: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

PCU9655

16-channel UFm 5 MHz bus 100 mA 40 V LED driver

Rev. 2 - 2 October 2012
Product data sheet

1. General description

The PCU9655 is a UFm I ${ }^{2}$ C-bus controlled 16 -channel LED driver optimized for voltage switch dimming and blinking 100 mA Red/Green/Blue/Amber (RGBA) LEDs. Each LED output has its own 8-bit resolution (256 steps) fixed frequency individual PWM controller that operates at approximately 31.25 kHz with a duty cycle that is adjustable from 0% to 99.6 \% to allow the LED to be set to a specific brightness value. An additional 8-bit resolution (256 steps) group PWM controller has both a fixed frequency of about 122 Hz and an adjustable frequency roughly between 15 Hz to once every 16.8 seconds with a duty cycle that is adjustable from 0% to 99.6% that is used to either dim or blink all LEDs with the same value.

Each LED output can be off, on (no PWM control), set at its individual PWM controller value or at both individual and group PWM controller values. The PCU9655 operates with a supply voltage range of 3 V to 5.5 V and the 100 mA open-drain outputs allow voltages up to 40 V .

The PCU9655 is one of the first LED controller devices in a new Ultra Fast mode (UFm) family. UFm devices offer higher frequency (up to 5 MHz).

Software programmable LED Group and three Sub Call ${ }^{2}$ C-bus addresses allow all or defined groups of PCU9655 devices to respond to a common $\mathrm{I}^{2} \mathrm{C}$-bus address, allowing for example, all red LEDs to be turned on or off at the same time, thus minimizing $I^{2} \mathrm{C}$-bus commands. On power-up, PCU9655 will have a unique Sub Call address to identify it as a 16-channel LED driver. This allows mixing of devices with different channel widths. Five hardware address pins on PCU9655 allow up to 32 devices on the same bus.

The Software Reset (SWRST) function allows the master to perform a reset of the PCU9655 through the $\mathrm{I}^{2} \mathrm{C}$-bus, identical to the Power-On Reset (POR) that initializes the registers to their default state causing the output voltage switches to be OFF (LED off). This allows an easy and quick way to reconfigure all device registers to the same condition.

Additionally, a thermal shutdown feature protects the device when the internal junction temperature exceeds the overtemperature threshold.

2. Features and benefits

```
- 16 LED drivers. Each output programmable at:
- Off
- On
- Programmable LED brightness
- Programmable group dimming/blinking mixed with individual LED brightness
- Programmable LED output enable delay to reduce EMI and surge currents
- 16 output channels can sink up to 100 mA , tolerate up to 40 V when OFF
- 5 MHz Ultra Fast-mode unidirectional interface (write only)
■ 256-step (8-bit) linear programmable brightness per LED output varying from fully off (default) to maximum brightness using a 31.25 kHz PWM signal
- 256-step group brightness control allows general dimming (using a 122 Hz PWM signal) from fully off to maximum brightness (default)
- 256 -step group blinking with frequency programmable from 15 Hz to 16.8 s and duty cycle from 0 \% to 99.6 \%
- Output state change programmable on the Acknowledge (this ninth bit is always set to 1 by UFm I \({ }^{2} \mathrm{C}\)-bus master) or the STOP Command to update outputs byte-by-byte or all at the same time (default to 'Change on STOP').
- Five hardware address pins allow 32 PCU9655 devices to be connected to the same UFM bus and to be individually programmed
- Four software programmable \(I^{2} \mathrm{C}\)-bus addresses (one LED Group Call address and three LED Sub Call addresses) allow groups of devices to be addressed at the same time in any combination (for example, one register used for 'All Call' so that all the PCU9655s on the UFm bus can be addressed at the same time and the second register used for three different addresses so that \(1 / 3\) of all devices on the bus can be addressed at the same time in a group). Software enable and disable for each programmable UFm bus address.
- Unique power-up default Sub Call address allows mixing of devices with different channel widths
- Software Reset feature (SWRST Call) allows the device to be reset through the UFm bus
■ 8 MHz internal oscillator requires no external components
- Internal power-on reset
- Noise filter on USDA/USCL inputs
- Glitch free LED outputs on power-up
- Thermal shutdown with thermal protection
- Operating power supply voltage ( \(\mathrm{V}_{\mathrm{DD}}\) ) range of 3 V to 5.5 V
- 5.5 V tolerant inputs on non-LED pins
- \(-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) operation
- ESD protection exceeds 2000 V HBM per JESD22-A114 and 1000 V CDM per JESD22-C101
- Latch-up testing is done to JEDEC Standard JESD78 Class II, Level B
- Packages offered: TSSOP28
```


3. Applications

- Amusement products
- RGB or RGBA LED drivers
- LED status information
- LED displays
- LCD backlights
- Keypad backlights for cellular phones or handheld devices

4. Ordering information

Table 1. Ordering information

Type number	Topside mark	Package		
	Name	Description	Version	
PCU9655PW	PCU9655	TSSOP28	plastic thin shrink small outline package; 28 leads; body width 4.4 mm	SOT361-1
PCU9655PW1	PU96551	TSSOP28	plastic thin shrink small outline package; 28 leads; body width 4.4 mm	SOT361-1

5. Block diagram

Dim repetition rate $=122 \mathrm{~Hz}$.
Blink repetition rate $=15 \mathrm{~Hz}$ to every 16.8 seconds.
Fig 1. Block diagram of PCU9655PW

