: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Rev. 1 - 8 December 2011
Product data sheet

1. General description

The PCU9656 is a UFm I²C-bus controlled 24-bit LED driver optimized for voltage switch dimming and blinking 100 mA Red/Green/Blue/Amber (RGBA) LEDs. Each LEDn output has its own 8-bit resolution (256 steps) fixed frequency individual PWM controller that operates at 97 kHz (typical) with a duty cycle that is adjustable from 0% to 99.6% to allow the LED to be set to a specific brightness value. An additional 8-bit resolution (256 steps) group PWM controller has both a frequency of 190 Hz and an adjustable frequency between 24 Hz to once every 10.73 seconds with a duty cycle that is adjustable from 0% to 99.6 \% that is used to either dim or blink all LEDs with the same value.

Each LEDn output can be off, on (no PWM control), set at its individual PWM controller value or at both individual and group PWM controller values. The PCU9656 operates with a supply voltage range of 2.3 V to 5.5 V and the 100 mA open-drain outputs allow voltages up to 40 V for the LED supply.

The PCU9656 is one of the first LED controller devices in a new Ultra Fast-mode (UFm) family. UFm devices offer higher frequency (up to 5 MHz).

The active LOW Output Enable input pin ($\overline{\mathrm{OE}})$ blinks all the LEDn outputs and can be used to externally PWM the outputs, which is useful when multiple devices need to be dimmed or blinked together without using software control.

Software programmable LED Group and three Sub Call ${ }^{2}$ C-bus addresses allow all or defined groups of PCU9656 devices to respond to a common $\mathrm{I}^{2} \mathrm{C}$-bus address, allowing for example, all red LEDs to be turned on or off at the same time or marquee chasing effect, thus minimizing $\mathrm{I}^{2} \mathrm{C}$-bus commands. Six hardware address pins allow up to 64 devices on the same bus.

The Software Reset (SWRST) Call allows the master to perform a reset of the PCU9656 through the $\mathrm{I}^{2} \mathrm{C}$-bus, identical to the Power-On Reset (POR) that initializes the registers to their default state causing the output NAND FETs to be OFF (LED off). This allows an easy and quick way to reconfigure all device registers to the same condition.

A new feature to control LEDn output pattern is incorporated in the PCU9656. A new control byte called 'Chase Byte' allows enabling or disabling of selective LEDn outputs depending on the value of the Chase Byte. This feature greatly reduces the number of bytes to be sent to the PCU9656 when repetitive patterns need to be displayed as in creating a marquee chasing effect.

2. Features and benefits

```
■ 24 LED drivers. Each output programmable at:
    Off
    On
    * Programmable LED brightness
    * Programmable group dimming/blinking mixed with individual LED brightness
■ 5 MHz Ultra Fast-mode unidirectional I 2C-bus interface
■ 256-step (8-bit) linear programmable brightness per LEDn output varying from fully off
    (default) to maximum brightness using a }97\textrm{kHz}\mathrm{ PWM signal
■ 256-step group brightness control allows general dimming (using a 190 Hz PWM
signal) from fully off to maximum brightness (default)
■ 256-step group blinking with frequency programmable from 24 Hz to 10.73 s and duty cycle from 0 \% to 99.6 \%
- 24 open-drain outputs can sink between 0 mA to 100 mA and are tolerant to a maximum off state voltage of 40 V . No input function.
■ Output state change programmable on the Acknowledge (bit 9, this bit is always set to 1 by master) or the STOP Command to update outputs byte-by-byte or all at the same time (default to 'Change on STOP').
- Active LOW Output Enable ( \(\overline{\mathrm{OE}})\) input pin allows for hardware blinking and dimming of the LEDs
- Six hardware address pins allow 64 PCU9656 devices to be connected to the same UFm \(\mathrm{I}^{2} \mathrm{C}\)-bus and to be individually programmed
- Four software programmable UFm \({ }^{2}\) C-bus addresses (one LED Group Call address and three LED Sub Call addresses) allow groups of devices to be addressed at the same time in any combination (for example, one register used for 'All Call' so that all the PCU9656s on the \(\mathrm{I}^{2} \mathrm{C}\)-bus can be addressed at the same time and the second register used for three different addresses so that \(1 / 3\) of all devices on the bus can be addressed at the same time in a group). Software enable and disable for \(\mathrm{I}^{2} \mathrm{C}\)-bus address.
- A Chase Byte allows execution of predefined ON/OFF pattern for the 24 LEDn outputs
- Software Reset feature (SWRST Call) allows the device to be reset through the UFm \({ }^{2}\) ²-bus
- 25 MHz internal oscillator requires no external components
- Internal power-on reset
- Noise filter on USDA/USCL inputs
- Glitch-free LEDn outputs on power-up
- Supports hot insertion
- Low standby current
- Operating power supply voltage ( \(\mathrm{V}_{\mathrm{DD}}\) ) range of 2.3 V to 5.5 V
- 5.5 V tolerant inputs on non-LED pins
- \(-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) operation
- ESD protection exceeds 2000 V HBM per JESD22-A114, and 1000 V CDM per JESD22-C101
■ Latch-up testing is done to JEDEC Standard JESD78 which exceeds 100 mA
- Package offered: LQFP48
```


3. Applications

- RGB or RGBA LED drivers
- LED status information
- LED displays
- LCD backlights
- Keypad backlights for cellular phones or handheld devices

