imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

4 Port PSE PoE Manager

PRODUCTION DATASHEET

Introduction

DESCRIPTION	KEY FEATURES
Microsemi's PD69104B Power over Ethernet (PoE) Manager enables network devices to share power and data over a single cable. The PD69104B PoE Manager chip is employed by both Ethernet switches and Midspans. The device integrates power, analog circuitry and state of the art control logic into a single 48-pin plastic QFN package.	 Supports IEEE802.3af and IEEE802.3at, including two-event classification MSCC Extended Auto, Semi Auto, and Auto modes Supports pre-standard PD detection
 The PD69104B device is a 4 port, mixed-signal, high-voltage PoE Manager. The PD69104B supports 3 modes of operation: MSCC Extended Auto mode – this is a stand-alone mode in which the PD69104B detects IEEE802.3af-2003 compliant PDs (Powered Devices) and IEEE802.3at-2009 High Power devices, ensuring safe power feeding and disconnection of ports based on a power management algorithm while employing a minimum of external components. Semi Auto mode – allows the host to control which devices are powered and which are not, as well as to communicate with the PD69104B and to configure it Auto mode – allows turning PDs on and off automatically. Used for systems with a full power supply. The PD69104B executes all real time functions as specified in the 	 Supports Cisco devices detection Single DC voltage input (44V to 57V) Wide temperature range: -10° to +85°C Low power dissipation (0.36Ω sense resistor) Drives independent 2-pair power port Supports Extended PoE Protocol and Register Map Includes 2 selectable communication modes (I2C and UART) Includes Reset command pin Continuous monitoring port and system data Parameter setting using input pins Parameters setting from external serial EEPROM device
IEEE802.3af-2003 ("AF") and IEEE802.3at High Power ("AT") standards, including load detection, "AF" and "AT" classifications, and using Multiple Classification Attempts (MCA).	 Built-in Dynamic Power Management and Emergency Power Management mechanisms with 4 x Power Supply Power Good pins
The PD69104B, supports detect legacy/pre-standard PD devices. It also provides PD real-time protection through the following mechanisms: overload, under-load, over-voltage, over-temperature, and short-circuit. The PD69104B supports supply voltages between 44V and 57V with no need for additional power supply sources and has a built-in thermal protection. The PD69104B is a low power device that uses internal MOSFETs and external 0.36Ω sense resistors.	 Power soft start mechanism On-chip thermal protection On-chip continual thermal monitoring Voltage/current and temperature monitoring/protection Built-in 3.3V and 5V regulators Internal power on reset MSL1, RoHS compliant
The PD69104B is available in 48 leads, 8 mm x 8 mm QFN package.	

IMPORTANT: For the most current data, consult MICROSEMI's website: http://www.microsemi.com

	PACKAGE ORDER INFO	THERMAL DATA	
Т _А (°С)	Plastic 48 pin QFN 8x8 mm	THERMAL RESISTANCE-JUNCTION TO AMBIENT 25° C/W	Ū
ΙΑ(Ο)	RoHS Compliant / Pb-free, MSL1	THERMAL RESISTANCE-JUNCTION TO CASE 4° C/W	6
-10 to +85	PD69104BILQ	Junction Temperature Calculation: $T_J = T_A + (P_D \times \theta_{JA})$.	1(
	ble in Tape and Reel. Append the letters "TR" umber. (i.e PD69104BILQ-TR)	The θ_{JA} numbers are guidelines for the thermal performance of the device/pc-board system. All of the above assume no ambient airflow.	04B

Analog Mixed Signal Group 1 Enterprise, Aliso Viejo, CA 92656, USA; Within the USA: (800) 713-4113, Outside the USA: (949) 221-7100 Fax: (949) 756-0308

1

specified terminals.

PD69104B

4 Port PSE PoE Manager

PRODUCTION DATASHEET

TYPICAL POWER DISSIPATION INFORMATION

R_{sense} Power Dissipation: 0.36 $\Omega \times I_{port}^2$
$R_{ds_{ON}}$ Power Dissipation: 0.3 Ω x I_{port}^{2}
P _{port_AF} = 15.4W ==> Port Power Dissipation @ R _{sense} = 37mW (320mA)
Port Power Dissipation @ R_{ds_ON} = 31mW (320mA)
P _{port_AT} = 30W ==> Port Power Dissipation @ R _{sense} = 130mW (600mA)
Port Power Dissipation @ R _{ds ON} = 108mW (600mA)
Using Internal 3.3V regulator
Typical PD69104B self power dissipation (including internal regulations) = 0.5W (50V)
Typical PD69104B @ 4 x Port AF application power dissipation = 0.5W + 4 x 31mW + 4 x 37mW = 0.77W
Typical PD69104B @ 4 x Port AT application power dissipation = 0.5W + 4 x 108mW + 4 x 130mW = 1.45W
Using External 3.3V regulator
Typical PD69104B self power dissipation (external 3.3V source) = 0.25W (50V)
Typical PD69104B @ 4 x Port AF application power dissipation = 0.25W + 4 x 31mW + 4 x 37mW = 0.52W
Typical PD69104B @ 4 x Port AT application power dissipation = 0.25W + 4 x 108mW + 4 x 130mW = 1.2W