6. Pinning information

6.1 Pinning

a. PCU9655PW

b. PCU9655PW1

Fig 2. Pin configuration for TSSOP28

6.2 Pin description

Table 2. Pin description

Symbol	Pin	Type	Description	
	PCU9655PW	PCU9655PW1		
A0	1	1	I	address input 0[1]
A1	2	2	I	address input $1[1]$
A2	3	3	I	address input 2 $[1]$
A3	4	4	I	address input 3 $[1]$
A4	5	5	I	address input 4 $[1]$
LED0	6	7	O	LED driver 0
LED1	7	8	O	LED driver 1
LED2	8	9	O	LED driver 2
LED3	9	10	ground	LED driver 3
VSS	$10,19,24$	6,15	O	LED driver 4
LED4	11	11	O	LED driver 5
LED5	12	12	O	LED driver 6
LED6	13	13	O	LED driver 7
LED7	14	14	O	LED driver 8
LED8	15	16	O	LED driver 9
LED9	16	17	O	LED driver 10
LED10	17	18		

Table 2. Pin description ...continued

Symbol	Pin	Type	Description	
	PCU9655PW	PCU9655PW1		
LED11	18	19	O	LED driver 11
LED12	20	20	O	LED driver 12
LED13	21	21	O	LED driver 13
LED14	22	22	O	LED driver 14
LED15	23	23	O	LED driver 15
RESET	25	-	I	active LOW reset input
n.c.	-	24,25	-	do not connect; reserved input
USCL	26	26	I	UFm serial clock line
USDA	27	27	I	UFm serial data line
VDD	28	28	power supply	supply voltage

[1] In order to obtain the best system level ESD performance, a standard pull-up resistor (10 k Ω typical) is required for any address pin connecting to V_{DD}. For additional information on system level ESD performance, please refer to application notes AN10897 and AN11131.

7. Functional description

Refer to Figure 1 "Block diagram of PCU9655PW".

7.1 Device addresses

Following a START condition, the bus master must output the address of the slave it is accessing.

For PCU9655 there are a maximum of 32 possible programmable addresses using the five hardware address pins A[4:0].

7.1.1 Regular UFm $\mathrm{I}^{2} \mathrm{C}$-bus slave address

The $\mathrm{I}^{2} \mathrm{C}$-bus slave address of the PCU9655 is shown in Figure 3. To conserve power, no internal pull-up resistors are incorporated on the hardware selectable address pins and they must be pulled HIGH or LOW externally.

Remark: Reserved $\mathrm{I}^{2} \mathrm{C}$-bus addresses must be used with caution since they can interfere with:

- 'reserved for future use' ${ }^{2} \mathrm{C}$-bus addresses (0000 011, 1111 1XX)
- slave devices that use the 10-bit addressing scheme (1111 0XX)
- slave devices that are designed to respond to the General Call address (0000 000)
- High-speed mode (Hs-mode) master code (0000 1XX)

Fig 3. PCU9655 slave address
The last bit of the address byte defines the operation to be performed. Only writes to PCU9655 are supported, therefore the last bit is set to 0 .

7.1.2 LED All Call UFm I ${ }^{2} \mathrm{C}$-bus address

- Default power-up value (ALLCALLADR register): A0h or 1010 000X
- Programmable through $\mathrm{I}^{2} \mathrm{C}$-bus (volatile programming)
- At power-up, LED All Call $\mathrm{I}^{2} \mathrm{C}$-bus address is enabled

See Section 7.3.9 "ALLCALLADR, LED All Call IZㅡC-bus address" for more detail.
Remark: The default LED All Call ${ }^{2}$ C-bus address (A0h or 1010 000X) must not be used as a regular $\mathrm{I}^{2} \mathrm{C}$-bus slave address since this address is enabled at power-up. All of the PCU9655s on the UFm ${ }^{2}$ C-bus will respond to the address if sent by the $I^{2} \mathrm{C}$-bus master.

7.1.3 LED Sub Call UFm I²C-bus addresses

- 3 different $\mathrm{I}^{2} \mathrm{C}$-bus addresses can be used
- Default power-up values:
- SUBADR1 register: ACh or 1010 110X
- SUBADR2 register: ACh or 1010 110X
- SUBADR3 register: ACh or 1010 110X
- Programmable through UFm $\mathrm{I}^{2} \mathrm{C}$-bus (volatile programming)
- At power-up, SUBADR1 is enabled while SUBADR2 and SUBADR3 $\mathrm{I}^{2} \mathrm{C}$-bus addresses are disabled.

Remark: At power-up SUBADR1 identifies this device as a 16-channel driver.
See Section 7.3.8 "SUBADR[3:1] LED Sub Call UFm I²C-bus addresses for PCU9655" for more detail.

Remark: The default LED Sub Call ${ }^{2} \mathrm{C}$-bus addresses may be used as regular $\mathrm{I}^{2} \mathrm{C}$-bus slave addresses as long as they are disabled in bit [3:1] = 000 of MODE1 register.

7.2 Control register

Following slave address, LED All Call address or LED Sub Call address, the bus master will send a byte to the PCU9655, which will be stored in the Control register.

The lowest 7 bits are used as a pointer to determine which register will be accessed (D[6:0]). The highest bit is used as Auto-Increment Flag (AIF). The AIF is active by default at power-up.

This AIF bit along with the MODE1 register bit 5 and bit 6 provide the Auto-Increment feature.

reset state $=80 \mathrm{~h}$
Remark: The Control register does not apply to the Software Reset $\mathrm{I}^{2} \mathrm{C}$-bus address.
Fig 4. Control register
When the Auto-Increment Flag is set (AIF = 1), the seven low-order bits of the Control register are automatically incremented after a write. This allows the user to program the registers sequentially. Four different types of Auto-Increment are possible, depending on Al1 and AIO values of MODE1 register.