4. Ordering information

Table 1. Ordering information

Type number	Topside mark	Package		
	Pame	Description	Version	
PCU9656B	PCU9656	LQFP48	plastic low profile quad flat package; 48 leads; body $7 \times 7 \times 1.4 \mathrm{~mm}$	SOT313-2

5. Block diagram

Fig 1. Block diagram of PCU9656

6. Pinning information

6.1 Pinning

Fig 2. Pin configuration for LQFP48

6.2 Pin description

Table 2. Pin description

Symbol	Pin	Type	Description
VSS	$1,6,7,12,16,21,25$,	power supply	supply ground
	$30,31,36,37,45,48$		
LED0	2	O	LED driver 0
LED1	3	O	LED driver 1
LED2	4	O	LED driver 2
LED3	5	O	LED driver 3
LED4	8	O	LED driver 4
LED5	9	O	LED driver 5
LED6	10	O	LED driver 6
LED7	11	O	LED driver 7
A2	13	I	address input 2
A3	14	I	address input 3
A4	15	I	address input 4
LED8	17	O	LED driver 8
LED9	18	O	LED driver 9
LED10	19	O	LED driver 10

Table 2. Pin description ...continued

Symbol	Pin	Type	Description
LED11	20	O	LED driver 11
A5	22	I	address input 5
n.c.	23	I	do not connect; reserved input
OE	24	I	active LOW output enable for LEDs
LED12	26	O	LED driver 12
LED13	27	O	LED driver 13
LED14	28	O	LED driver 14
LED15	29	O	LED driver 15
LED16	32	O	LED driver 16
LED17	33	O	LED driver 17
LED18	34	O	LED driver 18
LED19	35	O	LED driver 19
USCL	38	I	UFm serial clock line
USDA	39	I	UFm serial data line
VDD	40	power supply	supply voltage
LED20	41	O	LED driver 20
LED21	42	O	LED driver 21
LED22	43	O	LED driver 22
LED23	44	O	LED driver 23
A0	46	I	address input 0
A1	47	I	address input 1

7. Functional description

Refer to Figure 1 "Block diagram of PCU9656".

7.1 Device addresses

Following a START condition, the bus master must output the address of the slave it is accessing

There are a maximum of 64 possible programmable addresses using the six hardware address pins. One of these addresses cannot be used as it is reserved for Software Reset (SWRST), leaving a maximum of 63 addresses. Using other reserved addresses can reduce the total number of possible addresses even further.

7.1.1 Regular UFm ${ }^{2} \mathrm{C}$-bus slave address

The UFm ${ }^{2}$ C-bus slave address of the PCU9656 is shown in Figure 3. To conserve power, no internal pull-up resistors are incorporated on the hardware selectable address pins and they must be pulled HIGH or LOW externally.

Remark: Using reserved $\mathrm{I}^{2} \mathrm{C}$-bus addresses will interfere with other devices, but only if the devices are on the bus and/or the bus will be open to other $\mathrm{I}^{2} \mathrm{C}$-bus systems at some later date. In a closed system where the designer controls the address assignment these addresses can be used since the PCU9656 treats them like any other address. The LED All Call and Software Reset and PCA9564 or PCA9665 slave address (if on the bus) can never be used for individual device addresses.

- PCU9656 LED All Call address (1110 000) and Software Reset (0000 0110) which are active on start-up
- PCA9564 (0000 000) or PCA9665 (1110 000) slave address which is active on start-up
- 'reserved for future use' $\mathrm{I}^{2} \mathrm{C}$-bus addresses (0000 011, 1111 1XX)
- slave devices that use the 10-bit addressing scheme (1111 0XX)
- slave devices that are designed to respond to the General Call address (0000 000)
- High-speed mode (Hs-mode) master code (0000 1XX)

Fig 3. Slave address
The last bit of the address byte defines the operation to be performed. No Read available with UFm. For UFM I ${ }^{2}$ C-bus, there is only write operation in slave device.

7.1.2 LED All Call UFm I ${ }^{2} \mathrm{C}$-bus address

- Default power-up value (ALLCALLADR register): EOh or 1110000
- Programmable through $\mathrm{I}^{2} \mathrm{C}$-bus (volatile programming)
- At power-up, LED All Call $I^{2} \mathrm{C}$-bus address is enabled

See Section 7.3.9 "ALLCALLADR, LED All Call UFm İㄹ-bus address" for more detail.
Remark: The default LED All Call ${ }^{2} \mathrm{C}$-bus address (EOh or 1110 000) must not be used as a regular $I^{2} \mathrm{C}$-bus slave address since this address is enabled at power-up. All of the PCU9656s on the $\mathrm{I}^{2} \mathrm{C}$-bus will respond to the address if sent by the $\mathrm{I}^{2} \mathrm{C}$-bus master.

7.1.3 LED Sub Call UFm I² ${ }^{2}$-bus addresses

- 3 different UFm $\mathrm{I}^{2} \mathrm{C}$-bus addresses can be used
- Default power-up values:
- SUBADR1 register: E2h or 1110001
- SUBADR2 register: E4h or 1110010
- SUBADR3 register: E8h or 1110100
- Programmable through UFm $\mathrm{I}^{2} \mathrm{C}$-bus (volatile programming)
- At power-up, all Sub Call UFm $\mathrm{I}^{2} \mathrm{C}$-bus addresses are disabled

See Section 7.3.8 "SUBADR1 to SUBADR3, UFm İC-bus subaddress 1 to 3 " for more detail.

