: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Rev. 1 - 2 July 2012
Product data sheet

1. General description

The PCU9654 is a UFm $I^{2} \mathrm{C}$-bus controlled 8 -bit LED driver optimized for voltage switch dimming and blinking 100 mA Red/Green/Blue/Amber (RGBA) LEDs. Each LED output has its own 8 -bit resolution (256 steps) fixed frequency individual PWM controller that operates at 97 kHz with a duty cycle that is adjustable from 0% to 99.6% to allow the LED to be set to a specific brightness value. An additional 8 -bit resolution (256 steps) group PWM controller has both a fixed frequency of 190 Hz and an adjustable frequency between 24 Hz to once every 10.73 seconds with a duty cycle that is adjustable from 0% to 99.6 \% that is used to either dim or blink all LEDs with the same value.

Each LED output can be off, on (no PWM control), set at its individual PWM controller value or at both individual and group PWM controller values. The PCU9654 operates with a supply voltage range of 2.3 V to 5.5 V and the 100 mA open-drain outputs allow voltages up to 40 V for LED supply.

The PCU9654 is one of the first LED controller devices in a new Ultra Fast-mode (UFm) family. UFm devices offer higher frequency (up to 5 MHz).

The active LOW Output Enable input pin ($\overline{\mathrm{OE}})$ blinks all the LED outputs and can be used to externally PWM the outputs, which is useful when multiple devices need to be dimmed or blinked together without using software control.

Software programmable LED Group and three Sub Call ${ }^{2} \mathrm{C}$-bus addresses allow all or defined groups of PCU9654 devices to respond to a common ${ }^{2} \mathrm{C}$-bus address, allowing for example, all red LEDs to be turned on or off at the same time, thus minimizing ${ }^{2} \mathrm{C}$-bus commands. Six hardware address pins allow up to 64 devices on the same bus.

The Software Reset (SWRST) Call allows the master to perform a reset of the PCU9654 through the $\mathrm{I}^{2} \mathrm{C}$-bus, identical to the Power-On Reset (POR) that initializes the registers to their default state causing the outputs to be set HIGH (LED off). This allows an easy and quick way to reconfigure all device registers to the same condition.

2. Features and benefits

- 8 LED drivers. Each output programmable at:
\bullet Off
On
- Programmable LED brightness
- Programmable group dimming/blinking mixed with individual LED brightness
- 5 MHz Ultra Fast-mode $\mathrm{I}^{2} \mathrm{C}$-bus interface
- 256 -step (8 -bit) linear programmable brightness per LED output varying from fully off (default) to maximum brightness using a 97 kHz PWM signal
- 256 -step group brightness control allows general dimming (using a 190 Hz PWM signal) from fully off to maximum brightness (default)
- 256 -step group blinking with frequency programmable from 24 Hz to 10.73 s and duty cycle from 0 \% to 99.6 \%
- Eight open-drain outputs can sink between 0 mA to 100 mA and are tolerant to a maximum off state voltage of 40 V . No input function.
- Output state change programmable on the Acknowledge (bit 9, this bit is always set to 1 by UFm I ${ }^{2} \mathrm{C}$-bus master) or the STOP Command to update outputs byte-by-byte or all at the same time (default to 'Change on STOP').
- Active LOW Output Enable ($\overline{\mathrm{OE}})$ input pin allows for hardware blinking and dimming of the LEDs when LED driver output state is fully ON (LDRx = 01 in LEDOUT0/1 registers)
- Six hardware address pins allow 64 PCU9654 devices to be connected to the same UFm $\mathrm{I}^{2} \mathrm{C}$-bus and to be individually programmed
- 4 software programmable UFm I²C-bus addresses (one LED Group Call address and three LED Sub Call addresses) allow groups of devices to be addressed at the same time in any combination (for example, one register used for 'All Call' so that all the PCU9654s on the $I^{2} \mathrm{C}$-bus can be addressed at the same time and the second register used for three different addresses so that $1 / 3$ of all devices on the bus can be addressed at the same time in a group). Software enable and disable for $\mathrm{I}^{2} \mathrm{C}$-bus address.
- Software Reset feature (SWRST Call) allows the device to be reset through the UFm ${ }^{2} \mathrm{C}$-bus
- 25 MHz internal oscillator requires no external components
- Internal power-on reset
- Noise filter on USDA/USCL inputs
- Glitch free LED outputs on power-up
- Supports hot insertion
- Low standby current
- Operating power supply voltage (V_{DD}) range of 2.3 V to 5.5 V
- 5.5 V tolerant inputs on non-LED pins
- $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ operation

■ ESD protection exceeds 2000 V HBM per JESD22-A114 and 1000 V CDM per JESD22-C101

- Latch-up testing is done to JEDEC Standard JESD78 which exceeds 100 mA
- Packages offered: TSSOP24

3. Applications

- RGB or RGBA LED drivers
- LED status information
- LED displays
- LCD backlights
- Keypad backlights for cellular phones or handheld devices

4. Ordering information

Table 1. Ordering information

| Type number | Topside mark | Package | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | | Name | Description | Version |
| PCU9654PW | PCU9654 | TSSOP24 | plastic thin shrink small outline package; 24 leads;
 body width 4.4 mm | SOT355-1 |

6. Pinning information

6.1 Pinning

Fig 2. Pin configuration for TSSOP24

6.2 Pin description

Table 2. Pin description

Symbol	Pin	Type	Description
VSS	$1,7,12,13,18$	power supply	supply ground
A0	2	I	address input 0
A1	3	I	address input 1
A2	4	I	address input 2
A3	5	I	address input 3
A4	6	I	address input 4
LED0	8	O	LED driver 0
LED1	9	O	LED driver 1
LED2	10	O	LED driver 2
LED3	11	O	LED driver 3
LED4	14	O	LED driver 4
LED5	15	O	LED driver 5
LED6	16	O	LED driver 6
LED7	17	O	LED driver 7
OE	19	I	active LOW output enable for LEDs
A5	20	I	address input 5
n.c.	21	I	do not connect; reserved input
USCL	22	I	UFm serial clock line
USDA	23	I	UFm serial data line
VDD	24	power supply	supply voltage

7. Functional description

Refer to Figure 1 "Block diagram of PCU9654".