ABSOLUTE MAXIMUM RATINGS PACKAGE PIN OUT Supply Input Voltage (V_{MAIN}) $-0.3V_{DC}$ to $74V_{DC}$ Port_Neg[0..7] pins $-0.3V_{DC}$ to $74V_{DC}$ LED pins -0.3V $_{\text{DC}}$ to 74V $_{\text{DC}}$ Port_Sense[0..7] pins -0.3V $_{\text{DC}}$ to 3.6V $_{\text{DC}}$ QGND, GND pins -0.3V $_{\text{DC}}$ to 0.3V $_{\text{DC}}$ VAUX5, DRV_VAUX5 -0.3V $_{\text{DC}}$ to 5.5V $_{\text{DC}}$ ADD LTAR -0.3V $_{\text{DC}}$ to 3.6V $_{\text{DC}}$ ADD1 ADD2 All other pins -10° to +85°C ADD3 AGND **Operating Ambient Temperature** PD69104B GND ED2 LED Range ECB 28 🗆 27 🗖 26 🗖 25 🗖 Maximum Operating Junction PORT SE +160°C VPORT NEGO PORT_NEG2 Temperature PORT_SENSE3 VPORT_NEG3 116 ESD Protection at all I/O pins $\pm 2KV HBM$ AGND AGND ACKPLAUX AUX3P3 VAUX3P3 QGND QGND IREF TRIM VMAIN VAUX5 Storage Temperature Range -65° to +150°C (Top View) Notes: RoHS / Pb-free 100% Matte Tin Finish 1. Exceeding these ratings can cause damage to the device. All voltages are with respect to ground. Currents are marked positive when flowing into specified terminals and marked negative when flowing out of

4 Port PSE PoE Manager

July 2004

PRODUCTION DATASHEET

ROHS AND SOLDER REFLOW INFORMATION

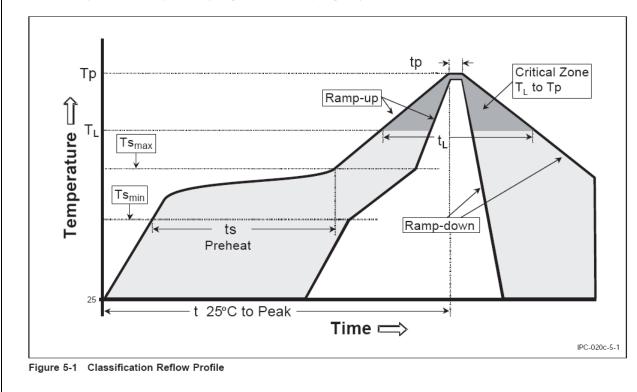
RoHS 6/6

Pb-free 100% Matte Tin Finish

Package Peak Temperature for Solder Reflow (40 seconds maximum exposure)

260° C (+0° C, -5° C)

Notes:


Exceeding these ratings can cause damage to the device.

IPC/JEDEC J-STD-020C

Table 5-2 Classification Reflow Profiles

Profile Feature	Sn-Pb Eutectic Assembly	Pb-Free Assembly
Average Ramp-Up Rate (Ts _{max} to Tp)	3 °C/second max.	3° C/second max.
Preheat – Temperature Min (Ts _{min}) – Temperature Max (Ts _{max}) – Time (ts _{min} to ts _{max})	100 °C 150 °C 60-120 seconds	150 °C 200 °C 60-180 seconds
Time maintained above: – Temperature (T _L) – Time (t _L)	183 °C 60-150 seconds	217 °C 60-150 seconds
Peak/Classification Temperature (Tp)	See Table 4.1	See Table 4.2
Time within 5 °C of actual Peak Temperature (tp)	10-30 seconds	20-40 seconds
Ramp-Down Rate	6 °C/second max.	6 °C/second max.
Time 25 °C to Peak Temperature	6 minutes max.	8 minutes max.

Note 1: All temperatures refer to topside of the package, measured on the package body surface.

3

1 Enterprise, Aliso Viejo, CA 92656, USA; Within the USA: (800) 713-4113, Outside the USA: (949) 221-7100 Fax: (949) 756-0308

4 Port PSE PoE Manager

PRODUCTION DATASHEET

Package Thickness	Volume mm ³ <350	Volume mm ³ 350 - 2000	Volume mm ³ >2000
<1.6 mm	260 +0 °C *	260 +0 °C *	260 +0 °C *
1.6 mm - 2.5 mm	260 +0 °C *	250 +0 °C *	245 +0 °C *
≥2.5 mm	250 +0 °C *	245 +0 °C *	245 +0 °C *

Electrical Characteristics

Unless otherwise specified, the following specifications apply to the operating ambient temperature, -10° to +85°C.

PARAMETER	SYMBOL	TEST CONDITIONS /	PD69104B MANAGER			UNITS	
		COMMENT	MIN	ΤΥΡ	MAX		
POWER SUPPLY							
Input Voltage	V _{MAIN}	Supports Full IEEE802.3 functionality	44	55	57	V _{DC}	
Power Supply Current @ Operating Mode	I _{MAIN}	V _{MAIN} = 55V		10		mA	
5V Output Voltage	V _{AUX5}		4.5	5	5.5	V _{DC}	
3.3V Output Voltage	V _{AUX3P3}		2.97	3.3	3.63	V _{DC}	
		Without external NPN			5	mA	
3.3V Output Current		With external NPN transistor on VAUX5			30	mA	
3.3V Input Voltage	V _{AUX3P3}	REG_EN_N pin = 3.3V (internal reg. is disabled) VAUX3P3 INT=5V	3	3.3	3.6	V _{DC}	
		_					
POWER ON RESET (POR)							
Threshold			2.575	2.775	2.975	V _{DC}	
Hysteresis			0.2	0.25	0.3	V _{DC}	
Delay			10	50	100	μS	