Table 3. Auto-Increment options

AIF	Al1 [1]	AIO[1]	Function
0	0	0	no Auto-Increment
1	0	0	Auto-Increment for registers (00h to 41h). D[6:0] roll over to 00h after register 41 h is accessed.
1	0	1	Auto-Increment for individual brightness registers only (0Ah to 19h). $D[6: 0]$ roll over to $0 A h$ after the last register (19h) is accessed.
1	1	0	Auto-Increment for MODE1 to PWM15 control registers (00h to 19h). $D[6: 0]$ roll over to 00 h after the last register (19h) is accessed.
1	1	1	Auto-Increment for global control registers and individual brightness registers (08h to 19 h). D[6:0] roll over to 08 h after the last register (19h) is accessed.

[1] Al1 and AI0 come from MODE1 register.
Remark: Other combinations not shown in Table 3 (AIF + AI[1:0] = 001b, 010b and 011b) are reserved and must not be used for proper device operation.
$\mathrm{AlF}+\mathrm{Al}[1: 0]=000 \mathrm{~b}$ is used when the same register must be accessed several times during a single $\mathrm{I}^{2} \mathrm{C}$-bus communication, for example, changes the brightness of a single LED. Data is overwritten each time the register is accessed during a write operation.

AIF + AI[1:0] = 100b is used when all the registers, except 42h PWMALL register, must be sequentially accessed, for example, power-up programming.

AIF + AI[1:0] = 101b is used when the 16 LED drivers must be individually programmed with different values during the same $\mathrm{I}^{2} \mathrm{C}$-bus communication, for example, changing color setting to another color setting.
 different settings during the same $\mathrm{I}^{2} \mathrm{C}$-bus communication.

AIF $+\operatorname{AI}[1: 0]=111 \mathrm{~b}$ is used when the 16 LED drivers must be individually programmed with different values in addition to global programming.

Only the 7 least significant bits D[6:0] are affected by the AIF, AI1 and AIO bits.

When the Control register is written, the register entry point determined by $\mathrm{D}[6: 0]$ is the first register that will be addressed (write operation), and can be anywhere between 00h and 41h (as defined in Table 4). When AIF = 1, the Auto-Increment Flag is set and the rollover value at which the register increment stops and goes to the next one is determined by AIF, AI1 and AIO. See Table 3 for rollover values. For example, if MODE1 register bit $\mathrm{AI} 1=0$ and $\mathrm{AIO}=1$ and if the Control register $=10010000$, then the register addressing sequence will be (in hexadecimal):
$10 \rightarrow 11 \rightarrow \ldots \rightarrow 19 \rightarrow 0 \mathrm{~A} \rightarrow \mathrm{OB} \rightarrow \ldots \rightarrow 19 \rightarrow \mathrm{OA} \rightarrow \mathrm{OB} \rightarrow \ldots$ as long as the master keeps writing data.

If MODE1 register bit AI1 $=0$ and $\mathrm{AIO}=0$ and if the Control register $=10100010$, then the register addressing sequence will be (in hexadecimal):
$22 \rightarrow 23 \rightarrow \ldots \rightarrow 41 \rightarrow 00 \rightarrow 01 \rightarrow \ldots \rightarrow 19 \rightarrow 0 \mathrm{~A} \rightarrow \mathrm{OB} \rightarrow \ldots$ as long as the master keeps writing data.

If MODE1 register bit $\mathrm{Al} 1=0$ and $\mathrm{AIO}=1$ and if the Control register $=10000101$, then the register addressing sequence will be (in hexadecimal):
$05 \rightarrow 06 \rightarrow \ldots \rightarrow 19 \rightarrow \mathrm{OA} \rightarrow \mathrm{OB} \rightarrow \ldots \rightarrow 19 \rightarrow \mathrm{OA} \rightarrow \mathrm{OB} \rightarrow \ldots$ as long as the master keeps writing data.

7.3 Register definitions

Table 4. Register summary ${ }^{[1]}$

Register number (hexadecimal)	D6	D5	D4	D3	D2	D1	D0	Name	Type	Function
00h	0	0	0	0	0	0	0	MODE1	write only	Mode register 1
01h	0	0	0	0	0	0	1	MODE2	write only	Mode register 2
02h	0	0	0	0	0	1	0	LEDOUT0	write only	LED output state 0
03h	0	0	0	0	0	1	1	LEDOUT1	write only	LED output state 1
04h	0	0	0	0	1	0	0	LEDOUT2	write only	LED output state 2
05h	0	0	0	0	1	0	1	LEDOUT3	write only	LED output state 3
06h	0	0	0	0	1	1	0	-	write only	not used[[1]
07h	0	0	0	0	1	1	1	-	write only	not used[[1]
08h	0	0	0	1	0	0	0	GRPPWM	write only	group duty cycle control
09h	0	0	0	1	0	0	1	GRPFREQ	write only	group frequency
OAh	0	0	0	1	0	1	0	PWM0	write only	brightness control LEDO
OBh	0	0	0	1	0	1	1	PWM1	write only	brightness control LED1
0Ch	0	0	0	1	1	0	0	PWM2	write only	brightness control LED2
ODh	0	0	0	1	1	0	1	PWM3	write only	brightness control LED3
OEh	0	0	0	1	1	1	0	PWM4	write only	brightness control LED4
OFh	0	0	0	1	1	1	1	PWM5	write only	brightness control LED5
10h	0	0	1	0	0	0	0	PWM6	write only	brightness control LED6
11h	0	0	1	0	0	0	1	PWM7	write only	brightness control LED7
12h	0	0	1	0	0	1	0	PWM8	write only	brightness control LED8
13h	0	0	1	0	0	1	1	PWM9	write only	brightness control LED9
14h	0	0	1	0	1	0	0	PWM10	write only	brightness control LED10