7.1 Device addresses

Following a START condition, the bus master must output the address of the slave it is accessing

There are a maximum of 64 possible programmable addresses using the six hardware address pins. One of these addresses cannot be used as it is reserved for Software Reset (SWRST), leaving a maximum of 63 addresses. Using other reserved addresses can reduce the total number of possible addresses even further.

7.1.1 Regular UFm ${ }^{2} \mathrm{C}$-bus slave address

The UFm ${ }^{2}$ C-bus slave address of the PCU9654 is shown in Figure 3. To conserve power, no internal pull-up resistors are incorporated on the hardware selectable address pins and they must be pulled HIGH or LOW.

Remark: Using reserved $\mathrm{I}^{2} \mathrm{C}$-bus addresses will interfere with other devices, but only if the devices are on the bus and/or the bus will be open to other $\mathrm{I}^{2} \mathrm{C}$-bus systems at some later date. In a closed system where the designer controls the address assignment these addresses can be used since the PCU9654 treats them like any other address. The LED All Call, Software Reset and PCA9564 or PCA9665 slave address (if on the bus) can never be used for individual device addresses.

- PCU9654 LED All Call address (1110 000) and Software Reset (0000 0110) which are active on start-up
- PCA9564 (0000 000) or PCA9665 (1110 000) slave address which is active on start-up
- 'reserved for future use' ${ }^{2} \mathrm{C}$-bus addresses (0000 011, 1111 1XX)
- slave devices that use the 10-bit addressing scheme (1111 0XX)
- slave devices that are designed to respond to the General Call address (0000 000)
- High-speed mode (Hs-mode) master code (0000 1XX)

Fig 3. Slave address
The last bit of the address byte defines the operation to be performed. For UFm ${ }^{2} \mathrm{C}$-bus, there is only write operation in slave device.

7.1.2 LED All Call UFm I ${ }^{2} \mathrm{C}$-bus address

- Default power-up value (ALLCALLADR register): EOh or 1110000
- Programmable through $\mathrm{I}^{2} \mathrm{C}$-bus (volatile programming)
- At power-up, LED All Call $I^{2} \mathrm{C}$-bus address is enabled.

See Section 7.3.8 "ALLCALLADR, LED All Call UFm İㄹ-bus address" for more detail.
Remark: The default LED All Call ${ }^{2} \mathrm{C}$-bus address (EOh or 1110 000) must not be used as a regular ${ }^{2} \mathrm{C}$-bus slave address since this address is enabled at power-up. All the PCU9654s on the $\mathrm{I}^{2} \mathrm{C}$-bus will respond to the address if sent by the $\mathrm{I}^{2} \mathrm{C}$-bus master.

7.1.3 LED Sub Call UFm I²C-bus addresses

- 3 different UFm $\mathrm{I}^{2} \mathrm{C}$-bus addresses can be used
- Default power-up values:
- SUBADR1 register: E2h or 1110001
- SUBADR2 register: E4h or 1110010
- SUBADR3 register: E8h or 1110100
- Programmable through $\mathrm{I}^{2} \mathrm{C}$-bus (volatile programming)
- At power-up, Sub Call $1^{2} \mathrm{C}$-bus addresses are disabled.

See Section 7.3.7 "SUBADR1 to SUBADR3, UFm İC-bus subaddress 1 to 3 " for more detail.

7.1.4 Software Reset UFm I²C-bus address

The address shown in Figure 4 is used when a reset of the PCU9654 needs to be performed by the master. The Software Reset address (SWRST Call) must be used with $\bar{W}=$ logic 0 . If $\bar{W}=$ logic 1 , the PCU9654 does not recognize the SWRST. See Section 7.6 "Software reset" for more detail.

Fig 4. Software Reset address
Remark: The Software Reset UFm ${ }^{2} \mathrm{C}$-bus address is a reserved address and cannot be used as a regular UFm $\mathrm{I}^{2} \mathrm{C}$-bus slave address or as an LED All Call or LED Sub Call address.

7.2 Control register

Following the successful recognition of the slave address, LED All Call address or LED Sub Call address, the bus master will send a byte to the PCU9654, which will be stored in the Control register.

The lowest 5 bits are used as a pointer to determine which register will be accessed (D[4:0]). The highest 3 bits are used as Auto-Increment Flag (AIF) and Auto-Increment options (AI[1:0]).

reset state $=80 \mathrm{~h}$
Remark: The Control register does not apply to the Software Reset $\mathrm{I}^{2} \mathrm{C}$-bus address.
Fig 5. Control register
When the Auto-Increment Flag is set (AIF = logic 1), the five low order bits of the Control register are automatically incremented after a write. This allows the user to program the registers sequentially. Four different types of Auto-Increment are possible, depending on Al1 and AI0 values.

Table 3. Auto-Increment options

AIF	Al1	Al0	Function
0	0	0	no Auto-Increment
1	0	0	Auto-Increment for all registers. D[4:0] roll over to 00h after the last register (11h) is accessed.
1	0	1	Auto-Increment for individual brightness registers only. D[4:0] roll over to 02h after the last register (09h) is accessed.
1	1	0	Auto-Increment for global control registers only. D[4:0] roll over to 0Ah' after the last register (0Bh) is accessed.
1	1	1	Auto-Increment for individual and global control registers only. D[4:0] roll over to 02h after the last register (0Bh) is accessed.

Remark: Other combinations not shown in Table 3 (AIF + AI[1:0] = 001b, 010b, and 011b) are reserved and must not be used for proper device operation.
$\mathrm{AIF}+\mathrm{Al}[1: 0]=000 \mathrm{~b}$ is used when the same register must be accessed several times during a single $\mathrm{I}^{2} \mathrm{C}$-bus communication, for example, changes the brightness of a single LED. Data is overwritten each time the register is accessed during a write operation.
$\mathrm{AIF}+\mathrm{Al}[1: 0]=100 \mathrm{~b}$ is used when all the registers must be sequentially accessed, for example, power-up programming.