4 Port PSE PoE Manager

		P	PRODUCTION DATASHEET					
PARAMETER	SYMBOL TEST CONDITIONS / PD69104B MANAGER				UNITS			
		COMMENT	MIN	ΤΥΡ	MAX			
DIGITAL I/O								
Input Logic High Threshold	V _{IH}		2			V _{DC}		
Input Logic Low Threshold	V _{IL}				0.8	V _{DC}		
Input Hysteresis Voltage			0.4	0.6	0.8	V _{DC}		
Input High Current	I _{IH}		-10		10	μA		
Input Low Current	I _{IL}		-10		10	μA		
Output High Voltage	V _{он}	For I _{OH} = -1 mA	2.4			V _{DC}		
Output Low Voltage	V _{OL}	I _{он} = 1 mA			0.4	V _{DC}		

POE LOAD Currents						
AT Limit Mode	AT_LIM_LOW	Tested With Sense resistance = 0.366Ω	706	722	767	mA
	AT_LIM_HIGH	(Rsense+Traces = 0.36Ω +6m Ω = 0.366Ω) connected at port_sense pin	847	874	919	mA
	AT configurable		537		1200	mA
AF Limit Mode	AF_LIM		410	425	448	mA
PoE Tech High Power Port			808	850	892	mA

R _{DSON}			0.3		Ω
			200		°C
	According to IEEE802.3 standard	19		26.5	ΚΩ
	Measured between VMAIN and VPORT_NEG pins	16.5	18	19.5	V _{DC}
	Measured between VMAIN and VPORT NEG pins	7.5	8.5	9.5	V _{DC}
	R _{DSON}	According to IEEE802.3 standard Measured between VMAIN and VPORT_NEG pins Measured between VMAIN and	According to IEEE802.3 19 standard Measured between VMAIN and VPORT_NEG pins 16.5 Measured between VMAIN and 7.5	According to IEEE802.3 19 standard 19 Measured between VMAIN and VPORT_NEG pins 16.5 Measured between VMAIN and 17.5 Measured between VMAIN and 17.5	According to IEEE802.3 19 26.5 According to IEEE802.3 19 26.5 Measured between VMAIN and VPORT_NEG pins 16.5 18 19.5 Measured between VMAIN and VPORT_NEG pins 7.5 8.5 9.5

4 Port PSE PoE Manager

		P	PRODUCTION DATASHEET				
PARAMETER	SYMBOL	TEST CONDITIONS / COMMENT		D 6 9 1 0 A N A G T Y P	UNITS		
LED0 TO 3, POE_MAX DRIVERS							
Current Sink	I sink (from VMAIN to AGND)			3	5	mA	
3 STATES ANALOG INPUT PINS (CURRENT SET, COMM_MODE)							
High Level input voltage			80% V _{AUX3P3}			V _{DC}	
Open		Not Connected	40% V _{AUX3P3}		60% V _{AUX3P3}	V_{DC}	
Low level input voltage					20% V _{AUX3P3}	V _{DC}	

www.Microsemi.com

www.*Microsemi*.com

4 Port PSE PoE Manager

Dynamic Characteristics

The PD69104B utilizes three current level thresholds (I_{min} , I_{cut} , I_{lim}) and three timers (T_{min} , T_{cut} , T_{lim}).

- Loads that consume I_{lim} current for more than T_{lim} are labeled as 'short circuit state' and are shutdown.
- Loads that dissipate more than I_{cut} for longer than T_{cut} are labeled as 'overloads' and are shutdown.
- If output power is below I_{min} for more than T_{min} , the PD is labeled as 'no-load' and is shutdown.

Automatic recovery from overload and no-load conditions is attempted every T_{OVLREC} period (typically 1 second). Output power is limited to I_{lim} , which is the maximum peak current allowed at the port.

PARAMETER		CONDITIONS	MIN.	TYP.	MAX.	UNIT
Automatic Recovery from No- load Shutdown		value, measured from port shutdown an be modified through control port)		1		Sec
Cutoff timers Accuracy	Typical	accuracy of T _{cut}		2		ms
Inrush Current	I _{Inrsh}	For t = 50ms, C_{load} = 180µF max.	400		450	mA
Output Current Operating Range	I _{port}	Continuous operation after startup period	10		375	mA
Output Power Available Operating Range	P _{port}	Continuous operation after startup period, at port output	0.57		15.4	W
Off mode Current	I _{min1}	Must disconnect for T greater than T_{UVL}	0		5	mA
	I _{min2}	May or may not disconnect where T is greater than T_{UVL}	5	7.5	10	mA
PD Power Maintenance Request Drop-out Time Limit	T _{PMDO}	Buffer period to handle transitions	300		400	ms
Overload Current Detection Range	I _{cut}	Time limited to T _{OVL}	350		400	mA
Overload Time Limit	T _{OVL}		50		75	ms
Turn On Rise Time	T _{rise}	From 10% to 90% of V_{port} (Specified for PD load consisting of 100µF capacitor parallel to 200 Ω resistor)	15			μs
Turn Off Time	T _{off}	From V _{port} to 2.8V _{DC}			500	ms
Time Maintain Power Signature	T _{MPS}	DC modulation time for DC disconnect		49		ms

