.2 Wave and reflow soldering

Wave soldering is a joining technology in which the joints are made by solder coming from a standing wave of liquid solder. The wave soldering process is suitable for the following:

- Through-hole components
- · Leaded or leadless SMDs, which are glued to the surface of the printed circuit board

Not all SMDs can be wave soldered. Packages with solder balls, and some leadless packages which have solder lands underneath the body, cannot be wave soldered. Also, leaded SMDs with leads having a pitch smaller than \sim 0.6 mm cannot be wave soldered, due to an increased probability of bridging.

The reflow soldering process involves applying solder paste to a board, followed by component placement and exposure to a temperature profile. Leaded packages, packages with solder balls, and leadless packages are all reflow solderable.

Key characteristics in both wave and reflow soldering are:

- · Board specifications, including the board finish, solder masks and vias
- Package footprints, including solder thieves and orientation
- The moisture sensitivity level of the packages
- · Package placement
- · Inspection and repair
- Lead-free soldering versus SnPb soldering

19.3 Wave soldering

Key characteristics in wave soldering are:

- Process issues, such as application of adhesive and flux, clinching of leads, board transport, the solder wave parameters, and the time during which components are exposed to the wave
- · Solder bath specifications, including temperature and impurities

Capacitive touch/proximity switch with auto-calibration

19.4 Reflow soldering

Key characteristics in reflow soldering are:

- Lead-free versus SnPb soldering; note that a lead-free reflow process usually leads to higher minimum peak temperatures (see <u>Figure 22</u>) than a SnPb process, thus reducing the process window
- Solder paste printing issues including smearing, release, and adjusting the process window for a mix of large and small components on one board
- Reflow temperature profile; this profile includes preheat, reflow (in which the board is heated to the peak temperature) and cooling down. It is imperative that the peak temperature is high enough for the solder to make reliable solder joints (a solder paste characteristic). In addition, the peak temperature must be low enough that the packages and/or boards are not damaged. The peak temperature of the package depends on package thickness and volume and is classified in accordance with Table 13 and 14

Table 13. SnPb eutectic process (from J-STD-020D)

Package thickness (mm)	Package reflow temperature (°C) Volume (mm³)		
	< 350	≥ 350	
< 2.5	235	220	
≥ 2.5	220	220	

Table 14. Lead-free process (from J-STD-020D)

Package thickness (mm)	Package reflow temperature (°C)			
	Volume (mm³)			
	< 350	350 to 2000	> 2000	
< 1.6	260	260	260	
1.6 to 2.5	260	250	245	
> 2.5	250	245	245	

Moisture sensitivity precautions, as indicated on the packing, must be respected at all times.

Studies have shown that small packages reach higher temperatures during reflow soldering, see Figure 22.