AIF + AI[1:0] = 101b is used when the eight LED drivers must be individually programmed with different values during the same $\mathrm{I}^{2} \mathrm{C}$-bus communication, for example, changing color setting to another color setting.
$\mathrm{AlF}+\mathrm{Al}[1: 0]=110 \mathrm{~b}$ is used when the LED drivers must be globally programmed with different settings during the same $\mathrm{I}^{2} \mathrm{C}$-bus communication, for example, global brightness or blinking change.

AIF + AI[1:0] = 111b is used when individual and global changes must be performed during the same $\mathrm{I}^{2} \mathrm{C}$-bus communication, for example, changing a color and global brightness at the same time.

Only the 5 least significant bits $\mathrm{D}[4: 0]$ are affected by the AIF, Al1 and AI0 bits.
When the Control register is written, the register entry point determined by $D[4: 0]$ is the first register that will be addressed (write operation), and can be anywhere between 00000 and 10001 (as defined in Table 4). When AIF = 1, the Auto-Increment flag is set and the rollover value at which the register increment stops and goes to the next one is determined by $\mathrm{Al}[1: 0]$. See Table 3 for rollover values. For example, if the Control register $=11100100$ (E4h), then the register addressing sequence will be (in hex):
$04 \rightarrow \ldots \rightarrow \mathrm{OB} \rightarrow 02 \rightarrow \ldots \rightarrow \mathrm{OB} \rightarrow 02 \rightarrow \ldots \rightarrow \mathrm{OB} \rightarrow 02 \rightarrow \ldots \rightarrow \mathrm{OB} \rightarrow 02 \rightarrow \ldots$ as long as the master keeps sending data

7.3 Register definitions

Table 4. Register summary ${ }^{[1]}$

Register number (hex)	D4	D3	D2	D1	D0	Name	Type	Function
00	0	0	0	0	0	MODE1	write only	Mode register 1
01	0	0	0	0	1	MODE2	write only	Mode register 2
02	0	0	0	1	0	PWM0	write only	brightness control LED0
03	0	0	0	1	1	PWM1	write only	brightness control LED1
04	0	0	1	0	0	PWM2	write only	brightness control LED2
05	0	0	1	0	1	PWM3	write only	brightness control LED3
06	0	0	1	1	0	PWM4	write only	brightness control LED4
07	0	0	1	1	1	PWM5	write only	brightness control LED5
08	0	1	0	0	0	PWM6	write only	brightness control LED6
09	0	1	0	0	1	PWM7	write only	brightness control LED7
OA	0	1	0	1	0	GRPPWM	write only	group duty cycle control
OB	0	1	0	1	1	GRPFREQ	write only	group frequency
OC	0	1	1	0	0	LEDOUT0	write only	LED output state 0
OD	0	1	1	0	1	LEDOUT1	write only	LED output state 1
OE	0	1	1	1	0	SUBADR1	write only	${ }^{1} \mathrm{C}$ - bus subaddress 1
OF	0	1	1	1	1	SUBADR2	write only	$1^{2} \mathrm{C}$-bus subaddress 2
10	1	0	0	0	0	SUBADR3	write only	$1^{2} \mathrm{C}$-bus subaddress 3
11	1	0	0	0	1	ALLCALLADR	write only	LED All Call ${ }^{2} \mathrm{C}$-bus address

[1] Only $D[4: 0]=00000$ to 10001 are allowed and will be recognized. $D[4: 0]=10010$ to 11111 are reserved and will not be recognized.

7.3.1 Mode register 1, MODE1

Table 5. MODE1 - Mode register 1 (address 00h) bit description Legend: * default value

Bit	Symbol	Access	Value	Description
7	AIF	not user programmable	0	Register Auto-Increment disabled.
			1*	Register Auto-Increment enabled.
				Remark: set by Control register (Figure 5) in bit 7.
6	Al1	not user programmable	0*	Auto-Increment bit $1=0$.
			1	Auto-Increment bit $1=1$.
				Remark: set by Control register (Figure 5) in bit 6.
5	AIO	not user programmable	0*	Auto-Increment bit $0=0$.
			1	Auto-Increment bit $0=1$.
				Remark: set by Control register (Figure 5) in bit 5.
4	SLEEP	W	0	Normal mode ${ }^{[1]}$.
			1*	Low power mode. Oscillator off[2].
3	SUB1	W	0*	PCU9654 does not respond to $\mathrm{I}^{2} \mathrm{C}$-bus subaddress 1.
			1	PCU9654 responds to $\mathrm{I}^{2} \mathrm{C}$-bus subaddress 1.
2	SUB2	W	0*	PCU9654 does not respond to $\mathrm{I}^{2} \mathrm{C}$-bus subaddress 2.
			1	PCU9654 responds to $\mathrm{I}^{2} \mathrm{C}$-bus subaddress 2.
1	SUB3	W	0 *	PCU9654 does not respond to $1^{2} \mathrm{C}$-bus subaddress 3.
			1	PCU9654 responds to $\mathrm{I}^{2} \mathrm{C}$-bus subaddress 3.
0	ALLCALL	W	0	PCU9654 does not respond to LED All Call $1^{2} \mathrm{C}$-bus address.
			1*	PCU9654 responds to LED All Call ${ }^{2} \mathrm{C}$-bus address.

[1] It takes $500 \mu \mathrm{~s}$ max. for the oscillator to be up and running once SLEEP bit has been set to logic 1 . Timings on LEDn outputs are not guaranteed if PWMx, GRPPWM or GRPFREQ registers are accessed within the $500 \mu \mathrm{~s}$ window.
[2] No blinking or dimming is possible when the oscillator is off.