Table 1: IEEE802.3 AF Mode Parameters

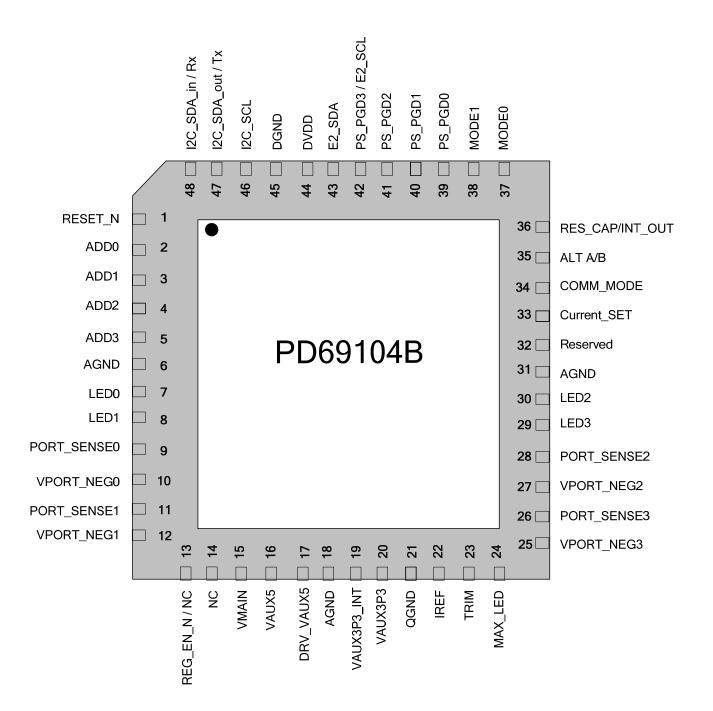
7

4 Port PSE PoE Manager

PRODUCTION DATASHEET

Table 2: IEEE802.3 AT Mode Parameters

PARAMETER		CONDITIONS	MIN.	TYP.	MAX.	UNIT
Automatic Recovery from No-load Shutdown		T _{UDLREC} value; measured from port shutdown point (can be modified through control port)		1		s
Cutoff Timers Accuracy	Typical	accuracy of T _{cut}		2		ms
Inrush Current	I _{Inrsh}	For t = 50ms, C_{load} = 180µF max.	400		450	mA
Output Current Operating range	I _{port}	Continuous operation after startup period	10		725	mA
Output Power Available, Operating Range	P _{port}	Continuous operation after startup period at port output	0.57		36	W
Off Mode Current	I _{min1}	Must disconnect where T is greater than $T_{\mbox{\scriptsize UVL}}$	0		5	mA
	I _{min2}	May or may not disconnect where T is greater than T_{UVL}	5	7.5	10	mA
PD Power Maintenance request drop-out time limit	T _{PMDO}	Buffer period to handle transitions	300		400	ms
Overload Time Limit	T _{OVL}		50		75	ms
Turn-on Rise Time	T _{rise}	From 10% to 90% of V_{port} (Specified for PD load consisting of 100µF capacitor parallel to 200 Ω resistor)	15			us
Turn-off Time	T _{off}	From V_{port} to 2.8 V_{DC}			500	ms
Time Maintain Power Signature	T _{MPS}	DC modulation time for DC disconnect		49		ms


www.Microsemi.com

4 Port PSE PoE Manager

PRODUCTION DATASHEET

Package and Pinout

9

4 Port PSE PoE Manager

PRODUCTION DATASHEET

Detailed Pinout Description

		<u> </u>	-
PIN	PIN NAME	PIN TYPE	DESCRIPTION
0.	PAD	Analog GND	Exposed PAD: Connect to analog ground. A decent ground plane should be deployed around this pin whenever possible (refer to PD69104B Layout Design Guidelines)
1.	RESET_N	Digital Input	Reset input – active low ('0' = reset)
2.	ADDR0	Digital Input	Address bus for setting the address of the chip. See Table 3.
3.	ADDR1	Digital Input	Address bus for setting the address of the chip. See Table 3.
4.	ADDR2	Digital Input	Address bus for setting the address of the chip. See Table 3.
5.	ADDR3	Digital Input	Address bus for setting the address of the chip. See Table 3.
6.	AGND	Power	Analog ground
7.	LED0	Analog output	Port 0 LED indication – active low ('0' = LED on) See Table 5
8.	LED1	Analog output	Port 1 LED indication – active low ('0' = LED on) See Table 5
9.	PORT_SENSE0	Analog Input	Sense resistor port input(Connected to 0.36 Ω , 1% resistor to QGND with ~12 m Ω trace for measurements accuracy).
10.	VPORT_NEG0	Analog I/O	Negative port output
11.	PORT_SENSE1	Analog Input	Sense resistor port input(Connected to 0.36 Ω , 1% resistor to QGND with ~12 m Ω trace for measurements accuracy).
12.	VPORT_NEG1	Analog I/O	Negative port output
13.	REG_EN_N	Analog I/O	An input pin that enables control of the $3.3V_{DC}$ internal regulator. Disables internal $3.3V_{DC}$ regulator in case external $3.3V_{DC}$ is used to supply the chip. If connected to GND – internal regulator is enabled. If connected to $3.3V_{DC}$ – internal regulator is disabled
14.	NC	Analog I/O	A test pin used only during production. Keep unconnected.
15.	VMAIN	Power	Supplies voltage for the internal analog circuitry. A 1μ F (or higher) low ESR bypass capacitor, connected to AGND, should be placed as close as possible to this pin through low resistance traces.
16.	VAUX5	Power	Regulated $5V_{DC}$ output voltage source, needs to be connected to a filtering capacitor of $4.7\mu F$ or higher. If an external NPN is used to regulate the voltage, connect this pin to the "Emitter" (the "collector" should be connected to VMAIN).
17.	DRV_VAUX5	Power	Driven outputs for $5V_{DC}$ external regulations. In case internal regulation is used, connect to pin 16. In case an external NPN is used to regulate the voltage, connect this pin to the "Base".
18.	AGND	Power	Analog ground
19.	VAUX3P3_INT	Power	In case internal 3.3 V_{DC} regulator is used, connected to VAX3P3 (pin 20).
			In case external $3.3V_{\text{DC}}$ regulator is used, connect to VAUX5 (pin 16).