7.1.4 Software Reset UFm I²C-bus address

The address shown in Figure 4 is used when a reset of the PCU9656 needs to be performed by the master. The Software Reset address (SWRST Call) must be used with $\bar{W}=$ logic 0 . If $\bar{W}=$ logic 1 , the PCU9656 does not recognize the SWRST. See Section 7.6 "Software reset" for more detail.

Fig 4. Software Reset address
Remark: The Software Reset UFm ${ }^{2} \mathrm{C}$-bus address is a reserved address and cannot be used as a regular UFm $\mathrm{I}^{2} \mathrm{C}$-bus slave address or as an LED All Call or LED Sub Call address.

7.2 Control register

Following the slave address, LED All Call address or LED Sub Call address, the bus master will send a byte to the PCU9656, which will be stored in the Control register.

The lowest 6 bits are used as a pointer to determine which register will be accessed (D[5:0]). The highest bit is used as Auto-Increment Flag (AIF).

This bit along with the MODE1 register bit 5 and bit 6 provide the Auto-Increment feature. Bit 6 of the Control register is not used.

reset state $=80 \mathrm{~h}$
Remark: The Control register does not apply to the Software Reset UFm $I^{2} \mathrm{C}$-bus address.
Fig 5. Control register
When the Auto-Increment Flag is set (AIF = logic 1), the six low order bits of the Control register are automatically incremented after a write. This allows the user to program the registers sequentially. Four different types of Auto-Increment are possible, depending on AI1 and AIO values of MODE1 register.

Table 3. Auto-Increment options

AIF	Al1 ${ }^{[1]}$	AIO[1]	Function
0	0	0	no Auto-Increment
1	0	0	Auto-Increment for all registers. D[5:0] roll over to Oh after the last register 26h is accessed.
1	0	1	Auto-Increment for individual brightness registers only. D[5:0] roll over to 02h after the last register (19h) is accessed.
1	1	0	Auto-Increment for global control registers and CHASE register. D[5:0] roll over to 1Ah after the last register (1Ch) is accessed.
1	1	1	Auto-Increment for individual brightness registers; global control registers and CHASE register. D[5:0] roll over to 02h after the last register (1Ch) is accessed.

[1] Al1 and AI0 come from MODE1 register.
Remark: Other combinations not shown in Table 3 (AIF + AI[1:0] = 001b, 010b and 011b) are reserved and must not be used for proper device operation.

AIF + AI[1:0] = 000b is used when the same register must be accessed several times during a single $\mathrm{I}^{2} \mathrm{C}$-bus communication, for example, changes the brightness of a single LED. Data is overwritten each time the register is accessed during a write operation.

AIF + AI[$1: 0]=100 \mathrm{~b}$ is used when all the registers must be sequentially accessed, for example, power-up programming.

AIF + AI[1:0] = 101b is used when the 24 LED drivers must be individually programmed with different values during the same $\mathrm{I}^{2} \mathrm{C}$-bus communication, for example, changing color setting to another color setting.
$\mathrm{AIF}+\mathrm{Al}[1: 0]=110 \mathrm{~b}$ is used when the LED drivers must be globally programmed with different settings during the same $\mathrm{I}^{2} \mathrm{C}$-bus communication, for example, global brightness or blinking change.

AIF + AI[1:0] = 111b is used when the 24 LED drivers must be individually programmed with different values in addition to global programming.

Only the 6 least significant bits $\mathrm{D}[5: 0]$ are affected by the AIF, Al1 and AI0 bits.
When the Control register is written, the register entry point determined by $D[5: 0]$ is the first register that will be addressed (write operation), and can be anywhere between $0 h$ and 26h (as defined in Table 4). When AIF = 1, the Auto-Increment Flag is set and the rollover value at which the register increment stops and goes to the next one is determined by AIF, AI1 and AI2. See Table 3 for rollover values. For example, if MODE1 register bit AI1 = 0 and AIO = 1 and if the Control register $=10100000$, then the register addressing sequence will be (in hex):
$20 \rightarrow 21 \rightarrow \ldots \rightarrow 26 \rightarrow 0 \rightarrow 1 \rightarrow 2 \rightarrow \ldots \rightarrow 19 \rightarrow 02 \rightarrow 03 \rightarrow \ldots \rightarrow 19 \rightarrow 02 \ldots$ as long as the master keeps writing data.