7.3.2 Mode register 2, MODE2

Table 6. MODE2 - Mode register 2 (address 01h) bit description Legend: * default value

Bit	Symbol	Access	Value	Description
7	-	not user programmable	0^{*}	reserved, write must always be a logic 0
6	-	not user programmable	0^{*}	reserved, write must always be a logic 0
5	DMBLNK	W	0^{*}	group control = dimming.
4	-	W	0^{*}	group control = blinking.
3	OCH	W	0^{*}	outputs change on STOP command 11$]$
1	outputs change on ninth clock cycle (USCL)			

Table 6. MODE2-Mode register 2 (address 01h) bit description ...continued Legend: * default value.

Bit	Symbol	Access	Value	Description
2	-	W	1^{*}	reserved; write must always be a logic $1 \underline{[2]}$
1	-	W	0^{*}	reserved; write must always be a logic $0 \underline{[2]}$
0	-	1^{*}	reserved; write must always be a logic $1 \underline{[2]}$	
$[1]$	Change of the outputs at the STOP command allows synchronizing outputs of more than one PCU9654.			
	Applicable to registers from 02h (PWMO) to 0Dh (LEDOUT1) only.			
$[2]$	Remark: If you change these bits from their default values, the device will not perform as expected.			

7.3.3 PWM0 to PWM7, individual brightness control

Table 7. PWM0 to PWM7 - PWM registers 0 to 7 (address 02h to 09h) bit description Legend: * default value.

Address	Register	Bit	Symbol	Access	Value	Description
02h	PWM0	$7: 0$	IDC0[7:0]	W	00000000^{*}	PWM0 Individual Duty Cycle
03 h	PWM1	$7: 0$	IDC1[7:0]	W	00000000^{*}	PWM1 Individual Duty Cycle
04 h	PWM2	$7: 0$	IDC2[7:0]	W	00000000^{*}	PWM2 Individual Duty Cycle
05 h	PWM3	$7: 0$	IDC3[7:0]	W	00000000^{*}	PWM3 Individual Duty Cycle
06 h	PWM4	$7: 0$	IDC4[7:0]	W	00000000^{*}	PWM4 Individual Duty Cycle
07 h	PWM5	$7: 0$	IDC5[7:0]	W	00000000^{*}	PWM5 Individual Duty Cycle
08 h	PWM6	$7: 0$	IDC6[7:0]	W	00000000^{*}	PWM6 Individual Duty Cycle
09 h	PWM7	$7: 0$	IDC7[7:0]	W	00000000^{*}	PWM7 Individual Duty Cycle

A 97 kHz fixed frequency signal is used for each output. Duty cycle is controlled through 256 linear steps from 00h (0 \% duty cycle = LED output off) to FFh
(99.6 \% duty cycle = LED output at maximum brightness). Applicable to LED outputs programmed with LDRx = 10 or 11 (LEDOUT0 to LEDOUT1 registers).
duty cycle $=\frac{I D C x[7: 0]}{256}$

7.3.4 GRPPWM, group duty cycle control

Table 8. GRPPWM - Group brightness control register (address OAh) bit description Legend: * default value

Address	Register	Bit	Symbol	Access	Value	Description
OAh	GRPPWM	7:0	GDC[7:0]	W	11111111^{*}	GRPPWM register

When DMBLNK bit (MODE2 register) is programmed with logic 0 , a 190 Hz fixed frequency signal is superimposed with the 97 kHz individual brightness control signal. GRPPWM is then used as a global brightness control allowing the LED outputs to be dimmed with the same value. The value in GRPFREQ is then a 'Don't care'.

General brightness for the eight outputs is controlled through 256 linear steps from 00h (0% duty cycle = LED output off) to FFh (99.6% duty cycle = maximum brightness). Applicable to LED outputs programmed with LDRx $=11$ (LEDOUT0 to LEDOUT1 registers).

When DMBLNK bit is programmed with logic 1, GRPPWM and GRPFREQ registers define a global blinking pattern, where GRPFREQ contains the blinking period (from 24 Hz to 10.73 s) and GRPPWM the duty cycle (ON/OFF ratio in \%).
duty cycle $=\frac{G D C[7: 0]}{256}$

7.3.5 GRPFREQ, group frequency

Table 9. GRPFREQ - Group Frequency register (address OBh) bit description Legend: * default value.

Address	Register	Bit	Symbol	Access	Value	Description
0Bh	GRPFREQ	$7: 0$	GFRQ[7:0]	W	00000000^{*}	GRPFREQ register

GRPFREQ is used to program the global blinking period when DMBLNK bit (MODE2 register) is equal to 1 . Value in this register is a 'Don't care' when DMBLNK $=0$.
Applicable to LED outputs programmed with LDRx $=11$ (LEDOUT0 to LEDOUT1 registers).

Blinking period is controlled through 256 linear steps from 00 h (41 ms , frequency 24 Hz) to FFh (10.73 s).
global blinking period $=\frac{G F R Q[7: 0]+1}{24}(s)$

7.3.6 LEDOUTO and LEDOUT1, LED driver output state

Table 10. LEDOUT0 to LEDOUT1 - LED driver output state register (address 0Ch to ODh) bit description
Legend: * default value.

Address	Register	Bit	Symbol	Access	Value	Description
OCh	LEDOUTO	7:6	LDR3	W	00*	LED3 output state control
		5:4	LDR2	W	00*	LED2 output state control
		3:2	LDR1	W	00*	LED1 output state control
		1:0	LDR0	W	00*	LED0 output state control
0Dh	LEDOUT1	7:6	LDR7	W	00*	LED7 output state control
		5:4	LDR6	W	00*	LED6 output state control
		3:2	LDR5	W	00*	LED5 output state control
		1:0	LDR4	W	00*	LED4 output state control

LDRx $=00$ - LED driver x is off (default power-up state, $\mathrm{x}=0$ to 7).
LDRx $=01$ - LED driver x is fully on (individual brightness and group dimming/blinking not controlled). The $\overline{\mathrm{OE}}$ pin can be used as external dimming/blinking control in this state.
LDRx = $\mathbf{1 0}$ - LED driver \mathbf{x} individual brightness can be controlled through its PWMx register.