www.Microsemi.com

PD69104B

Copyright © 2011 Rev. 1.3

Analog Mixed Signal Group 1 Enterprise, Aliso Viejo, CA 92656, USA; Within the USA: (800) 713-4113, Outside the USA: (949) 221-7100 Fax: (949) 756-0308

4 Port PSE PoE Manager

PRODUCTION DATASHEET

20.	VAUX3P3	Power	Regulated $3.3V_{DC}$ output voltage source. A 4.7μ F or higher filtering capacitor should be connected between this pin and AGND. When an external $3.3V_{DC}$ regulator is used, connect it to this pin to supply the chip.		
21.	QGND	Power	Quiet analog ground		
22.	IREF	Analog Input	A reference resistor pin. A 30.1k Ω , 1% resistor should be connected between this pin and QGND.		
23.	TRIM	Test Input	Trimming input for IC production. Should be connected to VAUX3P3.		
24.	MAX_LED	Analog output	MAX LED analog output. Indicates the device has exceeded maximum power budget. See Table 5.		
25.	VPORT_NEG3	Analog I/O	Negative port output		
26.	PORT_SENSE3	Analog Input	Sense resistor port input(Connected to 0.36 Ω , 1% resistor to QGND with ~12 m Ω trace for measurements accuracy).		
27.	VPORT_NEG2	Analog I/O	Negative port output		
28.	PORT_SENSE2	Analog Input	Sense resistor port input(Connected to 0.36 Ω , 1% resistor to QGND with ~12 m Ω trace for measurements accuracy).		
29.	LED3	Analog output	Port 3 LED indication – active low ('0' = LED on) See Table 5		
30.	LED2	Analog output	Port 2 LED indication – active low ('0' = LED on) See Table 5		
31.	AGND	Power	Analog ground		
32.	Reserved	Analog Input	Reserved pin. Must be connected to AGND.		
33.	Current_SET	Analog Input	 3 state input pin, used for selecting output current and AF/AT mode. "0" (AGND) – AF mode "open" (N.C) – Low AT mode 600mA "1" (V_{DD}) – High AT mode 720mA 		
34.	COMM_MODE	Analog Input	 3 state input pin communication. Following options are available: "0" (AGND) – UART active "open" (N.C) – E2PROM connected "1" (V_{DD}) – I2C active 		
35.	ALT A/B	Digital Input	 Configuration Input Pin, used for setting PD69104B working mode. GND – ALT B mode = Midspan mode (midsp [0:3] bits ="1") DVDD – ALT A mode = Endspan mode (midsp [0:3] bits ="0") 		

4 Port PSE PoE Manager

PRODUCTION DATASHEET

	RES_CAP / INT_OUT		In MSCC Extended Auto mode: User input pin. Used for setting the chip legacy detection mode:
		Digital I/O	 "1" (V_{DD}) – IEEE802.3af compliant resistor detection only
36.			 "0" (GND) – AF / AT Detection and Legacy (non-standard) line detection
			In Auto or Semi-Auto modes: Interrupt out pin. Indicates an interruption event has occurred.
			An external 10K pull-up resistor should be connected between this pin and DVDD.
37.	Mode0	Digital Input	Used for IC operational mode selection – see Table 4.
38.	Mode1	Digital Input	Used for IC operational mode selection – See Table 4.
39.	PS_PGD0	Digital input	Power Supply Power Good 0; Power Budget Set pin – for Fast Power Control (See Table 6)
40.	PS_PGD1	Digital input	Power Supply Power Good 1; Power Budget Set pin – for Fast Power Control (See Table 6)
41.	PS_PGD2	Digital input	Power Supply Power Good 2; Power Budget Set pin – for Fast Power Control
	10_1002	Digital input	(See Table 6)
	PS_PGD3/E2_SCL		Power Supply Power good 3;
			Power Budget Set Pin – for initial configuration (See Table 6)
42.		Digital I/O	Or (refer to COMM MODE PIN)
		(open drain)	E2_SCL: I2C Clock Out to EEPROM
			When working with EPROM - An external 10K pull-up resistor should be connected between this pin and DVDD.
42		Digital I/O	EEPROM I2C data I/O pin. Used for Power Up configuration in Stand Alone Auto-Mode systems.
43.	E2 SDA	(open drain)	An external 10K pull-up resistor should be connected between this pin and DVDD.
44.	DVDD	Power	Digital 3.3V _{DC} power input
45.	DGND	Power	Digital GND
			I2C bus, serial clock input.
46.	I2C SCL	Digital Input	An external 10K pull-up resistor should be connected between this pin and DVDD.
		Digital 1/0	I2C bus, data output / UART Tx output
47.	I2C_SDA_out / Tx	Digital I/O (open drain)	An external 10K pull-up resistor should be connected between this pin and DVDD.
		Disting 1/2	I2C bus, data input / UART Rx input
48.	I2C_SDA_in / Rx	Digital I/O (open drain)	An external 10K pull-up resistor should be connected between this pin and DVDD.