7.3 Register definitions

Table 4. Register summary ${ }^{[1][2]}$

| Register number
 (hex) | D5 | D4 | D3 | D2 | D1 | D0 | Name | Type | Function |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 00 | 0 | 0 | 0 | 0 | 0 | 0 | MODE1 | write only | Mode register 1 |
| 01 | 0 | 0 | 0 | 0 | 0 | 1 | MODE2 | write only | Mode register 2 |
| 02 | 0 | 0 | 0 | 0 | 1 | 0 | PWM0 | write only | brightness control LED0 |
| 03 | 0 | 0 | 0 | 0 | 1 | 1 | PWM1 | write only | brightness control LED1 |
| 04 | 0 | 0 | 0 | 1 | 0 | 0 | PWM2 | write only | brightness control LED2 |
| 05 | 0 | 0 | 0 | 1 | 0 | 1 | PWM3 | write only | brightness control LED3 |
| 06 | 0 | 0 | 0 | 1 | 1 | 0 | PWM4 | write only | brightness control LED4 |
| 07 | 0 | 0 | 0 | 1 | 1 | 1 | PWM5 | write only | brightness control LED5 |
| 08 | 0 | 0 | 1 | 0 | 0 | 0 | PWM6 | write only | brightness control LED6 |
| 09 | 0 | 0 | 1 | 0 | 0 | 1 | PWM7 | write only | brightness control LED7 |
| $0 A$ | 0 | 0 | 1 | 0 | 1 | 0 | PWM8 | write only | brightness control LED8 |
| $0 B$ | 0 | 0 | 1 | 0 | 1 | 1 | PWM9 | write only | brightness control LED9 |
| $0 C$ | 0 | 0 | 1 | 1 | 0 | 0 | PWM10 | write only | brightness control LED10 |
| $0 D$ | 0 | 0 | 1 | 1 | 0 | 1 | PWM11 | write only | brightness control LED11 |
| $0 E$ | 0 | 0 | 1 | 1 | 1 | 0 | PWM12 | write only | brightness control LED12 |
| $0 F$ | 0 | 0 | 1 | 1 | 1 | 1 | PWM13 | write only | brightness control LED13 |
| 10 | 0 | 1 | 0 | 0 | 0 | 0 | PWM14 | write only | brightness control LED14 |
| 11 | 0 | 1 | 0 | 0 | 0 | 1 | PWM15 | write only | brightness control LED15 |
| 12 | 0 | 1 | 0 | 0 | 1 | 0 | PWM16 | write only | brightness control LED16 |
| 13 | 0 | 1 | 0 | 0 | 1 | 1 | PWM17 | write only | brightness control LED17 |

Table 4. Register summary ${ }^{[1][2]}$...continued

Register number (hex)	D5	D4	D3	D2	D1	D0	Name	Type	Function
14	0	1	0	1	0	0	PWM18	write only	brightness control LED18
15	0	1	0	1	0	1	PWM19	write only	brightness control LED19
16	0	1	0	1	1	0	PWM20	write only	brightness control LED20
17	0	1	0	1	1	1	PWM21	write only	brightness control LED21
18	0	1	1	0	0	0	PWM22	write only	brightness control LED22
19	0	1	1	0	0	1	PWM23	write only	brightness control LED23
1A	0	1	1	0	1	0	GRPPWM	write only	group duty cycle control
1B	0	1	1	0	1	1	GRPFREQ	write only	group frequency
1C	0	1	1	1	0	0	CHASE	write only	chase control
1D	0	1	1	1	0	1	LEDOUTO	write only	LEDn output state 0
1E	0	1	1	1	1	0	LEDOUT1	write only	LEDn output state 1
1F	0	1	1	1	1	1	LEDOUT2	write only	LEDn output state 2
20	1	0	0	0	0	0	LEDOUT3	write only	LEDn output state 3
21	1	0	0	0	0	1	LEDOUT4	write only	LEDn output state 4
22	1	0	0	0	1	0	LEDOUT5	write only	LEDn output state 5
23	1	0	0	0	1	1	SUBADR1	write only	${ }^{2} \mathrm{C}$-bus subaddress 1
24	1	0	0	1	0	0	SUBADR2	write only	$1^{2} \mathrm{C}$-bus subaddress 2
25	1	0	0	1	0	1	SUBADR3	write only	${ }^{2} \mathrm{C}$-bus subaddress 3
26	1	0	0	1	1	0	ALLCALLADR	write only	LED All Call ${ }^{2} \mathrm{C}$-bus address

[1] Only $D[5: 0]=000000$ to 100110 are allowed and will be recognized. $D[5: 0]=100111$ to 111111 are reserved and may not be recognized.
[2] When writing to the Control register, bit 6 should be programmed with logic 0 for proper device operation.

7.3.1 Mode register 1, MODE1

Table 5. MODE1 - Mode register 1 (address 00h) bit description Legend: * default value.

Bit	Symbol	Access	Value	Description
7	AIF	not user programmable	0	Register Auto-Increment disabled.
			1*	Register Auto-Increment enabled (write default logic 1).
6	Al1	W	0 *	Auto-Increment bit $1=0$. Auto-increment range as defined in Table 3.
			1	Auto-Increment bit $1=1$. Auto-increment range as defined in Table 3.
5	AIO	W	0*	Auto-Increment bit $0=0$. Auto-increment range as defined in Table 3.
			1	Auto-Increment bit $0=1$. Auto-increment range as defined in Table 3.
4	SLEEP	W	0	Normal mode ${ }^{[1]}$.
			1*	Low power mode. Oscillator off[2].
3	SUB1	W	0*	PCU9656 does not respond to $\mathrm{I}^{2} \mathrm{C}$-bus subaddress 1.
			1	PCU9656 responds to $\mathrm{I}^{2} \mathrm{C}$-bus subaddress 1.
2	SUB2	W	0*	PCU9656 does not respond to $\mathrm{I}^{2} \mathrm{C}$-bus subaddress 2.
			1	PCU9656 responds to $\mathrm{I}^{2} \mathrm{C}$-bus subaddress 2.
1	SUB3	W	0*	PCU9656 does not respond to $\mathrm{I}^{2} \mathrm{C}$-bus subaddress 3.
			1	PCU9656 responds to $\mathrm{I}^{2} \mathrm{C}$-bus subaddress 3 .
0	ALLCALL	W	0	PCU9656 does not respond to LED All Call $1^{2} \mathrm{C}$-bus address.
			1*	PCU9656 responds to LED All Call ${ }^{2} \mathrm{C}$-bus address.