LDRx = 11 - LED driver x individual brightness and group dimming/blinking can be controlled through its PWMx registers, the GRPPWM registers and the GRPFREQ register.

7.3.7 SUBADR1 to SUBADR3, UFm I²C-bus subaddress 1 to 3

Table 11. SUBADR1 to SUBADR3-I ${ }^{2} \mathrm{C}$-bus subaddress registers 1 to 3 (address 0Eh to 10h) bit description
Legend: * default value.

Address	Register	Bit	Symbol	Access	Value	Description
0Eh	SUBADR1	$7: 1$	A1[7:1]	W	1110001^{*}	$I^{2} \mathrm{C}$-bus subaddress 1
		0	A1[0]	W only	0^{*}	reserved (must write 0)
0Fh	SUBADR2	$7: 1$	A2[7:1]	W	1110010^{*}	I^{2} C-bus subaddress 2
		0	A2[0]	W only	0^{*}	reserved (must write 0)
10h	SUBADR3	$7: 1$	A3[7:1]	W	1110100^{*}	$I^{2} \mathrm{C}$-bus subaddress 3
		0	A3[0]	W only	0^{*}	reserved (must write 0)

Subaddresses are programmable through the UFm ${ }^{2}$ C-bus. Default power-up values are E2h, E4h, E8h, and the device(s) will not respond to these addresses right after power-up (the corresponding SUBx bit in MODE1 register is equal to 0).

Once subaddresses have been programmed to their right values, SUBx bits need to be set to logic 1 in order to have the device respond to these addresses (MODE1 register).

Only the seven MSBs representing the UFm $\mathrm{I}^{2} \mathrm{C}$-bus subaddress are valid. The LSB in SUBADRx register is a reserved bit and must write logic 0 .

When SUBx is set to logic 1 in MODE1 register, the corresponding UFm ${ }^{2} \mathrm{C}$-bus subaddress can be used during a UFm $\mathrm{I}^{2} \mathrm{C}$-bus write sequence.

7.3.8 ALLCALLADR, LED All Call UFm I ${ }^{2}$ C-bus address

Table 12. ALLCALLADR - LED All Call UFm I² ${ }^{2}$-bus address register (address 11 h) bit description
Legend: * default value.

Address	Register	Bit	Symbol	Access	Value	Description
11h	ALLCALLADR	$7: 1$	AC[7:1]	W	1110000^{*}	ALLCALL I2C-bus address register
				AC[0]	W only	0^{*}

The LED All Call ${ }^{2} \mathrm{C}$-bus address allows all the PCU9654s on the bus to be programmed at the same time (ALLCALL bit in register MODE1 must be equal to 1 (power-up default state)). This address is programmable through the $\mathrm{I}^{2} \mathrm{C}$-bus and can be used during an $I^{2} \mathrm{C}$-bus write sequence. The register address can also be programmed as a Sub Call.

Only the 7 MSBs representing the All Call ${ }^{2}$ C-bus address are valid. The LSB in ALLCALLADR register is a reserved bit and must write logic 0 .

If ALLCALL bit $=0$ in the MODE1 register, the device does not respond to the address programmed in register ALLCALLADR.

7.4 Active LOW output enable input

The active LOW output enable ($\overline{\mathrm{OE}})$ pin, allows to enable or disable all the LED outputs at the same time, so user can drive all the LED outputs to OFF state by setting the $\overline{\mathrm{OE}}$ pin to HIGH.

- When a LOW level is applied to $\overline{\mathrm{OE}}$ pin, all the LED outputs are enabled.
- When a HIGH level is applied to $\overline{\mathrm{OE}}$ pin, all the LED outputs are high-impedance.

The $\overline{\mathrm{OE}}$ pin can be used as a synchronization signal to switch on/off several PCU9654 devices at the same time. When LED driver output state is set fully ON (LDRx = 01 in LEDOUTx register) in these devices. This requires an external clock reference that provides blinking period and the duty cycle.

The $\overline{\mathrm{OE}}$ pin can also be used as an external dimming control signal. The frequency of the external clock must be high enough not to be seen by the human eye, and the duty cycle value determines the brightness of the LEDs.

Remark: Do not use $\overline{\mathrm{OE}}$ as an external blinking control signal when internal global blinking is selected (DMBLNK $=1$, MODE2 register) since it will result in an undefined blinking pattern. Do not use $\overline{\mathrm{OE}}$ as an external dimming control signal when internal global dimming is selected (DMBLNK $=0$, MODE2 register) since it will result in an undefined dimming pattern.

Remark: During power-down, slow decay of voltage supplies may keep LEDs illuminated. Consider disabling LED outputs using HIGH level applied to $\overline{\mathrm{OE}}$ pin.

7.5 Power-on reset

When power is applied to V_{DD}, an internal power-on reset holds the PCU9654 in a reset condition until V_{DD} has reached $\mathrm{V}_{\text {POR }}$. At this point, the reset condition is released and the PCU9654 registers and $\mathrm{I}^{2} \mathrm{C}$-bus state machine are initialized to their default states (all zeroes) causing all the channels to be deselected. Thereafter, V_{DD} must be lowered below 0.2 V to reset the device.

7.6 Software reset

The Software Reset Call (SWRST Call) allows all the devices in the UFm ${ }^{2} \mathrm{C}$-bus to be reset to the power-up state value through a specific formatted $\mathrm{I}^{2} \mathrm{C}$-bus command.

