

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

General Purpose Peak EMI Reduction IC

Functional Description

PCS3P8504A is a versatile, 3.3 V Timing-Safe™ Peak EMI reduction IC. PCS3P8504A accepts an input clock either from a fundamental Crystal or from an external reference (AC or DC coupled to XIN/CLKIN) and locks on to it delivering a 1x modulated clock output. PCS3P8504A has a SSON pin for enabling and disabling Spread Spectrum function.

PCS3P8504A has an SSEXTR pin to select different deviations depending upon the value of an external resistor connected between SSEXTR and GND. Modulation Rate (MR) control selects one of the two different Modulation Rates.

PCS3P8504A operates from a 3.3 V supply, and is available in an 8-pin, WDFN(2 mm x 2 mm) package.

General Features

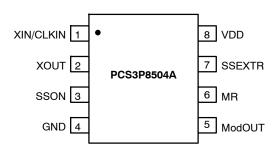
- 1x, LVCMOS Peak EMI Reduction
- Input frequency:
 - ♦ 15 MHz 50 MHz
- Output frequency:
 - ♦ 15 MHz 50 MHz
- Analog Deviation Selection
- ModRate selection option
- Spread Spectrum Enable/Disable
- Supply Voltage: $3.3 \text{ V} \pm 0.3 \text{ V}$
- 8-pin, WDFN 2 mm x 2 mm (TDFN) Package
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

Application

 PCS3P8504A is targeted for consumer electronics application like DPF, MFP.

ON Semiconductor®

http://onsemi.com


WDFN8 CASE 511AQ MARKING DIAGRAMS

DA = Specific Device Code

M = Date Code= Pb-Free Device

PIN CONFIGURATION

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.

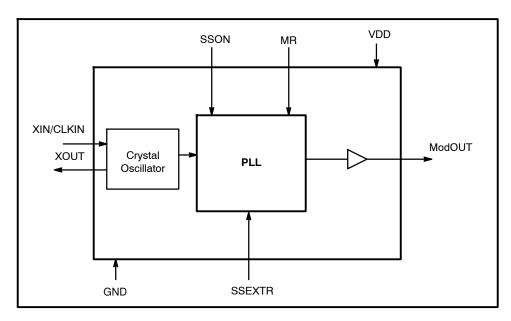


Figure 1. Block Diagram

Table 1. PIN DESCRIPTION

Pin#	Pin Name	Туре	Description
1	XIN / CLKIN	I	Crystal connection or External reference clock input.
2	XOUT	0	Crystal connection. If using an external reference, this pin should be left open.
3	SSON	-	Spread Spectrum ON/OFF. Spread Spectrum function enabled when HIGH, disabled when LOW. Has an internal pull-up resistor.
4	GND	Р	Ground
5	ModOUT	0	Modulated clock output
6	MR	I	Modulation Rate Select. When LOW selects Low Modulation Rate. Selects High Modulation Rate when pulled HIGH. Has an internal pull-up resistor.
7	SSEXTR	I	Analog Deviation Selection through external resistor to GND.
8	V_{DD}	Р	3.3 V supply Voltage.

Table 2. OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit
V_{DD}	Supply Voltage	3	3.6	V
T _A	Operating Temperature	0	70	°C
C _L	Load Capacitance		10	pF
C _{IN}	Input Capacitance		7	pF

Table 3. ABSOLUTE MAXIMUM RATING

Symbol	Parameter	Rating	Unit
V_{DD}, V_{IN}	Voltage on any input pin with respect to Ground	-0.5 to +4.6	٧
T _{STG}	Storage temperature	-65 to +125	°C
Ts	Max. Soldering Temperature (10 sec)	260	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Table 3. ABSOLUTE MAXIMUM RATING

Symbol	Parameter	Rating	Unit
TJ	Junction Temperature	150	°C
T _{DV}	Static Discharge Voltage (As per JEDEC STD22- A114-B)	2	kV

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Table 4. DC ELECTRICAL CHARACTERISTICS

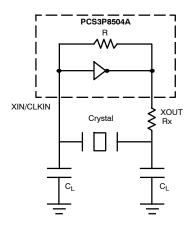
Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
VDD	Supply Voltage		3.0	3.3	3.6	V
V_{IL}	Input LOW Voltage				0.8	V
V _{IH}	Input HIGH Voltage		2.0			V
I _{IL}	Input LOW Current	V _{IN} = 0 V			25	μΑ
I _{IH}	Input HIGH Current	$V_{IN} = V_{DD}$			25	μΑ
V _{OL}	Output LOW Voltage	I _{OL} = 8 mA			0.4	V
V _{OH}	Output HIGH Voltage	I _{OH} = -8 mA	2.4			V
I _{CC}	Static Supply Current	XIN / CLKIN pulled low			50	μΑ
I _{DD}	Dynamic Supply Current	Unloaded Output			20	mA
Z _o	Output Impedance			30		Ω

Table 5. SWITCHING CHARACTERISTICS

Parameter	Test Conditions	Min	Тур	Max	Unit
Input Frequency* / ModOUT		15		50	MHz
Duty Cycle (Notes 1 and 2)	Measured at V _{DD} / 2	45	50	55	%
Output Rise Time (Notes 1 and 2)	Measured between 20% to 80%			1.8	ns
Output Fall Time (Notes 1 and 2)	Measured between 80% to 20%			1.6	ns
Cycle-to-Cycle Jitter (Note 2)	Unloaded output with SSEXTR OPEN @ 27 MHz		± 150	±250	ps
PLL Lock Time (Note 2)	Stable power supply, valid clock presented on XIN / CLKIN			3	ms

^{*}Functionality with Crystal is guaranteed by design and characterization. Not 100% tested in production.