[1] It takes 500μ s max. for the oscillator to be up and running once SLEEP bit has been set to logic 1 . Timings on LEDn outputs are not guaranteed if PWMx, GRPPWM or GRPFREQ registers are accessed within the $500 \mu \mathrm{~s}$ window.
[2] No blinking or dimming is possible when the oscillator is off.

7.3.2 Mode register 2, MODE2

Table 6. MODE2 - Mode register 2 (address 01h) bit description
Legend: * default value.

Bit	Symbol	Access	Value	Description
7	-	not user programmable	0^{*}	reserved, write must always be a logic 0
6	-	not user programmable	0^{*}	reserved, write must always be a logic 0
5	DMBLNK	W	0^{*}	group control = dimming.
4	INVRT	W	1	group control = blinking.
3	OCH	W	0^{*}	reserved, write must always be a logic 0
2	-	0^{*}	outputs change on STOP command[1]	
1	-	W	1^{*}	reserved, write must always be a logic 1
0	-	W	0^{*}	reserved, write must always be a logic 0

[1] Change of the outputs at the STOP command allows synchronizing outputs of more than one PCU9656. Applicable to registers from 02h (PWMO) to 22h (LEDOUT) only.

7.3.3 PWMO to PWM23, individual brightness control

Table 7. PWMO to PWM23 - PWM registers 0 to 23 (address 02h to 19h) bit description Legend: * default value.

Address	Register	Bit	Symbol	Access	Value	Description
02h	PWM0	7:0	IDC0[7:0]	W	0000 0000*	PWMO Individual Duty Cycle
03h	PWM1	7:0	IDC1[7:0]	W	0000 0000*	PWM1 Individual Duty Cycle
04h	PWM2	7:0	IDC2[7:0]	W	0000 0000*	PWM2 Individual Duty Cycle
05h	PWM3	7:0	IDC3[7:0]	W	0000 0000*	PWM3 Individual Duty Cycle
06h	PWM4	7:0	IDC4[7:0]	W	0000 0000*	PWM4 Individual Duty Cycle
07h	PWM5	7:0	IDC5[7:0]	W	0000 0000*	PWM5 Individual Duty Cycle
08h	PWM6	7:0	IDC6[7:0]	W	0000 0000*	PWM6 Individual Duty Cycle
09h	PWM7	7:0	IDC7[7:0]	W	0000 0000*	PWM7 Individual Duty Cycle
OAh	PWM8	7:0	IDC8[7:0]	W	0000 0000*	PWM8 Individual Duty Cycle
OBh	PWM9	7:0	IDC9[7:0]	W	0000 0000*	PWM9 Individual Duty Cycle
OCh	PWM10	7:0	IDC10[7:0]	W	0000 0000*	PWM10 Individual Duty Cycle
ODh	PWM11	7:0	IDC11[7:0]	W	0000 0000*	PWM11 Individual Duty Cycle
OEh	PWM12	7:0	IDC12[7:0]	W	0000 0000*	PWM12 Individual Duty Cycle
OFh	PWM13	7:0	IDC13[7:0]	W	0000 0000*	PWM13 Individual Duty Cycle
10h	PWM14	7:0	IDC14[7:0]	W	0000 0000*	PWM14 Individual Duty Cycle
11h	PWM15	7:0	IDC15[7:0]	W	0000 0000*	PWM15 Individual Duty Cycle
12h	PWM16	7:0	IDC16[7:0]	W	0000 0000*	PWM16 Individual Duty Cycle
13h	PWM17	7:0	IDC17[7:0]	W	0000 0000*	PWM17 Individual Duty Cycle
14h	PWM18	7:0	IDC18[7:0]	W	0000 0000*	PWM18 Individual Duty Cycle
15h	PWM19	7:0	IDC19[7:0]	W	0000 0000*	PWM19 Individual Duty Cycle
16h	PWM20	7:0	IDC20[7:0]	W	0000 0000*	PWM20 Individual Duty Cycle
17h	PWM21	7:0	IDC21[7:0]	W	0000 0000*	PWM21 Individual Duty Cycle
18h	PWM22	7:0	IDC22[7:0]	W	0000 0000*	PWM22 Individual Duty Cycle
19h	PWM23	7:0	IDC23[7:0]	W	0000 0000*	PWM23 Individual Duty Cycle

A typical 97 kHz frequency signal is used for each output. Duty cycle is controlled through 256 linear steps from 00h (0 \% duty cycle = LEDn output off) to FFh
(99.6 \% duty cycle $=$ LEDn output at maximum brightness). Applicable to LEDn outputs programmed with LDRx $=10$ or 11 (LEDOUT0 to LEDOUT5 registers).
duty cycle $=\frac{I D C x[7: 0]}{256}$

7.3.4 GRPPWM, group duty cycle control

Table 8. GRPPWM - Group brightness control register (address 1 Ah) bit description Legend: * default value

Address	Register	Bit	Symbol	Access	Value	Description
1Ah	GRPPWM	$7: 0$	GDC[7:0]	W	11111111^{*}	GRPPWM register

When DMBLNK bit (MODE2 register) is programmed with logic 0, a 190 Hz typical frequency signal is superimposed with the 97 kHz individual brightness control signal. GRPPWM is then used as a global brightness control allowing the LEDn outputs to be dimmed with the same value. The value in GRPFREQ is then a 'Don't care'.