Table 4. Register summary ${ }^{[1]}$...continued

Register number (hexadecimal)	D6	D5	D4	D3	D2	D1	DO	Name	Type	Function
15h	0	0	1	0	1	0	1	PWM11	write only	brightness control LED11
16h	0	0	1	0	1	1	0	PWM12	write only	brightness control LED12
17h	0	0	1	0	1	1	1	PWM13	write only	brightness control LED13
18h	0	0	1	1	0	0	0	PWM14	write only	brightness control LED14
19h	0	0	1	1	0	0	1	PWM15	write only	brightness control LED15
1Ah to 39h	-	-	-	-	-	-	-	-	write only	not used[1]
3Ah	0	1	1	1	0	1	0	OFFSET	write only	Offset/delay on LEDn outputs
3Bh	0	1	1	1	0	1	1	SUBADR1	write only	${ }^{2} \mathrm{C}$-bus subaddress 1
3Ch	0	1	1	1	1	0	0	SUBADR2	write only	$1^{2} \mathrm{C}$-bus subaddress 2
3Dh	0	1	1	1	1	0	1	SUBADR3	write only	$1^{2} \mathrm{C}$-bus subaddress 3
3Eh	0	1	1	1	1	1	0	ALLCALLADR	write only	All Call ${ }^{2} \mathrm{C}$-bus address
3Fh	0	1	1	1	1	1	1	RESERVED1	write only	reserved[2]
40h	1	0	0	0	0	0	0	RESERVED2	write only	reserved[2]
41h	1	0	0	0	0	0	1	RESERVED3	write only	reserved[2]
42h	1	0	0	0	0	1	0	PWMALL	write only	brightness control for all LEDn
43h to 7Fh	-	-	-	-	-	-	-	-	write only	not used[1]

[1] Remark: Writing to registers marked 'not used' will be ignored.
[2] Remark: Writing to registers marked 'reserved' will not change any functionality in the chip.

7.3.1 MODE1 — Mode register 1

Table 5. MODE1-Mode register 1 (address 00 h) bit description Legend: * default value.

Bit	Symbol	Access	Value	Description
7	AIF	-	-	not used
6	Al1	W only	0*	Auto-Increment bit $1=0$. Auto-increment range as defined in Table 3.
			1	Auto-Increment bit $1=1$. Auto-increment range as defined in Table 3.
5	AIO	W only	0*	Auto-Increment bit $0=0$. Auto-increment range as defined in Table 3 .
			1	Auto-Increment bit $0=1$. Auto-increment range as defined in Table 3.
4	SLEEP	W only	0*	Normal mode ${ }^{[1]}$.
			1	Low power mode. Oscillator off[[2].
3	SUB1	W only	0	PCU9655 does not respond to $\mathrm{I}^{2} \mathrm{C}$-bus subaddress 1.
			1*	PCU9655 responds to $I^{2} \mathrm{C}$-bus subaddress 1.
2	SUB2	W only	0*	PCU9655 does not respond to $\mathrm{I}^{2} \mathrm{C}$-bus subaddress 2.
			1	PCU9655 responds to $I^{2} \mathrm{C}$-bus subaddress 2.
1	SUB3	W only	0*	PCU9655 does not respond to $\mathrm{I}^{2} \mathrm{C}$-bus subaddress 3 .
			1	PCU9655 responds to $I^{2} \mathrm{C}$-bus subaddress 3.
0	ALLCALL	W only	0	PCU9655 does not respond to LED All Call ${ }^{2} \mathrm{C}$-bus address.
			1*	PCU9655 responds to LED All Call ${ }^{2} \mathrm{C}$-bus address.

[1] It takes 500μ s max. for the oscillator to be up and running once SLEEP bit has been set to logic 0 . Timings on LEDn outputs are not guaranteed if PWMx, GRPPWM or GRPFREQ registers are accessed within the $500 \mu \mathrm{~s}$ window.
[2] No blinking or dimming is possible when the oscillator is off.

7.3.2 MODE2 - Mode register 2

Table 6. MODE2 - Mode register 2 (address 01h) bit description Legend: * default value.

Bit	Symbol	Access	Value	Description
7	-	-	-	not used
6	-	-	-	not used
5	DMBLNK	W only	0^{*}	group control = dimming
			1	group control = blinking
4	-	-	0^{*}	reserved
3	OCH	W only	0^{*}	outputs change on STOP command[$[1]$
			1	outputs change on ninth clock cycle (USCL)
2	-	-	1^{*}	reserved
1	-	-	0^{*}	reserved
0	-	-	1^{*}	reserved

[1] Change of the outputs at the STOP command allows synchronizing outputs of more than one PCU9655. Applicable to registers from 02 h (LEDOUT0) to 3Ah (OFFSET) only.

7.3.3 LEDOUT0 to LEDOUT3, LED driver output state

Table 7. LEDOUTO to LEDOUT3 - LED driver output state registers (address 02h to 05h) bit description
Legend: * default value.

Address	Register	Bit	Symbol	Access	Value	Description
02h	LEDOUTO	7:6	LDR3	W only	00^{*}	LED3 output state control
		5:4	LDR2	W only	00*	LED2 output state control
		3:2	LDR1	W only	00*	LED1 output state control
		1:0	LDR0	W only	00*	LED0 output state control
03h	LEDOUT1	7:6	LDR7	W only	00*	LED7 output state control
		5:4	LDR6	W only	00*	LED6 output state control
		3:2	LDR5	W only	00*	LED5 output state control
		1:0	LDR4	W only	00*	LED4 output state control
04h	LEDOUT2	7:6	LDR11	W only	00*	LED11 output state control
		5:4	LDR10	W only	00*	LED10 output state control
		3:2	LDR9	W only	00*	LED9 output state control
		1:0	LDR8	W only	00*	LED8 output state control
05h	LEDOUT3	7:6	LDR15	W only	00*	LED15 output state control
		5:4	LDR14	W only	00*	LED14 output state control
		3:2	LDR13	W only	00*	LED13 output state control
		1:0	LDR12	W only	00*	LED12 output state control

LDRx $=\mathbf{0 0}$ - LED driver x is off (default power-up state).
LDRx = 01 - LED driver x is fully on (individual brightness and group dimming/blinking not controlled).
LDRx = 10 - LED driver x individual brightness can be controlled through its PWMx register.
LDRx = $\mathbf{1 1}$ - LED driver x individual brightness and group dimming/blinking can be controlled through its PWMx register and the GRPPWM registers.