The SWRST Call function is defined as the following:

1. A START command is sent by the UFm $\mathrm{I}^{2} \mathrm{C}$-bus master.
2. The reserved SWRST $I^{2} \mathrm{C}$-bus address ' 0000011 ' with the $\overline{\mathrm{W}}$ bit set to ' 0 ' (write) is sent by the $\mathrm{I}^{2} \mathrm{C}$-bus master.
3. The PCU9654 device(s) is(are) recognized after seeing the SWRST Call address '0000 0110' (06h) only. If the \bar{W} bit is set to ' 1 ', no action is taken in PCU9654.
4. Once the SWRST Call address has been sent, the master sends 2 bytes with two specific values (SWRST data byte 1 and byte 2): Byte $1=$ A5h, Byte $2=5$ Ah. If more than 2 bytes of data are sent, they will be ignored by the PCU9654.
5. Once the right 2 bytes (SWRST data byte 1 and byte 2 only) have been sent, the master sends a STOP command to end the SWRST Call: the PCU9654 then resets to the default value (power-up value) and is ready to be addressed again within the specified bus free time ($\mathrm{t}_{\mathrm{BUF}}$)

Remark: The reset stage is also the standby state with the internal oscillator turned off. It takes 500μ s for the oscillator to be up and running once the SLEEP bit has been set to a logic 1. PWM registers should not be accessed within the $500 \mu \mathrm{~s}$ window.

7.7 Individual brightness control with group dimming/blinking

A 97 kHz fixed frequency signal with programmable duty cycle (8 bits, 256 steps) is used to control individually the brightness for each LED.

On top of this signal, one of the following signals can be superimposed (this signal can be applied to the 8 LED outputs):

- A lower 190 Hz fixed frequency signal with programmable duty cycle (8 bits, 256 steps) is used to provide a global brightness control.
- A programmable frequency signal from 24 Hz to $1 / 10.73 \mathrm{~Hz}$ (8 bits, 256 steps) with programmable duty cycle (8 bits, 256 steps) is used to provide a global blinking control.

Fig 6. Brightness + Group Dimming signals

8. Characteristics of the UFm I²C-bus

The PCU9654 LED controller uses the new Ultra Fast-mode (UFm) ${ }^{2} \mathrm{C}$-bus to communicate with the UFm I ${ }^{2} \mathrm{C}$-bus capable host controller. It uses two lines for communication. They are a serial data line (USDA) and a serial clock line (USCL). The UFm is a unidirectional bus that is capable of higher frequency (up to 5 MHz). The UFm $\mathrm{I}^{2} \mathrm{C}$-bus slave devices operate in receive-only mode. That is, only ${ }^{2} \mathrm{C}$ writes to PCU9654 are supported.

8.1 Bit transfer

One data bit is transferred during each clock pulse. The data on the USDA line must remain stable during the HIGH period of the clock pulse as changes in the data line at this time will be interpreted as control signals (see Figure 7).

Fig 7. Bit transfer

8.1.1 START and STOP conditions

Both data and clock lines remain HIGH when the bus is not busy. A HIGH-to-LOW transition of the data line while the clock is HIGH is defined as the START condition (S). A LOW-to-HIGH transition of the data line while the clock is HIGH is defined as the STOP condition (P) (see Figure 8).

Fig 8. Definition of START and STOP conditions

8.2 System configuration

A device generating a message is a 'transmitter'; a device receiving is the 'receiver'. The device that controls the message is the 'master' and the devices which are controlled by the master are the 'slaves' (see Figure 9).

Fig 9. System configuration

8.3 Data transfer

The number of data bytes transferred between the START and the STOP conditions from transmitter to receiver is not limited. Each byte of eight bits is followed by one bit that is always set to 1 . The master generates an extra related clock pulse.

Fig 10. Data transfer

9. Bus transactions

(1) See Table 4 for register definition.

Fig 11. Write to a specific register

Fig 12. Write to all registers using the Auto-Increment feature

Fig 13. Multiple writes to Individual Brightness registers only using the Auto-Increment feature

(1) In this example, several PCU9654s are used and the same sequence (A) (above) is sent to each of them.
(2) ALLCALL bit in MODE1 register is equal to 1 for this example.
(3) OCH bit in MODE2 register is equal to 1 for this example.

Fig 14. LED All Call UFm I²C-bus address programming and LED All Call sequence example

10. Application design-in information

(1) $\overline{\mathrm{OE}}$ requires pull-up resistor if control signal from the master is open-drain.
${ }^{2} \mathrm{C}$-bus address $=0010101 \mathrm{x}$.
Remark: During power-down, slow decay of voltage supplies may keep LEDs illuminated. Consider disabling LED outputs using HIGH level applied to $\overline{\mathrm{OE}}$ pin.

Fig 15. Typical application

10.1 Junction temperature calculation

A device junction temperature can be calculated when the ambient temperature or the case temperature is known.

When the ambient temperature is known, the junction temperature is calculated using Equation 4 and the ambient temperature, junction to ambient thermal resistance and power dissipation.
$T_{j}=T_{a m b}+R_{t h(j-a)} \times P_{t o t}$
where:

```
\(\mathrm{T}_{\mathrm{j}}=\) junction temperature
\(\mathrm{T}_{\mathrm{amb}}=\) ambient temperature
\(\mathrm{R}_{\mathrm{th}(j-\mathrm{a})}=\) junction to ambient thermal resistance
\(P_{\text {tot }}=(\) device \()\) total power dissipation
```

When the case temperature is known, the junction temperature is calculated using Equation 5 and the case temperature, junction to case thermal resistance and power dissipation.

$$
\begin{equation*}
T_{j}=T_{c a s e}+R_{t h(j-c)} \times P_{t o t} \tag{5}
\end{equation*}
$$

where:

$$
\begin{aligned}
& T_{j}=j u n c t i o n ~ t e m p e r a t u r e ~ \\
& T_{\text {case }}=\text { case temperature } \\
& R_{\text {th }(j-c)}=\text { junction to case thermal resistance } \\
& P_{\text {tot }}=(\text { device }) \text { total power dissipation }
\end{aligned}
$$

Here are two examples regarding how to calculate the junction temperature using junction to case and junction to ambient thermal resistance. In the first example (Section 10.1.1), given the operating condition and the junction to ambient thermal resistance, the junction temperature of PCU9654PW, in the TSSOP24 package, is calculated for a system operating condition in $50{ }^{\circ} \mathrm{C}^{1}$ ambient temperature. In the second example (Section 10.1.2), based on a specific customer application requirement where only the case temperature is known, applying the junction to case thermal resistance equation, the junction temperature of the PCU9654, in the TSSOP24 package, is calculated.