General brightness for the 24 outputs is controlled through 256 linear steps from 00h (0 \% duty cycle = LEDn output off) to FFh (99.6 \% duty cycle = maximum brightness) Applicable to LEDn outputs programmed with LDRx $=11$ (LEDOUT0 to LEDOUT5 registers).

When DMBLNK bit is programmed with logic 1, GRPPWM and GRPFREQ registers define a global blinking pattern, where GRPFREQ contains the blinking period (from 24 Hz to 10.73 s) and GRPPWM the duty cycle (ON/OFF ratio in \%).
duty cycle $=\frac{G D C[7: 0]}{256}$

7.3.5 GRPFREQ, group frequency

Table 9. GRPFREQ - Group Frequency register (address 1Bh) bit description Legend: * default value.

Address	Register	Bit	Symbol	Access	Value	Description
$1 B h$	GRPFREQ	$7: 0$	GFRQ[7:0]	W	00000000^{*}	GRPFREQ register

GRPFREQ is used to program the global blinking period when DMBLNK bit (MODE2 register) is equal to 1. Value in this register is a 'Don't care' when DMBLNK $=0$. Applicable to LEDn outputs programmed with LDRx $=11$ (LEDOUT0 to LEDOUT5 registers).

Blinking period is controlled through 256 linear steps from 00h (41 ms , frequency 24 Hz) to FFh (10.73 s).
global blinking period $=\frac{G F R Q[7: 0]+1}{24}(s)$

7.3.6 CHASE control

Table 10. CHASE - Chase pattern control register (address 1Ch) bit description Legend: * default value.

Address	Register	Bit	Symbol	Access	Value	Description
1Ch	CHASE	$7: 0$	CHC[7:0]	W	00000000^{*}	CHASE register

CHASE is used to program the LEDn output ON/OFF pattern. The contents of the CHASE register is used to enable one of the LEDn output patterns, as indicated in Table 11.

By repeated, sequential access to this table via the CHASE register, a chase pattern, e.g., marquee effect, can be easily programmed with minimal number of commands. Once the CHASE register is accessed, the data bytes that follow will be used as an index value to pick the LEDn output patterns defined by Table 11 "CHASE sequence".

This register always updates on ninth clock cycle (USCL). It is used to gate the $\overline{\mathrm{OE}}$ signal at each of the LEDn pins such that:

- $\overline{\mathrm{OE}}=1$: all LEDs are off
- $\overline{\mathrm{OE}}=0$: those LEDs corresponding to the ' X 's in Table 11 are on

Any write to this register takes effect at the ninth clock cycle (USCL).
Table 11. CHASE sequence
X = enabled; empty cell = disabled.

Command Hex LED channel

\qquad all LEDs OFF

 ($1 \times$ Left to Right_START)
LTR_1_ON
LTR_2_ON
LTR_3_ON
LTR_4_ON
LTR_5_ON
LTR_6_ON
LTR_7_ON
LTR_8_ON
LTR_9_ON
LTR_10_ON
LTR_11_ON
LTR_12_ON
LTR_13_ON
LTR_14_ON
LTR_15_ON
LTR_16_ON
LTR_17_ON
LTR_18_ON
LTR_19_ON
LTR_20_ON

24-bit UFm 5 MHz ${ }^{2} \mathrm{C}$-bus 100 mA 40 V LED driver

\qquad
$56 \quad 38$
\qquad X X X X X $11 \quad 12$

13 $14 \quad 15$ $16 \quad 17$ 18 | 19 | 20 | 21 | 22 | 23 |
| :--- | :--- | :--- | :--- | :--- | X \quad X \quad X $4 \times$ Left to Right_END $5 \times$ Left to Right_START

Ť Table 11. CHASE sequence ...continued
$X=$ enabled; empty cell = disabled.

Command Hex LED channe

Description
00 01 02

| 03 | 04 | 05 |
| :--- | :--- | :--- | 0506 | | 06 | 07 |
| :--- | :--- | :--- | 0809 10 | 10 | 11 | 1 |
| :--- | :--- | :--- |

$12 \quad 13$
14 1516 $16 \quad 17$

\qquad $18 \quad 19$ 9 | 0 | 21 | 22 | 23 |
| :--- | :--- | :--- | :--- | X X | | X | X | X |
| :--- | :--- | :--- | :--- |

$$
X \quad X \quad X
$$

$$
87
$$ $x \times x$

\qquad

$3 \times$ Implode_START

3x Implode END
$4 \times$ Implode_START
\qquad
X X X
 X
$4 \times$ Implode_END Left to Right_WIPE_START

Table 11. CHASE sequence ...continued

Command Hex LED channel
Description

00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23

00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23	
X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X						
X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X					
X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X				
X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X			
X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X		
X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	Left to Right_WIPE_END

X = enabled; empty cell = disabled.

Command	Hex	LED channel																								Description
		00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23	
142	8E		X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	
143	8F	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	Right to Left_WIPE_END
144	90																									All LEDn outputs disabled for CHASE byte $=90 \mathrm{~h}$ to FFh. Reserved for future use. CHASE byte $=$ FFh is used to exit the CHASE mode.