7.3.4 GRPPWM, group duty cycle control

Table 8. GRPPWM - Group brightness control register (address 08h) bit description Legend: * default value

Address	Register	Bit	Symbol	Access	Value	Description
08 h	GRPPWM	7:0	GDC[7:0]	W only	11111111^{*}	GRPPWM register

When DMBLNK bit (MODE2 register) is programmed with logic 0 , a 122 Hz fixed frequency signal is superimposed with the 31.25 kHz individual brightness control signal. GRPPWM is then used as a global brightness control allowing the LED outputs to be dimmed with the same value. The value in GRPFREQ is then a 'Don't care'.

General brightness for the 16 outputs is controlled through 256 linear steps from 00h (0% duty cycle $=$ LED output off) to FFh (99.6% duty cycle = maximum brightness). Applicable to LED outputs programmed with LDRx $=11$ (LEDOUT0 to LEDOUT3 registers).

When DMBLNK bit is programmed with logic 1, GRPPWM and GRPFREQ registers define a global blinking pattern, where GRPFREQ contains the blinking period (from 15 Hz to 16.8 s) and GRPPWM the duty cycle (ON/OFF ratio in \%)
duty cycle $=\frac{G D C[7: 0]}{256}$

7.3.5 GRPFREQ, group frequency

Table 9. GRPFREQ - Group frequency register (address 09h) bit description Legend: * default value.

Address	Register	Bit	Symbol	Access	Value	Description
09h	GRPFREQ	$7: 0$	GFRQ[7:0]	W only	00000000^{*}	GRPFREQ register

GRPFREQ is used to program the global blinking period when DMBLNK bit (MODE2 register) is equal to 1 . Value in this register is a 'Don't care' when $\mathrm{DMBLNK}=0$.
Applicable to LED outputs programmed with LDRx $=11$ (LEDOUT0 to LEDOUT3 registers).

Blinking period is controlled through 256 linear steps from 00 h (67 ms , frequency 15 Hz) to FFh (16.8 s)
global blinking period $=\frac{G F R Q[7: 0]+1}{15.26}(s)$

7.3.6 PWM0 to PWM15, individual brightness control

Table 10. PWM0 to PWM15 - PWM registers 0 to 15 (address 0Ah to 19h) bit description Legend: * default value.

| Address | Register | Bit | Symbol | Access | Value | Description |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0Ah | PWM0 | $7: 0$ | IDC0[7:0] | W only | 00000000^{*} | PWM0 Individual Duty Cycle |
| OBh | PWM1 | $7: 0$ | IDC1[7:0] | W only | 00000000^{*} | PWM1 Individual Duty Cycle |
| 0Ch | PWM2 | $7: 0$ | IDC2[7:0] | W only | 00000000^{*} | PWM2 Individual Duty Cycle |
| 0Dh | PWM3 | $7: 0$ | IDC3[7:0] | W only | 00000000^{*} | PWM3 Individual Duty Cycle |
| 0Eh | PWM4 | $7: 0$ | IDC4[7:0] | W only | 00000000^{*} | PWM4 Individual Duty Cycle |
| 0Fh | PWM5 | $7: 0$ | IDC5[7:0] | W only | 00000000^{*} | PWM5 Individual Duty Cycle |
| 10h | PWM6 | $7: 0$ | IDC6[7:0] | W only | 00000000^{*} | PWM6 Individual Duty Cycle |
| 11h | PWM7 | $7: 0$ | IDC7[7:0] | W only | 00000000^{*} | PWM7 Individual Duty Cycle |
| 12h | PWM8 | $7: 0$ | IDC8[7:0] | W only | 00000000^{*} | PWM8 Individual Duty Cycle |
| 13h | PWM9 | $7: 0$ | IDC9[7:0] | W only | 00000000^{*} | PWM9 Individual Duty Cycle |
| 14h | PWM10 | $7: 0$ | IDC10[7:0] | W only | 00000000^{*} | PWM10 Individual Duty Cycle |
| 15h | PWM11 | $7: 0$ | IDC11[7:0] | W only | 00000000^{*} | PWM11 Individual Duty Cycle |
| 16h | PWM12 | $7: 0$ | IDC12[7:0] | W only | 00000000^{*} | PWM12 Individual Duty Cycle |
| 17h | PWM13 | $7: 0$ | IDC13[7:0] | W only | 00000000^{*} | PWM13 Individual Duty Cycle |
| 18h | PWM14 | $7: 0$ | IDC14[7:0] | W only | 00000000^{*} | PWM14 Individual Duty Cycle |
| 19h | PWM15 | $7: 0$ | IDC15[7:0] | W only | 00000000^{*} | PWM15 Individual Duty Cycle |

A 31.25 kHz fixed frequency signal is used for each output. Duty cycle is controlled through 256 linear steps from 00h (0 \% duty cycle = LED output off) to FFh
(99.6 \% duty cycle = LED output at maximum brightness). Applicable to LED outputs programmed with LDRx = 10 or 11 (LEDOUT0 to LEDOUT3 registers).
duty cycle $=\frac{I D C x[7: 0]}{256}$

7.3.7 OFFSET — LEDn output delay offset register

Table 11. OFFSET - LEDn output delay offset register (address 3Ah) bit description Legend: * default value.

