

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

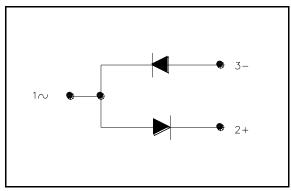
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



POW-R-BLOK[™]
Dual Diode Isolated Module
1100 Amperes / Up to 2400 Volts

Ordering Information:

Select the complete eight-digit module part number from the table below.

Example: PD412411 is a 2400 Volt, 1100A Average Dual Diode Isolated *POW-R-BLOKTM* Module

Type	Voltage Volts (x100)	Current Amperes (x100)
PD41	18 20	11
	20	
	24	

Description:

Powerex Dual Diode Modules are designed for use in applications requiring rectification and isolated packaging. The modules are isolated for easy mounting with other components on a common heatsink.

Features:

- Electrically Isolated Heatsinking
- Compression Bonded Elements
- Metal Baseplate
- Low Thermal Impedance for Improved Current Capability
- UL Recognized (E78240)

Benefits:

- No Additional Insulation Components Required
- Easy Installation
- No Clamping Components Required
- Reduce Engineering Time

Applications:

- Bridge Circuits
- AC & DC Motor Drives
- Battery Supplies
- Power Supplies
- Large IGBT Circuit Front Ends

POW-R-BLOK[™]
Dual Diode Isolated Module
1100 Amperes / Up to 2400 Volts

Absolute Maximum Ratings

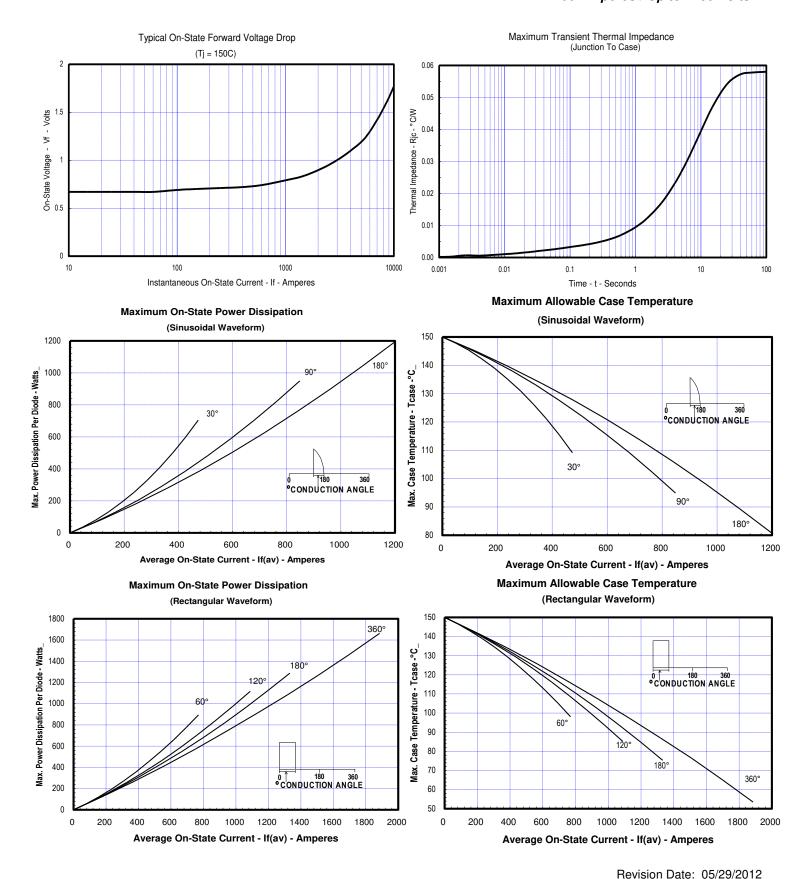
Characteristics	Conditions	Symbol		Units
Repetitive Peak Reverse Blocking Voltage		V_{RRM}	Up to 2400	V
Non-Repetitive Peak Blocking Voltage (t < 5 msec)		V_{RSM}	V _{RRM} + 100V	V
RMS Current Per Diode	180° Conduction, T _C =80°C	I _{F(RMS)}	1885	Α
(180° Conduction)	180° Conduction, T _C =87°C	I _{F(RMS)}	1725	Α
	180° Conduction, T _C =95°C	$I_{F(RMS)}$	1570	Α
	180° Conduction, T _C =98°C	$I_{F(RMS)}$	1415	Α
Average Forward Current Per Diode	180° Conduction, T _C =80°C	I _{F(AV)}	1200	Α
(180° Conduction)	180° Conduction, T _C =87°C	I _{F(AV)}	1100	Α
	180° Conduction, T _C =95°C	I _{F(AV)}	1000	Α
	180° Conduction, T _C =98°C	$I_{F(AV)}$	900	Α
Peak One Cycle Surge Current, Non-Repetitive Tj = 25°C, Vr = 0	60 Hz 50 Hz	I _{FSM}	50,890 46,400	A A
Peak One Cycle Surge Current, Non-Repetitive	60 Hz	I _{FSM} I _{FSM}	33,925	A
Tj = 25°C, Vr = Vrrm	50 Hz	I _{FSM}	30,935	A
Peak One Cycle Surge Current, Non-Repetitive	60 Hz	I _{FSM}	44,250	Α
Tj = 125°C, $Vr = 0$	50 Hz	I_{FSM}	40,350	Α
Peak One Cycle Surge Current, Non-Repetitive	60 Hz	I _{FSM}	29,500	Α
Tj = 125°C, $Vr = Vrrm$	50 Hz	I_{FSM}	26,900	Α
Peak Three Cycle Surge Current, Non-Repetitive	60 Hz, Tj = 125°C, Vr = Vrrm	I _{FSM}	23,690	Α
Peak Ten Cycle Surge Current, Non-Repetitive	60 Hz, Tj = 125°C, Vr = Vrrm	I _{FSM}	18,615	Α
I ² t for Fusing for One Cycle	8.3 milliseconds	l ² t	3.63 x 10 ⁶	A ² sec
Tj = 125°C, $Vr = Vrrm$	10 milliseconds	l ² t	3.62 x 10 ⁶	A ² sec
Operating Temperature		TJ	-40 to +150	°C
Storage Temperature		T _{stg}	-40 to +150	°C
Max. Mounting Torque, M6 Mounting Screw			132	in. – Lb.
			15	Nm
Max. Mounting Torque, M10 Terminal Screw			106	in. – Lb.
			12	Nm
Module Weight, Typical			5.33	kg
			11.75	lb
V Isolation @ 25°C		V_{rms}	4000	V

Information is based upon manufacturers testing and projected capabilities. This information is subject to change without notice. The manufacturer makes no claim as to suitability for use, reliability, capability, or future availability of this product.

POW-R-BLOK[™]
Dual Diode Isolated Module
1100 Amperes / Up to 2400 Volts

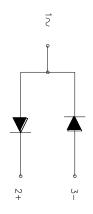
Electrical Characteristics, T_J=25°C unless otherwise specified

Characteristics	Symbol	Test Conditions	Min.	Max.	Units	
Repetitive Peak Reverse Leakage Current	I _{RRM}	Up to 2400V, T _J =150°C		200	mA	
Peak On-State Voltage	V_{FM}	I _{FM} =3000A, T _J =25°C		1.25	٧	
Threshold Voltage, Low-level Slope Resistance, Low-level	$V_{(TO)1}$ r_{T1}	$T_J = 150^{\circ}C$, $I = 15\%I_{T(AV)}$ to $\pi I_{T(AV)}$		0.663 0.113	V mΩ	
Threshold Voltage, High-level Slope Resistance, High-level	$V_{(TO)2}$ r_{T2}	$T_J = 150$ °C, $I = \pi I_{T(AV)}$ to I_{TSM}		.642 0.116	V mΩ	
V _{FM} Coefficients, Full Range		$T_J = 150^{\circ}C$, $I = 50A$ to $6kA$	A = 0.641 B = 1.08 E-			
		$V_{FM} = A + B Ln I + C I + D Sqrt I$	C = D =	1.18 E-04 -1.57 E-03		
Typical Reverse Recovery Time	t _{rr}	$\begin{split} T_{J} &= 25^{\circ}C, \ I_{fm} = 1500A, \\ dI_{r}/dt &= 25 \ A/us, \ t_{p} = 190 \ us \end{split}$		22	μs	

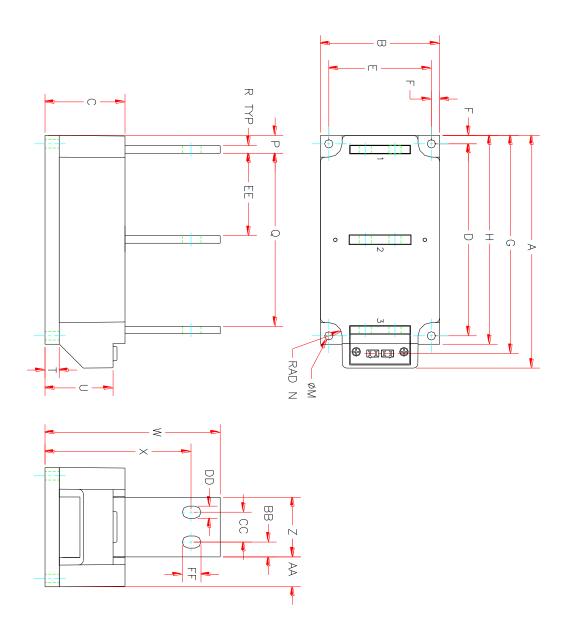

Thermal Characteristics

Characteristics	Symbol			Max.	Units
Thermal Resistance, Junction to Case	$R_{\Theta J\text{-}C}$	Per Module, both conducting Per Junction, both conducting	0.029 0.058	°C/W	
Thermal Impedance Coefficients	Z _⊝ J-C	$\begin{split} Z_{\ominus J\text{-}C} &= K_1 \; (1\text{-}exp(\text{-}t/\texttt{t}_1)) \\ &+ \; K_2 \; (1\text{-}exp(\text{-}t/\texttt{t}_2)) \\ &+ \; K_3 \; (1\text{-}exp(\text{-}t/\texttt{t}_3)) \\ &+ \; K_4 \; (1\text{-}exp(\text{-}t/\texttt{t}_4)) \end{split}$	$K_1 = 5.04 \text{ E-}04$ $K_2 = 2.31 \text{ E-}03$ $K_3 = 2.83 \text{ E-}03$ $K_4 = 5.24 \text{ E-}02$	$t_1 = 2.47 \text{ E-}03$ $t_2 = 4.42 \text{ E-}02$ $t_3 = 1.370$ $t_4 = 9.668$	
Thermal Resistance, Case to Sink Lubricated	R _{⊖C-S}	Per Module		0.009	°C/W

Revision Date: 05/29/2012



POW-R-BLOKTM Dual Diode Isolated Module 1100 Amperes / Up to 2400 Volts



POW-R-BLOK[™]
Dual Diode Isolated Module
1100 Amperes / Up to 2400 Volts

FF	EE	DD	CC	BB	A	Z	×	\$	_	_	R	Ø	ס	z	Z	I	G	Τ	Е	D	C	B	⊳	DIM.
.66	2.87	.406	1.00	.50	1.00	2.00	3.81	4.93	2.28	.48	.19	5.93	.54	.45	.281	7.00	7.31	.28	3.44	6.44	2.68	4.00	7.80	INCHES
16.8	72.9	10.3	25.4	12.7	25.4	50.8	96.8	125.2	58	12.2	4.8	150.6	13.7	11.4	7.1	177.8	185.7	7.1	87.4	163.6	68.1	101.6	198.1	MILLIMETERS