7.3.7 LEDOUTO to LEDOUT5, LED driver output state

Table 12. LEDOUTO to LEDOUT5 - LED driver output state register (address 1Dh to 22h) bit description
Legend: * default value.

Address	Register	Bit	Symbol	Access	Value	Description
1Dh	LEDOUT0	7:6	LDR3	W	00*	LED3 output state control
		5:4	LDR2	W	00*	LED2 output state control
		3:2	LDR1	W	00*	LED1 output state control
		1:0	LDR0	W	00*	LED0 output state control
1Eh	LEDOUT1	7:6	LDR7	W	00*	LED7 output state control
		5:4	LDR6	W	00*	LED6 output state control
		3:2	LDR5	W	00*	LED5 output state control
		1:0	LDR4	W	00*	LED4 output state control
1Fh	LEDOUT2	7:6	LDR11	W	00*	LED11 output state control
		5:4	LDR10	W	00*	LED10 output state control
		3:2	LDR9	W	00*	LED9 output state control
		1:0	LDR8	W	00*	LED8 output state control
20h	LEDOUT3	7:6	LDR15	W	00*	LED15 output state control
		5:4	LDR14	W	00*	LED14 output state control
		3:2	LDR13	W	00*	LED13 output state control
		1:0	LDR12	W	00*	LED12 output state control
21h	LEDOUT4	7:6	LDR19	W	00*	LED19 output state control
		5:4	LDR18	W	00*	LED18 output state control
		3:2	LDR17	W	00*	LED17 output state control
		1:0	LDR16	W	00*	LED16 output state control
22h	LEDOUT5	7:6	LDR23	W	00*	LED23 output state control
		5:4	LDR22	W	00*	LED22 output state control
		3:2	LDR21	W	00*	LED21 output state control
		1:0	LDR20	W	00*	LED20 output state control

LDRx = $\mathbf{0 0}$ - LED driver x is off (default power-up state).
LDRx = $0 \mathbf{0 1}$ — LED driver x is fully on (individual brightness and group dimming/blinking not controlled).
LDRx = 10 - LED driver x individual brightness can be controlled through its PWMx register.
LDRx = 11 - LED driver x individual brightness and group dimming/blinking can be controlled through its PWMx register and the GRPPWM registers.

7.3.8 SUBADR1 to SUBADR3, UFm I²C-bus subaddress 1 to 3

Table 13. SUBADR1 to SUBADR3-UFm I²C-bus subaddress registers 1 to 3 (address 23h to 25h) bit description
Legend: * default value.

Address	Register	Bit	Symbol	Access	Value	Description
23h	SUBADR1	7:1	A1[7:1]	W	1110 001*	$1^{2} \mathrm{C}$-bus subaddress 1
		0	A1[0]	W only	0*	reserved (must write logic 0)
24h	SUBADR2	7:1	A2[7:1]	W	1110 010*	$1^{2} \mathrm{C}$-bus subaddress 2
		0	A2[0]	W only	0*	reserved (must write logic 0)
25h	SUBADR3	7:1	A3[7:1]	W	1110 100*	$1^{2} \mathrm{C}$-bus subaddress 3
		0	A3[0]	W only	0 *	reserved (must write logic 0)

Subaddresses are programmable through the UFm ${ }^{2} \mathrm{C}$-bus. Default power-up values are E2h, E4h, E8h, and the device(s) will not recognize these addresses right after power-up (the corresponding SUBx bit in MODE1 register is equal to 0).

Once subaddresses have been programmed to their right values, SUBx bits need to be set to logic 1 in order to have the device recognize these addresses (MODE1 register).

Only the 7 MSBs representing the $I^{2} \mathrm{C}$-bus subaddress are valid. The LSB in SUBADRx register is a reserved bit and must write logic 0 .

When SUBx is set to logic 1 in MODE1 register, the corresponding $I^{2} \mathrm{C}$-bus subaddress can be used during a UFm ${ }^{2} \mathrm{C}$-bus write sequence.

7.3.9 ALLCALLADR, LED All Call UFm I²C-bus address

Table 14. ALLCALLADR - LED All Call UFm $\mathrm{I}^{2} \mathrm{C}$-bus address register (address 26h) bit description
Legend: * default value.

Address	Register	Bit	Symbol	Access	Value	Description
26h	ALLCALLADR	$7: 1$	AC[7:1]	W	1110000^{*}	ALLCALL ${ }^{2}$ C-bus address register
		0	AC[0]	W only	0^{*}	reserved (must write logic 0)

The LED All Call ${ }^{12}$ C-bus address allows all the PCU9656s on the bus to be programmed at the same time (ALLCALL bit in register MODE1 must be equal to logic 1 (power-up default state)). This address is programmable through the $\mathrm{I}^{2} \mathrm{C}$-bus and can be used during a UFm $I^{2} \mathrm{C}$-bus write sequence. The register address can also be programmed as a Sub Call.

Only the 7 MSBs representing the All Call $\mathrm{I}^{2} \mathrm{C}$-bus address are valid. The LSB in ALLCALLADR register is a reserved bit and must write logic 0 .

If ALLCALL bit $=0$ in MODE1 register, the device does not recognize the address programmed in register ALLCALLADR.

7.4 Active LOW output enable input

The active LOW output enable $(\overline{\mathrm{OE}})$ pin, allows to enable or disable all the LEDn outputs at the same time.