Address	Register	Bit	Access	Value	Description
3 3Ah	OFFSET	$7: 4$	-	$0000 h^{*}$	not used
		$3: 0$	W only	$1000 \mathrm{~h}^{*}$	LEDn output delay offset factor

The PCU9655 can be programmed to have turn-on delay between LED outputs. This helps to reduce peak current for the $\mathrm{V}_{\text {DD }}$ supply and reduces EMI

The order in which the LED outputs are enabled will always be the same (channel 0 will enable first and channel 15 will enable last).

OFFSET control register bits [3:0] determine the delay used between the turn-on times as follows:

```
0000 = no delay between outputs (all on, all off at the same time)
0001 = delay of 1 clock cycle (125 ns) between successive outputs
0010 = delay of 2 clock cycles (250 ns) between successive outputs
0011 = delay of 3 clock cycles (375 ns) between successive outputs
:
1111 = delay of 15 clock cycles (1.875 \mus) between successive outputs
```

Example: If the value in the OFFSET register is 1000 the corresponding delay = $8 \times 125 \mathrm{~ns}=1 \mu \mathrm{~s}$ delay between successive outputs.
channel 0 turns on at time $0 \mu \mathrm{~s}$ channel 1 turns on at time $1 \mu \mathrm{~s}$ channel 2 turns on at time $2 \mu \mathrm{~s}$ channel 3 turns on at time $3 \mu \mathrm{~s}$ channel 4 turns on at time $4 \mu \mathrm{~s}$ channel 5 turns on at time $5 \mu \mathrm{~s}$ channel 6 turns on at time $6 \mu \mathrm{~s}$ channel 7 turns on at time $7 \mu \mathrm{~s}$ channel 8 turns on at time $8 \mu \mathrm{~s}$ channel 9 turns on at time $9 \mu \mathrm{~s}$ channel 10 turns on at time $10 \mu \mathrm{~s}$ channel 11 turns on at time $11 \mu \mathrm{~s}$ channel 12 turns on at time $12 \mu \mathrm{~s}$
channel 13 turns on at time $13 \mu \mathrm{~s}$
channel 14 turns on at time $14 \mu \mathrm{~s}$
channel 15 turns on at time $15 \mu \mathrm{~s}$

7.3.8 SUBADR[3:1] LED Sub Call UFm I²C-bus addresses for PCU9655

Table 12. SUBADR1 to SUBADR3-I ${ }^{2}$ C-bus subaddress registers 1 to 3 (address 3 Bh to 3Dh) bit description
Legend: * default value.

Address	Register	Bit	Symbol	Access	Value	Description
3Bh	SUBADR1	$7: 1$	A1[7:1]	W only	1010110^{*}	I^{2} C-bus subaddress 1
		0	A1[0]	W only	0^{*}	reserved
3Ch	SUBADR2	$7: 1$	A2[7:1]	W only	1010110^{*}	I^{2} C-bus subaddress 2
		0	A2[0]	W only	0^{*}	reserved
3Dh	SUBADR3	$7: 1$	A3[7:1]	W only	1010110^{*}	$I^{2} C-b u s ~ s u b a d d r e s s ~ 3 ~$
		0	A3[0]	W only	0^{*}	reserved

Default power-up values are ACh, ACh, ACh. At power-up, SUBADR1 is enabled while SUBADR2 and SUBADR3 are disabled. The power-up default bit subaddress of ACh indicates that this device is a 16-channel LED driver.

All three subaddresses are programmable. Once subaddresses have been programmed to their right values, SUBx bits in MODE1 register (00h) need to be set to logic 1 in order to have the device respond to these addresses. When SUBx is set to logic 1 , the corresponding $\mathrm{I}^{2} \mathrm{C}$-bus subaddress can be used during an UFm $\mathrm{I}^{2} \mathrm{C}$-bus write sequence.

7.3.9 ALLCALLADR, LED All Call ${ }^{2} \mathrm{C}$-bus address

Table 13. ALLCALLADR - LED All Call $I^{2} \mathrm{C}$-bus address register (address 3Eh) bit description
Legend: * default value.

Address	Register	Bit	Symbol	Access	Value	Description
3Eh	ALLCALLADR	$7: 1$	AC[7:1]	W only	1010000^{*}	ALLCALL I²C-bus address register
		0	AC[0]	W only	0^{*}	reserved

The LED All Call ${ }^{2} \mathrm{C}$-bus address allows all the PCU9655s on the bus to be programmed at the same time (ALLCALL bit in register MODE1 must be equal to logic 1 (power-up default state)). This address is programmable through the $\mathrm{I}^{2} \mathrm{C}$-bus and can be used during an $I^{2} \mathrm{C}$-bus write sequence. The register address can also be programmed as a Sub Call.

Only the 7 MSBs representing the All Call $I^{2} \mathrm{C}$-bus address are valid. The LSB in the ALLCALLADR register is a 0 .

7.3.10 RESERVED1

This register is reserved.

7.3.11 RESERVED2, RESERVED3

These registers are reserved.

7.3.12 PWMALL — brightness control for all LEDn outputs

When programmed, the value in this register will be used for PWM duty cycle for all the LEDn outputs.

Table 14. PWMALL - brightness control for all LEDn outputs register (address 42h) bit description
Legend: * default value.

Address	Register	Bit	Access	Value	Description
42 h	PWMALL	$7: 0$	W only	$00000000 \mathrm{~h}^{*}$	duty cycle for all LEDn outputs

Remark: Write to any of the PWM0 to PWM15 registers will overwrite the value in corresponding PWMn register.

7.3.13 Overtemperature protection

If the PCU9655 chip temperature exceeds its limit ($\mathrm{T}_{\mathrm{th}(\mathrm{otp})}$, see Table 17), all output channels will be disabled until the temperature drops below its limit minus a small hysteresis ($\mathrm{T}_{\text {hys }}$, see Table 17). Once the die temperature reduces below the $\mathrm{T}_{\text {th(otp) }}-\mathrm{T}_{\text {hys }}$, the chip will return to the same condition it was prior to the overtemperature event.