Note:

- "0" = Connect to DGND
- "1" = Connect to DVDD

Copyright © 2011 Rev. 1.3 12

PD69104B

4 Port PSE PoE Manager

PRODUCTION DATASHEET

Table 3: I2C and UART Address Selection Table

CONST BITS	ADDR3 SLAVE 1 BIT	ADDR2 SLAVE 0 BIT	ADDR1 ID1 BIT	ADDR0 ID0 BIT	I2C/ UART ADDRESS				
010	0	0	0	0	010000b				
010	0	0	0	1	0100001b				
010	0	0	1	0	0100010b				
010	0	0	1	1	0100011b				
010	0	1	0	0	0100100b				
010	0	1	0	1	0100101b				
010	0	1	1	0	0100110b				
010	0	1	1	1	0100111b				
010	1	0	0	0	0101000b				
010	1	0	0	1	0101001b				
010	1	0	1	0	0101010b				
010	1	0	1	1	0101011b				
010	1	1	0	0	0101100b				
010	1	1	0	1	0101101b				
010	1	1	1	0	0101110b				
010	1	1	1	1	0101111b				

Notes:

- Address 0000000b is the global address in Extended mode operation I2C/UART (MODE<1:0>='00')
- Address 0110000b is the global address in Auto mode and Semi Auto mode operations (MODE<1:0>='01' or '11')
- All the slaves respond to the global address
- Avoid global read transactions
- Address 0001100b is used for Extended POE address (Alert Response address) in Auto mode and Semi Auto mode operations
- When reading from this Alert Response address, only slaves that assert the Int_out pin will send bytes that consist of their own addresses

4 Port PSE PoE Manager

PRODUCTION DATASHEET

Table 4: Mode of Operation

Mode 1	Mode 0	Mode	Comm. to the IC	Functionality	Remarks		
0	0	MSCC Extended Auto Mode	I2C or UART (see COMM_MODE pin)	Fully autonomous operation without a need for Host Controller (MCU) This Mode Supports Extended Registers Map. Default Operation: With No Interrupt Function (Interrupt can be enabled by communication command)	I2C or UART Protocol to Host with extended register map and PM (Power Management) support		
0	1	Semi Auto mode	I2C or UART (see COMM_MODE pin)	Host should manage the ports	I2C Protocol to Host		
1	0	Test mode			For internal use only		
1	1	Auto mode	I2C or UART (see COMM_MODE pin)	Fully autonomous operation without a need for Host Controller. Default Operation: Interrupt Out Function – Enabled (Supported)	I2C Protocol to Host		

Table 5: LED Indications

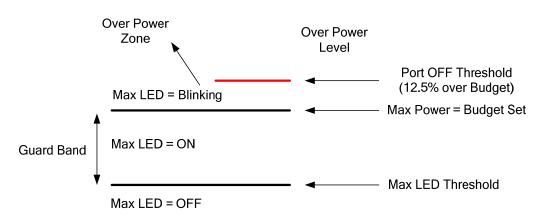
PIN	Status	LED	
	Port Power On	On	
	Power Management event	0.4Hz Blink	
LED<3:0>	Port Over Load Port Short Circuit Port failed at Startup	0.8Hz Blink	
	Vmain_Out of Range	All LEDs :3.3Hz	
	or Over Temp	Blink	
	Port Off	Off	
	Total power consumption is below Power Guard Band determined by the user	Off	
MAX_LED	Total power consumption is above Power Guard Band but below total budget.	On	
	Total power consumption is above total budget, or Power Integral is still positive	Blink	

Notes:

MAX LED:

- Both Max Power Budget and Max LED Guard Band (GB) can be configured through internal registers :
- Max Power Budget registers: PWR_BNK0 to PWR_BNK7 (address 0x89 to 0x90)
 Max LED Guard Band register: PoE_MAX_LED_GB (address 0x9F)
- PoE MAX LED GB Register LSB = 1 watt
- Max LED reflects total power for all 4 ports
- When Total Power consumption < (Max Power Guard Band) Max LED is OFF (below the bottom line) .
- When Total Power consumption > (Max Power Guard Band) Max LED is ON (Between the lines) •

Copyright	© 2011	Microsemi
Rev. 1.3	Analog	alog Mixed Signal Group
	1 Enterprise, Aliso Viejo, CA 92656, USA; Within the USA	JSA: (800) 713-4113, Outside the USA: (949) 221-7100 Fax: (949) 756-0308


PD69104B

4 Port PSE PoE Manager

PRODUCTION DATASHEET

- When Total Power consumption > (Max Power) => LED is BLINKING (above top line)
 - Also, when Total Power > Budget (above top line):
 - o An internal Digital Power Integration Calc. machine starts integrating power
 - When this Integrated total power is larger than Budget + 12.5% (RED LINE) => lowest priority port is turned OFF
 - This specific port LED is OFF
 - Max LED will reflect the NEW Total Power status
 - If ports turn off due to PM their per port LEDs will blink (in PM frequency) and MAX_LED will turn off
 - Timing to shut down this port is proportional to the Over Power (above budget) but limited to max. of 2 sec. see example:

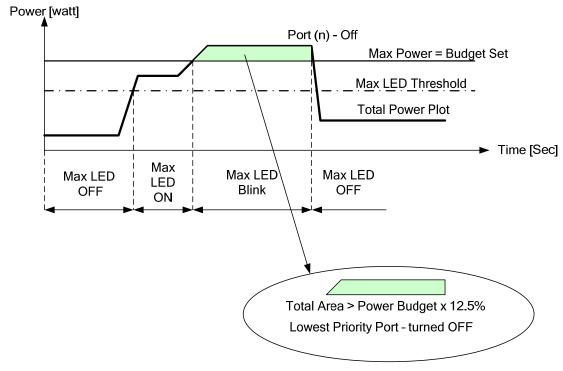


Figure 1: MAX_LED Behavior Description

Copyright © 2011 Rev. 1.3

4 Port PSE PoE Manager

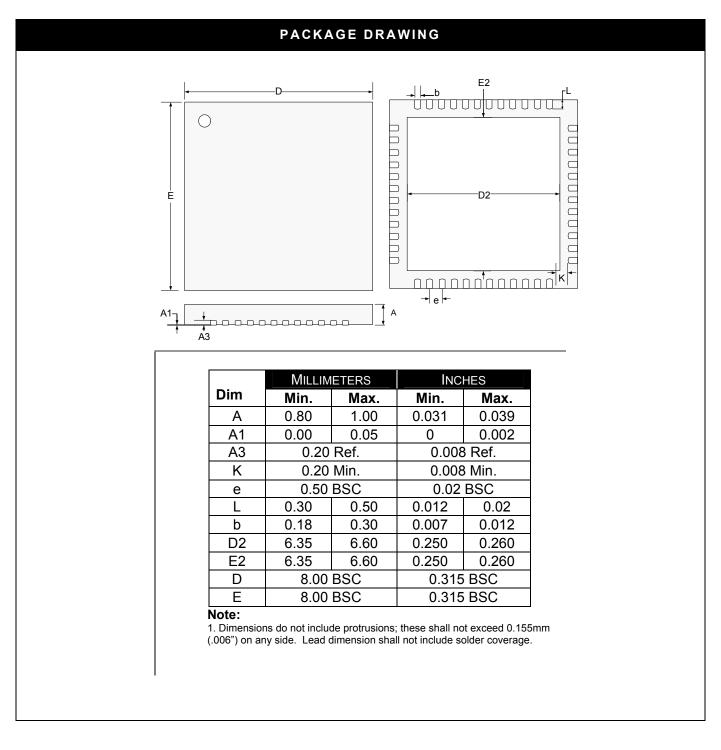
PRODUCTION DATASHEET

- Budget = 100w, GB = 20w
- When total power = 70w MAX LED is OFF
- When total power = 85w MAX LED is ON (Power Integrator is NOT activated)
- When total power = 110w MAX LED BLINKS (Power Integrator is activated) Port at Lowest Priority is shut off
- Timing to shut off is based on : delta(P) x T_{off} = Power Budget x 1.125
- $\circ \quad \text{In this example 10watt x T}_{\text{off}} = 100watt x 0.125 \qquad \qquad T_{\text{off}} = 1.25 \text{ sec.}$
- \circ If Total Power = 105 watt delta (P) = 5 Then T_{off} = 2 sec. (which is the Max Timer)

PS_PG3 / Bank Range Select	PS_PG2	PS_PG1	PS_PG0	Total Power Budget [W]	Remarks
0	0	0	0	144 (default value in AT low mode)176 (default value in AT high mode)	Register PWR_BNK0
0	0	0	1	140 (default value)	Register PWR_BNK1
0	0	1	0	136 (default value)	Register PWR_BNK2
0	0	1	1	132 (default value)	Register PWR_BNK3
0	1	0	0	128 (default value)	Register PWR_BNK4
0	1	0	1	124 (default value)	Register PWR_BNK5
0	1	1	0	120 (default value)	Register PWR_BNK6
0	1	1	1	116 (default value)	Register PWR_BNK7
1	0	0	0	112	Constant
1	0	0	1	108	Constant
1	0	1	0	104	Constant
1	0	1	1	100	Constant
1	1	0	0	96	Constant
1	1	0	1	92	Constant
1	1	1	0	88	Constant
1	1	1	1	84	Constant

Table 6: Power Budget:

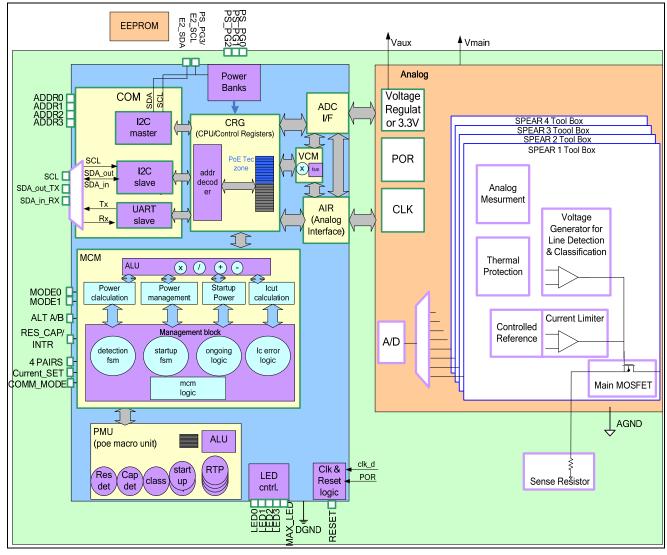
• There are 16 power levels, whereas the first 8 levels are registers that can be configured by users.


• During operation a change in one of the PG pins will change PD69104B's total power budget and may result in turning off ports.

• The power level can be set either by PS_PG0 to PS_PG3 pins or by Host via communication.

4 Port PSE PoE Manager

PRODUCTION DATASHEET



PD69104B - Internal Block Diagram

4 Port PSE PoE Manager

PRODUCTION DATASHEET

Logic Main Control Module

The Logic Main Control block includes the Digital Timing mechanisms and the State Machines, synchronizing and activating PoE functions such as:

- Real Time Protection (RTP)
- Start Up Macro (DVDT)
- Load Signature Detection (RES DET)
- Classification Macro (CLASS)
- Voltage and Current Monitoring Registers (VMC)
- LEDs Stream Out Control Indications
- ADC Interfacing
- Direct Digital Signals with Analog Block

Line Detection Generator

Upon request from the Main Control module, the Line Detection Generator creates four different voltage levels. Thus it ensures robust AF / AT Line Detection functionality.

Classification Generator

Upon request from the Main Control module, the State Machine applies regulated Class Event and Mark Event voltages to the ports, as required by the IEEE standard.