- When a LOW level is applied to $\overline{\mathrm{OE}}$ pin, all the LEDn outputs are enabled as defined by the CHASE register.
- When a HIGH level is applied to $\overline{\mathrm{OE}}$ pin, all the LEDn outputs are high-impedance.

The $\overline{\mathrm{OE}}$ pin can be used as a synchronization signal to switch on/off several PCU9656 devices at the same time. This requires an external clock reference that provides blinking period and the duty cycle.

The $\overline{\mathrm{OE}}$ pin can also be used as an external dimming control signal. The frequency of the external clock must be high enough not to be seen by the human eye, and the duty cycle value determines the brightness of the LEDs.

Remark: Do not use $\overline{\mathrm{OE}}$ as an external blinking control signal when internal global blinking is selected (DMBLNK $=1$, MODE2 register) since it will result in an undefined blinking pattern. Do not use $\overline{\mathrm{OE}}$ as an external dimming control signal when internal global dimming is selected (DMBLNK $=0$, MODE2 register) since it will result in an undefined dimming pattern.

Remark: During power-down, slow decay of voltage supplies may keep LEDs illuminated. Consider disabling LEDn outputs using HIGH level applied to $\overline{\mathrm{OE}}$ pin.

7.5 Power-on reset

When power is applied to $V_{D D}$, an internal power-on reset holds the PCU9656 in a reset condition until V_{DD} has reached $\mathrm{V}_{\text {POR }}$. At this point, the reset condition is released and the PCU9656 registers and $\mathrm{I}^{2} \mathrm{C}$-bus state machine are initialized to their default states (all zeroes) causing all the channels to be deselected. Thereafter, V_{DD} must be lowered below 0.2 V to reset the device.

7.6 Software reset

The Software Reset Call (SWRST Call) allows all the devices in the UFm ${ }^{2} \mathrm{C}$-bus to be reset to the power-up state value through a specific formatted $\mathrm{I}^{2} \mathrm{C}$-bus command.

The SWRST Call function is defined as the following:

1. A START command is sent by the UFm $\mathrm{I}^{2} \mathrm{C}$-bus master.
2. The reserved SWRST UFm $\mathrm{I}^{2} \mathrm{C}$-bus address ' 0000011 ' with the $\mathrm{R} / \overline{\mathrm{W}}$ bit set to ' 0 ' (write) is sent by the $\mathrm{I}^{2} \mathrm{C}$-bus master.
3. Since PCU9656 is a UFm $\mathrm{I}^{2} \mathrm{C}$-bus device, no acknowledge is returned to the $\mathrm{I}^{2} \mathrm{C}$-bus master.
4. Once the SWRST Call address has been sent, the master sends 2 bytes with two specific values (SWRST data byte 1 and byte 2): Byte $1=$ A5h, Byte $2=5$ Ah. If more than 2 bytes of data are sent, they will be ignored by the PCU9656.
5. Once the right 2 bytes (SWRST data byte 1 and byte 2 only) have been sent, the master sends a STOP command to end the SWRST Call: the PCU9656 then resets to the default value (power-up value) and is ready to be addressed again within the specified bus free time ($\mathrm{t}_{\mathrm{BUF}}$)

Remark: The reset stage is also the standby state with the internal oscillator turned off. It takes 500μ s for the oscillator to be up and running once the SLEEP bit has been set to a logic 1. PWM registers should not be accessed within the $500 \mu \mathrm{~s}$ window.

7.7 Individual brightness control with group dimming/blinking

A 97 kHz typical frequency signal with programmable duty cycle (8 bits, 256 steps) is used to control individually the brightness for each LED.

On top of this signal, one of the following signals can be superimposed (this signal can be applied to the 24 LEDn outputs):

- A lower 190 Hz typical frequency signal with programmable duty cycle (8 bits, 256 steps) is used to provide a global brightness control.
- A programmable frequency signal from 24 Hz to $1 / 10.73 \mathrm{~Hz}$ (8 bits, 256 steps) with programmable duty cycle (8 bits, 256 steps) is used to provide a global blinking control.

Fig 6. Brightness + Group Dimming signals

8. Characteristics of the PCU9656 Ultra Fast-mode I²C-bus

The PCU9656 LED controller uses the new Ultra Fast-mode (UFm) I ${ }^{2}$ C-bus to communicate with the UFm I ${ }^{2} \mathrm{C}$-bus capable host controller. It uses two lines for communication. They are a serial data line (USDA) and a serial clock line (USCL). The UFm is a unidirectional bus that is capable of higher frequency (up to 5 MHz). The UFm $\mathrm{I}^{2} \mathrm{C}$-bus slave devices operate in receive-only mode. That is, only $\mathrm{I}^{2} \mathrm{C}$ writes to PCU9656 are supported.

8.1 Bit transfer

One data bit is transferred during each clock pulse. The data on the USDA line must remain stable during the HIGH period of the clock pulse as changes in the data line at this time will be interpreted as control signals (see Figure 7).

Fig 7. Bit transfer

8.1.1 START and STOP conditions

Both data and clock lines remain HIGH when the bus is not busy. A HIGH-to-LOW transition of the data line while the clock is HIGH is defined as the START condition (S). A LOW-to-HIGH transition of the data line while the clock is HIGH is defined as the STOP condition (P) (see Figure 8).

Fig 8. Definition of START and STOP conditions