7.4 Power-on reset

When power is applied to V_{DD}, an internal power-on reset holds the PCU9655 in a reset condition until V_{DD} has reached $\mathrm{V}_{\text {POR }}$. At this point, the reset condition is released and the PCU9655 registers and $\mathrm{I}^{2} \mathrm{C}$-bus state machine are initialized to their default states (all zeroes) causing all the channels to be deselected. Thereafter, V_{DD} must be pulled lower than 1 V and stay LOW for longer than $20 \mu \mathrm{~s}$. The device will reset itself, and allow 2 ms for the device to fully wake up.

7.5 Hardware reset recovery

When a reset of PCU9655 is activated using an active LOW input on the RESET pin, a reset pulse width of 2.5μ s minimum is required. The maximum wait time after RESET pin is released is 2 ms .

7.6 Software reset

The Software Reset Call (SWRST Call) allows all the devices in the UFm ${ }^{2} \mathrm{C}$-bus to be reset to the power-up state value through a specific formatted $\mathrm{I}^{2} \mathrm{C}$-bus command.

The maximum wait time after software reset is 1 ms
The SWRST Call function is defined as the following:

1. A START command is sent by the UFm $I^{2} \mathrm{C}$-bus master.
2. The reserved General Call address '0000 000' with the \bar{W} bit set to ' 0 ’ (write) is sent by the UFm ${ }^{2} \mathrm{C}$-bus master.
3. Since PCU9655 is a UFm $\mathrm{I}^{2} \mathrm{C}$-bus device, no acknowledge is returned to the $\mathrm{I}^{2} \mathrm{C}$-bus master.
4. Once the General Call address has been sent, the master sends 1 byte with 1 specific value (SWRST data byte 1): Byte $1=06 \mathrm{~h}$.

If more than 1 byte of data is sent, they will be ignored by the PCU9655.
5. Once the correct byte (SWRST data byte 1) has been sent, the master sends a STOP command to end the SWRST function: the PCU9655 then resets to the default value (power-up value) and is ready to be addressed again within the specified bus free time ($t_{B U F}$).

Remark: The reset stage is also the standby state with the internal oscillator turned off. It takes 500μ s for the oscillator to be up and running once the SLEEP bit has been set to a logic 1. PWM registers should not be accessed within the 500μ s window.

Fig 5. SWRST Call

7.7 Individual brightness control with group dimming/blinking

A 31.25 kHz fixed frequency signal with programmable duty cycle (8 bits, 256 steps) is used to control individually the brightness for each LED.

On top of this signal, one of the following signals can be superimposed (this signal can be applied to the 16 LED outputs LED0 to LED15 because the count started at 0):

- A lower 122 Hz fixed frequency signal with programmable duty cycle (8 bits, 256 steps) is used to provide a global brightness control.
- A programmable frequency signal from 15 Hz to every 16.8 seconds (8 bits, 256 steps) with programmable duty cycle (8 bits, 256 steps) is used to provide a global blinking control.

Fig 6. Brightness + Group Dimming signals

8. Characteristics of the PCU9655 Ultra Fast-mode I²C-bus

The PCU9655 LED controller uses the new Ultra Fast-mode (UFm) I ${ }^{2}$ C-bus to communicate with the UFm ${ }^{2} \mathrm{C}$-bus capable host controller. Like the Standard mode and Fast-mode Plus (Fm+) $I^{2} \mathrm{C}$-bus, it uses two lines for communication. They are a serial data line (USDA) and a serial clock line (USCL). The UFm is a unidirectional bus that is capable of higher frequency (up to 5 MHz). The UFm ${ }^{2} \mathrm{C}$-bus slave devices operate in receive-only mode. That is, only ${ }^{2} \mathrm{C}$ writes to PCU9655 are supported.

8.1 Bit transfer

One data bit is transferred during each clock pulse. The data on the USDA line must remain stable during the HIGH period of the clock pulse as changes in the data line at this time will be interpreted as control signals (see Figure 7).

Fig 7. Bit transfer

8.1.1 START and STOP conditions

Both data and clock lines remain HIGH when the bus is not busy. A HIGH-to-LOW transition of the data line while the clock is HIGH is defined as the START condition (S). A LOW-to-HIGH transition of the data line while the clock is HIGH is defined as the STOP condition (P) (see Figure 8).

Fig 8. Definition of START and STOP conditions

8.2 System configuration

A device generating a message is a 'transmitter'; a device receiving is the 'receiver'. The device that controls the message is the 'master' and the devices which are controlled by the master are the 'slaves' (see Figure 9).

Fig 9. System configuration

8.3 Data transfer

The number of data bytes transferred between the START and the STOP conditions from transmitter to receiver is not limited. Each byte of eight bits is followed by one bit that is always set to 1 . The master generates an extra related clock pulse.

Fig 10. Data transfer

9. Bus transactions

(1) See Table 4 for register definition.

Fig 11. Write to a specific register

(1) $\mathrm{Al} 1, \mathrm{AIO}=00$. See Table 3 for Auto-Increment options.

Remark: Care should be taken to load the appropriate value here in the AI1 and AIO bits of the MODE1 register for programming the part with the required Auto-Increment options.
Fig 12. Write to all registers using the Auto-Increment feature

002aaf635
(1) In this example, several PCU9655s are used and the same sequence (A) (above) is sent to each of them.
(2) ALLCALL bit in MODE1 register is previously set to 1 for this example.
(3) OCH bit in MODE2 register is previously set to 1 for this example.

Fig 14. LED All Call ${ }^{2} \mathrm{C}$-bus address programming and LED All Call sequence example
10. Application design-in information

(1) A standard $10 \mathrm{k} \Omega$ pull-up resistor is required to obtain the best system level ESD performance.