1. All parameters are specified with10 pF loaded outputs.


^{2.} Parameter is guaranteed by design and characterization. Not 100% tested in production.

TYPICAL CRYSTAL SPECIFICATIONS

FUNDAMENTAL AT CUT PARALLEL RESONANT CRYSTAL

Nominal frequency	27 MHz
Frequency tolerance	±50 ppm or better at 25°C
Operating temperature range	-25°C to +85°C
Storage temperature	-40°C to +85°C
Load capacitance (C _P)	18 pF
Shunt capacitance	7 pF maximum
ESR	25 Ω

NOTE: C_L is the Load Capacitance and Rx is used to prevent oscillations at overtone frequency of the Fundamental frequency.

 $C_L = 2 * (C_P - C_S),$

Where C_P = Load capacitance of crystal from crystal vendor datasheet C_S = Stray capacitance due to C_{IN} , PCB, Trace etc.

Figure 2. Typical Crystal Interface Circuit

SWITCHING WAVEFORMS

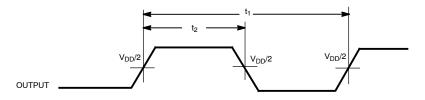


Figure 3. Duty Cycle Timing

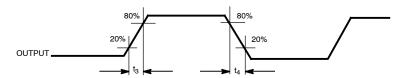
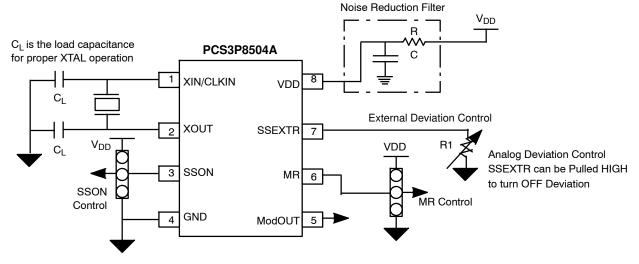



Figure 4. Output Rise/Fall Time

IOTE: SSON (Pin#3) MR (Pin#6): Connect to V_{DD} or GND Refer to Pin Description table for Functionality details

Figure 5. Application Schematic

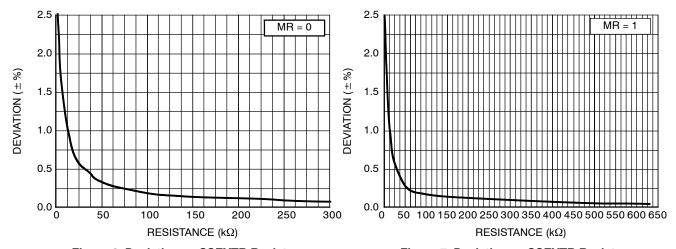
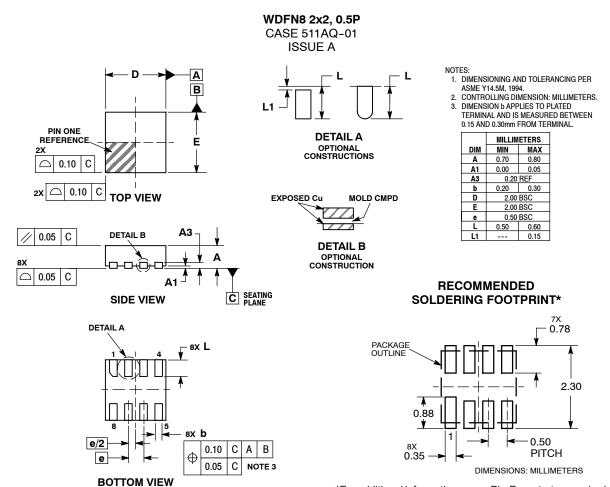


Figure 6. Deviation vs SSEXTR Resistance Chart at 27 MHz

Figure 7. Deviation vs SSEXTR Resistance Chart at 27 MHz

NOTE: Device to Device variation of Deviation is $\pm 10\%$


ORDERING INFORMATION

Part Number	Top Marking	Temperature	Package Type	Shipping [†]
PCS3P8504AG-08CR	DA	0°C to +70°C	8-Pin (2 mm x 2 mm) WDFN(TDFN) (Pb-Free)	Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

^{*}A "microdot" placed at the end of last row of marking or just below the last row toward the center of package indicates Pb-Free.

PACKAGE DIMENSIONS

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

Timing-Safe is a trademark of Semiconductor Components Industries, LLC (SCILLC).

ON Semiconductor and limit are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center

Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative