mail

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

PD57030 PD57030S RF POWER TRANSISTORS The LdmoST Plastic FAMILY

N-CHANNEL ENHANCEMENT-MODE LATERAL MOSFETs

- EXCELLENT THERMAL STABILITY
- COMMON SOURCE CONFIGURATION
- P_{OUT} = 30 W with 14 dB gain @ 945 MHz / 28V
- NEW RF PLASTIC PACKAGE

DESCRIPTION

The PD57030 is a common source N-Channel, enhancement-mode lateral Field-Effect RF power transistor. It is designed for high gain, broad band commercial and industrial applications. It operates at 28 V in common source mode at frequencies up to 1 GHz.

PD57030 boasts the excellent gain, linearity and reliability of ST's latest LDMOS technology mounted in the first true SMD plastic RF power package, PowerSO-10RF. PD57030's superior linearity performance makes it an ideal solution for base station applications.

The PowerSO-10 plastic package, designed to offer high reliability, is the first ST JEDEC approved, high power SMD package. It has been specially optimized for RF needs and offers excellent RF performances and ease of assembly.

Mounting recommendations are available in **www.st.com/rf/** (look for application note AN1294)

Symbol	Parameter	Value	Unit
V _{(BR)DSS}	Drain-Source Voltage	65	V
V_{GS}	Gate-Source Voltage	± 20	V
ID	Drain Current	4	А
P _{DISS}	Power Dissipation (@ Tc = 70 $^{\circ}$ C)	52.8	W
Тj	Max. Operating Junction Temperature	165	°C
T _{STG}	Storage Temperature	-65 to +150	°C
THERMAL [DATA		
R _{th(j-c)}	Junction -Case Thermal Resistance	1.8	°C/W

ABSOLUTE MAXIMUM RATINGS ($T_{CASE} = 25 \degree C$)

ELECTRICAL SPECIFICATION (T_{CASE} = 25 °C)

STATIC

Symbol	Test Conditions			Min.	Тур.	Max.	Unit
V _{(BR)DSS}	$V_{GS} = 0 V$	$I_{DS} = 10 \text{mA}$		65			V
I _{DSS}	$V_{GS} = 0 V$	V _{DS} = 28 V				1	μΑ
I _{GSS}	V _{GS} = 20 V	$V_{DS} = 0 V$				1	μA
V _{GS(Q)}	V _{DS} = 28 V	I _D = 50 mA		2.0		5.0	V
V _{DS(ON)}	V _{GS} = 10 V	I _D = 3 A			1.3		V
9 FS	V _{DS} = 10 V	I _D = 3A			1.8		mho
C _{ISS}	$V_{GS} = 0 V$	V _{DS} = 28 V	f = 1 MHz		57		pF
C _{OSS}	$V_{GS} = 0 V$	V _{DS} = 28 V	f = 1 MHz		30		pF
C _{RSS}	$V_{GS} = 0 V$	$V_{DS} = 28V$	f = 1 MHz		2.3		pF

DYNAMIC

Symbol	Test Conditions	Min.	Тур.	Max.	Unit
Pout	$V_{DS} = 28V$ $I_{DQ} = 50 \text{ mA}$ $f = 945 \text{ MHz}$	30			W
GP	$V_{DS} = 28V$ $I_{DQ} = 50 \text{ mA}$ $P_{OUT} = 30 \text{ W}$ f = 945 MHz	13	14		dB
η _D	$V_{DS} = 28V$ $I_{DQ} = 50 \text{ mA}$ $P_{OUT} = 30 \text{ W}$ f = 945 MHz	45	53		%
Load mismatch	$V_{DS} = 28V$ $I_{DQ} = 50$ mA $P_{OUT} = 30$ W f = 945 MHz ALL PHASE ANGLES	10:1			VSWR

IMPEDANCE DATA

PD57030S				
	FREQ. MHz	Ζ_{ΙΝ} (Ω)	Ζ_{DL}(Ω)	
	925	0.929 - j 0.315	2.60 + j 1.45	
	945	0.809 - j 0.085	2.46 + j 0.492	
	960	0.763 - j 0.428	2.35 + j 0.591	

TYPICAL PERFORMANCE

Gate-Source Voltage vs Case Temperature

Vgs (Normalized)

Drain Current vs Gate-Source Voltage

57

TYPICAL PERFORMANCE (PD57030S)

Efficiency vs Bias Current

TYPICAL PERFORMANCE (PD57030S)

57

TEST CIRCUIT SCHEMATIC

TEST CIRCUIT COMPONENT PART LIST

COMPONENT	DESCRIPTION
C1, C8, C9, C13	47pF ATC 100B SURFACE MOUNT CERAMIC CHIP CAPACITOR
C2, C7	0.8-8.0pF GIGA TRIM VARIABLE CAPACITOR
C3, C4, C5, C6	7.5pF ATC 100B SURFACE MOUNT CERAMIC CHIP CAPACITOR
C10	1000pF ATC 100B SURFACE MOUNT CERAMIC CHIP CAPACITOR
C11, C15	0.1µF / 500V SURFACE MOUNT CERAMIC CHIP CAPACITOR
C12	10µF / 50V ALUMINUM ELECTROLYTIC RADIAL LEAD CAPACITOR
C14	100pF ATC 100B SURFACE MOUNT CERAMIC CHIP CAPACITOR
C16	220µF / 63V ALUMINUM ELECTROLYTIC RADIAL LEAD CAPACITOR
R1	18KΩ, 1W SURFACE MOUNT CHIP RESISTOR
R2	4.7M Ω , 1W SURFACE MOUNT CHIP RESISTOR
R3	120Ω, 2W SURFACE MOUNT CHIP RESISTOR
FB1, FB2	SHIELD BEAD SURFACE MOUNT EMI
L1, L2	INDUCTOR, 5TURNS AIR WOUND #22AWG, ID=0.059[1.49], NYLON COATED MAGNET WIRE

57

TEST CIRCUIT PHOTOMASTER

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

> The ST logo is registered trademark of STMicroelectronics ® 2003 STMicroelectronics - All Rights Reserved

> All other names are the property of their respective owners.

STMicroelectronics GROUP OF COMPANIES Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco -Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.

http://www.st.com