Fig 15. Typical application

10.1 Thermal considerations

Since the PCU9655 device integrates 16 voltage switches, thermal considerations should be taken into account to prevent overheating, which can cause the device to go into thermal shutdown.

In order to ensure that the device will not go into thermal shutdown when operating under certain application conditions, its junction temperature $\left(\mathrm{T}_{\mathrm{j}}\right)$ should be calculated to ensure that is below the overtemperature threshold limit ($125^{\circ} \mathrm{C}$). The T_{j} of the device depends on the ambient temperature ($\mathrm{T}_{\mathrm{amb}}$), device's total power dissipation ($\mathrm{P}_{\mathrm{tot}}$), and thermal resistance.

The device junction temperature can be calculated by using the following equation:
$T_{j}=T_{a m b}+R_{t h(j-a)} \times P_{t o t}$
where:
$\mathrm{T}_{\mathrm{j}}=$ junction temperature
$\mathrm{T}_{\mathrm{amb}}=$ ambient temperature
$R_{\mathrm{th}(\mathrm{j}-\mathrm{a})}=$ junction to ambient thermal resistance
$P_{\text {tot }}=$ (device) total power dissipation
An example of this calculation is show below:

Conditions:

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{amb}}=50^{\circ} \mathrm{C} \\
& \mathrm{R}_{\mathrm{th}(\mathrm{j}-\mathrm{a})}=65^{\circ} \mathrm{C} / \mathrm{W} \text { (per JEDEC } 51 \text { standard for multilayer PCB) } \\
& \mathrm{I}_{\mathrm{LED}}=100 \mathrm{~mA} / \text { channel } \\
& \mathrm{I}_{\mathrm{DD}(\max)}=12 \mathrm{~mA} \\
& \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}
\end{aligned}
$$

$P_{\text {tot }}$ calculation:

$$
\begin{aligned}
& \text { Ptot }_{\text {tot }} \mathrm{IC} \text { _power }+ \text { LED drivers_power; } \\
& \text { IC_power }=\left(\mathrm{I}_{\mathrm{DD}} \times \mathrm{V}_{\mathrm{DD}}\right) \\
& \text { IC_power }=(0.012 \mathrm{~A} \times 5 \mathrm{~V})=0.06 \mathrm{~W} \\
& \text { LED drivers_power }=16 \times\left(\mathrm{ILED}^{2} \times \mathrm{R}_{\text {on }}\right) \\
& \text { LED drivers_power }=16 \times\left((0.1 \mathrm{~A})^{2} \times 5 \Omega\right)=0.8 \mathrm{~W} \\
& \mathrm{P}_{\text {tot }}=0.06 \mathrm{~W}+0.8 \mathrm{~W}=0.86 \mathrm{~W}
\end{aligned}
$$

T_{j} calculation:

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{j}}=\mathrm{T}_{\mathrm{amb}}+\mathrm{R}_{\text {th(}(\mathrm{j}-\mathrm{a})} \times \mathrm{P}_{\text {tot }} \\
& \mathrm{T}_{\mathrm{j}}=50^{\circ} \mathrm{C}+\left(65^{\circ} \mathrm{C} / \mathrm{W} \times 0.86 \mathrm{~W}\right)=105.9^{\circ} \mathrm{C}
\end{aligned}
$$

This confirms that the junction temperature is below the minimum overtemperature threshold of $125^{\circ} \mathrm{C}$, which ensures the device will not go into thermal shutdown under these conditions

It is important to mention that the value of the thermal resistance junction-to-ambient $\left(\mathrm{R}_{\mathrm{th}(\mathrm{j}-\mathrm{a})}\right)$ strongly depends on the PCB design. Therefore, the device pins should be attached to a big enough PCB copper area to ensure proper thermal dissipation (similar to JEDEC 51 standard). Several thermal vias should be used as well in a multi-layer PCB design to increase the effectiveness of the heat dissipation.

Finally it is important to point out that this calculation should be taken as a reference only and therefore evaluations should still be performed under the application environment and conditions to confirm proper system operation.

11. Limiting values

Table 15. Limiting values
In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
$\mathrm{V}_{\text {DD }}$	supply voltage		-0.5	+6.0	V
$\mathrm{~V}_{\text {I/ }}$	voltage on an input/output pin		$\mathrm{V}_{\text {SS }}-0.5$	5.5	V
$\mathrm{~V}_{\text {drv(LED) }}$	LED driver voltage		$\mathrm{V}_{\text {SS }}-0.5$	40	V
$\mathrm{I}_{\mathrm{O}(\text { LEDn }}$	output current on pin LEDn		-	105	mA
$\mathrm{I}_{\text {SS }}$	ground supply current	per $\mathrm{V}_{\text {SS }}$ pin	-	1.0	A
$\mathrm{I}_{\text {lu }}$	latch-up current	JESD	$\underline{[1]}$	-	90
$\mathrm{P}_{\text {tot }}$	total power dissipation	$\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$	-	mA	
		$\mathrm{T}_{\text {amb }}=85^{\circ} \mathrm{C}$	-	1.54	W
$\mathrm{~T}_{\text {stg }}$	storage temperature		0.61	W	
$\mathrm{~T}_{\text {amb }}$	ambient temperature	operating	-40	+85	${ }^{\circ} \mathrm{C}$
T_{j}	junction temperature		-40	+125	${ }^{\circ} \mathrm{C}$

[1] Class II, Level B for A2, A3. All other pins are Class II, Level A ($\pm 100 \mathrm{~mA}$).

12. Thermal characteristics

Table 16. Thermal characteristics

Symbol	Parameter	Conditions	Typ	Unit
$\mathrm{R}_{\mathrm{th}(\mathrm{j}-\mathrm{a})}$	thermal resistance from junction to ambient	TSSOP28	$[1]$	65

[1] Per JEDEC 51 standard for multilayer PCB.