[^0]| PCU9654 | All information provided in this document is subject to legal disclaimers. | © NXP B.V. 2012. All rights reserved. |
| :--- | :---: | :---: |
| Product data sheet | Rev. 1 - 2 July 2012 | 21 of 36 |

10.1.1 Example 1: T_{j} calculation of PCU9654PW, in TSSOP24 package, when $\mathrm{T}_{\mathrm{amb}}$ is known

```
\(R_{t h(j-a)}=108^{\circ} \mathrm{C} / \mathrm{W}\)
\(\mathrm{T}_{\mathrm{amb}}=50^{\circ} \mathrm{C}\)
LED output low voltage \(\left(\mathrm{LED} \mathrm{V}_{\mathrm{OL}}\right)=0.5 \mathrm{~V}\)
LED output current per channel \(=80 \mathrm{~mA}\)
Number of outputs \(=8\)
\(l_{D D(\max )}=10 \mathrm{~mA}\)
\(\mathrm{V}_{\mathrm{DD}(\text { max })}=5.5 \mathrm{~V}\)
```

1. Find $P_{\text {tot }}$ (device total power dissipation):

- output total power $=80 \mathrm{~mA} \times 8 \times 0.5 \mathrm{~V}=320 \mathrm{~mW}$
- chip core power consumption $=10 \mathrm{~mA} \times 5.5 \mathrm{~V}=55 \mathrm{~mW}$
$P_{\text {tot }}=(320+55) \mathrm{mW}=375 \mathrm{~mW}$

2. Find T_{j} (junction temperature):

$$
\mathrm{T}_{\mathrm{j}}=\left(\mathrm{T}_{\mathrm{amb}}+\mathrm{R}_{\mathrm{th}(\mathrm{j}-\mathrm{a})} \times \mathrm{P}_{\mathrm{tot}}\right)=\left(50^{\circ} \mathrm{C}+108^{\circ} \mathrm{C} / \mathrm{W} \times 375 \mathrm{~mW}\right)=90.5^{\circ} \mathrm{C}
$$

10.1.2 Example 2: T_{j} calculation where only $\mathrm{T}_{\text {case }}$ is known

This example uses a customer's specific application of the PCU9654, 8-channel LED controller in the TSSOP24 package, where only the case temperature ($\mathrm{T}_{\text {case }}$) is known.
$T_{j}=T_{\text {case }}+R_{\text {th }(j-c)} \times P_{\text {tot }}$, where $:$
$\mathrm{R}_{\mathrm{th}(\mathrm{j}-\mathrm{c})}=30^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{T}_{\text {case }}$ (measured) $=94.6^{\circ} \mathrm{C}$
V_{OL} of LED ~ 0.5 V
$I_{D D(\text { max })}=10 \mathrm{~mA}$
$\mathrm{V}_{\mathrm{DD}(\text { max })}=5.5 \mathrm{~V}$
LED output voltage LOW $=0.5 \mathrm{~V}$
LED output current per channel $=80 \mathrm{~mA}$

1. Find $P_{\text {tot }}$ (device total power dissipation)

- Output total power $=80 \mathrm{~mA} \times 8 \times 0.5 \mathrm{~V}=\mathbf{3 2 0} \mathrm{mW}$
- chip core power consumption $=10 \mathrm{~mA} \times 5.5 \mathrm{~V}=55 \mathrm{~mW}$
$P_{\text {tot }}$ (device total power dissipation) $=\mathbf{3 7 5} \mathbf{~ m W}$

2. Find T_{j} (junction temperature):
$\mathrm{T}_{\mathrm{j}}=\mathrm{T}_{\text {case }}+\mathrm{R}_{\text {th }(\mathrm{j}-\mathrm{a})} \times \mathrm{P}_{\text {tot }}=94.6^{\circ} \mathrm{C}+30^{\circ} \mathrm{C} / \mathrm{W} \times 375 \mathrm{~mW}=105.85^{\circ} \mathrm{C}$

11. Limiting values

Table 13. Limiting values
In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
$V_{D D}$	supply voltage		-0.5	+6.0	V
$V_{\text {I/O }}$	voltage on an input/output pin		$\mathrm{V}_{\text {SS }}-0.5$	5.5	V
$\mathrm{V}_{\operatorname{drv}(\text { LED }}$	LED driver voltage		$\mathrm{V}_{\text {SS }}-0.5$	40	V
$\mathrm{l}_{\mathrm{O}(\mathrm{LEDn})}$	output current on pin LEDn		-	100	mA
$\mathrm{l}_{\text {OL(tot) }}$	total LOW-level output current	LED driver outputs; $\mathrm{V}_{\mathrm{OL}}=0.5 \mathrm{~V}$	[1] 800	-	mA
Iss	ground supply current	per $V_{\text {SS }}$ pin	-	800	mA
$\mathrm{P}_{\text {tot }}$	total power dissipation	$\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$	-	1.8	W
		$\mathrm{T}_{\text {amb }}=85^{\circ} \mathrm{C}$	-	0.72	W
P/ch	power dissipation per channel	$\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$	-	100	mW
		$\mathrm{T}_{\text {amb }}=85^{\circ} \mathrm{C}$	-	45	mW
T_{j}	junction temperature		[2]	+125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	storage temperature		-65	+150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {amb }}$	ambient temperature	operating	-40	+85	${ }^{\circ} \mathrm{C}$

[1] Each bit must be limited to a maximum of 100 mA and the total package limited to 800 mA due to internal busing limits. The pull-up (current limiting) resistor must be of sufficient size (W) and value (Ω) to guarantee that the 100 mA limit is not exceeded on any output.
[2] Refer to Section 10.1 for calculation.

Table 14. TSSOP24 power dissipation and output current capability

Measurement	TSSOP24
$\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$	926 mW
maximum power dissipation (chip + output drivers)	851 mW
maximum power dissipation (output drivers only)	$<\frac{851 \mathrm{~mW}}{8-b i t \times 0.5 \mathrm{~V}}=212.75 \mathrm{~mA} \underline{[1]}$
maximum drive current per channel	602 mW
$\mathrm{~T}_{\text {amb }}=60^{\circ} \mathrm{C}$	527 mW
maximum power dissipation (chip + output drivers)	$<\frac{527 \mathrm{~mW}}{8-b i t \times 0.5 \mathrm{~V}}=131.8 \mathrm{~mA} \underline{[1]}$
maximum power dissipation (output drivers only)	
maximum drive current per channel	417 mW
$\mathrm{~T}_{\text {amb }}=80^{\circ} \mathrm{C}$	342 mW
maximum power dissipation (chip + output drivers)	$<\frac{342 \mathrm{~mW}}{8-\text { bit } \times 0.5 \mathrm{~V}}=85.5 \mathrm{~mA}$
maximum power dissipation (output drivers only)	
maximum drive current per channel	

[1] This value signifies package's ability to handle more than 100 mA per output driver. The device's maximum current rating per output is 100 mA .

12. Thermal characteristics

Table 15. Thermal characteristics

Symbol	Parameter	Conditions	Typ	Unit
$\mathrm{R}_{\mathrm{th}(\mathrm{j}-\mathrm{a})}$	thermal resistance from junction to ambient	TSSOP24	[1]	108
${ }^{\circ} \mathrm{C} / \mathrm{W}$				
$\mathrm{R}_{\mathrm{th}(\mathrm{j}-\mathrm{c})}$	thermal resistance from junction to case	TSSOP24	[1]	30

[1] Calculated in accordance with JESD 51-7.

13. Static characteristics

Table 16. Static characteristics
$V_{D D}=2.3 \mathrm{~V}$ to $5.5 \mathrm{~V} ; V_{S S}=0 \mathrm{~V} ; T_{\text {amb }}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$; unless otherwise specified.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
Supply						
$V_{\text {DD }}$	supply voltage		2.3	-	5.5	V
$I_{\text {D }}$	supply current	on pin V_{DD}; operating mode; no load; $f_{U S C L}=5 \mathrm{MHz} ; \mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}$	-	5.5	10	mA
$\mathrm{I}_{\text {stb }}$	standby current	on pin $V_{D D}$; no load; fuscl $=0 \mathrm{~Hz}$; $\mathrm{I} / \mathrm{O}=$ inputs; $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{DD}} ; \mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}$	-	2.1	7	$\mu \mathrm{A}$
$V_{\text {POR }}$	power-on reset voltage	no load; $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{DD}}$ or $\mathrm{V}_{\text {SS }}$	[1] -	1.70	2.0	V
UFm $\mathrm{I}^{2} \mathrm{C}$-bus inputs USCL and USDA						
$\mathrm{V}_{\text {IL }}$	LOW-level input voltage		-0.5	-	$+0.3 \mathrm{~V}_{\mathrm{DD}}$	V
V_{IH}	HIGH-level input voltage		$0.7 \mathrm{~V}_{\mathrm{DD}}$	-	5.5	V
IL	leakage current	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{DD}}$ or $\mathrm{V}_{\text {SS }}$	-1	-	+1	$\mu \mathrm{A}$
C_{i}	input capacitance	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {SS }}$	-	6	10	pF
LED driver outputs LED[7:0]						
$\mathrm{V}_{\text {drv(LED) }}$	LED driver voltage		0	-	40	V
lol	LOW-level output current	$\mathrm{V}_{\mathrm{OL}}=0.5 \mathrm{~V}$	[2] 100	-	-	mA
I LOH	HIGH-level output leakage current	$\mathrm{V}_{\text {drv (LED) }}=5 \mathrm{~V}$	-	-	± 1	$\mu \mathrm{A}$
		$\mathrm{V}_{\operatorname{drv}(\mathrm{LED})}=40 \mathrm{~V}$	-	± 1	15	$\mu \mathrm{A}$
C_{0}	output capacitance		[3]	15	40	pF
$\overline{\mathrm{OE}}$ input						
$\mathrm{V}_{\text {IL }}$	LOW-level input voltage		-0.5	-	$+0.3 \mathrm{~V}_{\mathrm{DD}}$	V
$\mathrm{V}_{\text {IH }}$	HIGH-level input voltage		$0.7 \mathrm{~V}_{\mathrm{DD}}$	-	5.5	V
ILI	input leakage current		-1	-	+1	$\mu \mathrm{A}$
C_{i}	input capacitance		-	3.7	5	pF
Address inputs A[5:0]						
$V_{\text {IL }}$	LOW-level input voltage		-0.5	-	$+0.3 \mathrm{~V}_{\mathrm{DD}}$	V
V_{IH}	HIGH-level input voltage		$0.7 \mathrm{~V}_{\mathrm{DD}}$	-	5.5	V
$\mathrm{I}_{\text {LI }}$	input leakage current		-1	-	+1	$\mu \mathrm{A}$
C_{i}	input capacitance		-	3.7	5	pF

[1] $V_{D D}$ must be lowered to 0.2 V in order to reset part.
[2] Each bit must be limited to a maximum of 100 mA and the total package limited to 800 mA due to internal busing limits.
[3] Tested with outputs off.

a. $\mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C}$
b. $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$

c. $\mathrm{T}_{\mathrm{amb}}=85^{\circ} \mathrm{C}$

Fig 16. V_{OL} versus loL

[^0]: 1. $50^{\circ} \mathrm{C}$ is a typical temperature inside an enclosed system. The designers should feel free, as needed, to perform their own calculation using the examples