Current Limiter

This circuit continuously monitors the current of the powered ports and limits it to a specific value, according to pre-defined limits set using the Current_Set pin. In case the current exceeds this specific level, the system starts measuring the elapsed time. If this period is longer than the preset threshold, the port is disconnected.

Microsemi Analog Mixed Signal Group

1 Enterprise, Aliso Viejo, CA 92656, USA; Within the USA: (800) 713-4113, Outside the USA: (949) 221-7100 Fax: (949) 756-0308

PD69104B

Main MOSFET

Main power switching FET used for controlling the PoE current that streams into the load.

ADC

A 10-Bit Analog to Digital converter used for converting analog signals into digital registers.

IC main voltage monitoring:

The chip main voltage is sampled every 1mS. Each measurement is an average of 4 consecutive ADC measurements and stored in the relevant register. Main voltage measurement resolution is 5.835mV/count ±5%.

IC Thermal monitoring:

The PD69104B contain a thermal sensor that is sampled to register every 1mS so the PD69104B die temperature can be monitored at all time.

Port current/voltage monitoring:

4 Port PSE PoE Manager

PRODUCTION DATASHEET

After port is delivering power each port current/voltage is sampled every 1mS. Each measurement is an average of 4 consecutive ADC measurements and stored in the relevant register. Current measurement resolution is 122.07uA/count ±5% and voltage measurement resolution is 5.835mV/count ±5% (refer to the PD69104B user Guide register map document for more details)

Power on Reset (POR)

This element monitors the internal $3.3V_{\text{DC}}$ voltage DC levels. If this voltage drops below specific thresholds, a reset signal is generated and the PD69104B is reset.

Voltage Regulator

The voltage regulator generates $3.3V_{DC}$ and $5V_{DC}$ for the internal circuitry. These voltages are derived from the V_{main} supply.

CLK

An internal 8MHz CLK oscillator

PD69104B

4 Port PSE PoE Manager

PRODUCTION DATASHEET

Theory of Operation

The PD69104B meets the IEEE802.3af and IEEE802.3at functionality standards, as well as legacy (capacitor) and Cisco's PDs detection standards. Moreover, it supports additional protections such as short circuit, and dV/dT protection upon port startup.

value should range from 19k Ω to 26.5k Ω . Line detection is based on four different voltage levels generated over the PD (the load), as illustrated in Figure 2. The first 2 levels (low voltage level <3v) are for detecting if load up to 200K Ω is connected to the PSE; preventing from applying high voltages on the PSE when there is no-load, and eliminating potential risk to the DTE. If first detection passes next 2 levels of resistor detection are applied. If the POE detects a valid resistor signature value the detection is passed else the detection fails and moves to IDLE.

Line Detection

The Line Detection feature detects a valid 'af' or 'at' load, as specified in the IEEE802.3 standard. The resistance

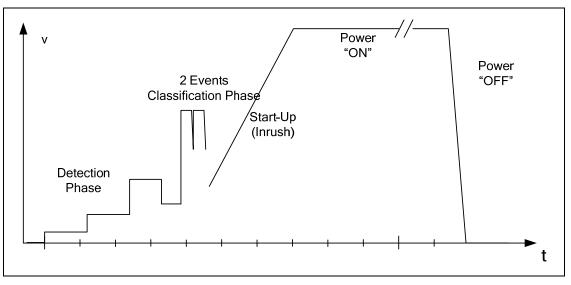


Figure 2: Typical PoE Voltage vs. Time Diagram

Legacy (Cap) Detection

In case pin 36 (RES_CAP / INT_OUT) is set to "0", the detection mechanism of the PD69104B is configured to detect and power LEGACY PDs, as well as AF/AT compliant PDs.

This mechanism also detects and powers CISCO Legacy PDs.

Classification

The classification process takes place right after the resistor detection is successfully completed. The main goal of the classification process is to detect the PD class, as specified in the IEEE802.3AF and AT standards.

In the AF mode the classification mechanism is based on a single voltage level (single finger). In the AT mode classification mechanism is based on two voltage levels (dual finger) as defined in the IEEE802.3at-2009.

Port Start Up

Upon a successful Detection and Classification process, power is applied to the load via a controlled Start Up mechanism.

During this period current is limited to 425mA for a typical duration of 65ms. This enables the PD load to charge and to enter a steady state power condition.

Over-Load Detection and Port Shut Down

After power up, the PD69104B automatically initializes its internal protection mechanisms. These mechanisms are utilized to monitor and disconnect the power from the load in case of an extreme conditions scenario. Scenarios such as over-current or short ports

terminals, as specified in the IEEE802.3AF/AT standard.

Disconnect Detection

The PD69104B supports the DC Disconnect function as per the IEEE802.3AF/AT standard.

This mechanism continuously monitors the load current and disconnects the power in case it drops below 7.5mA (typical) for more than 322ms.

Over-temperature Protection

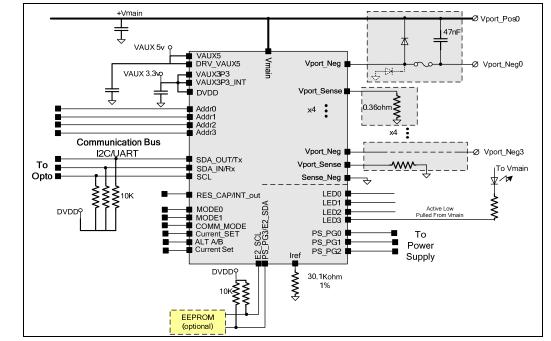
The PD69104B has internal temperature sensors that continuously monitor the junction temperature and set alarm bit when exceeds 120°C or disconnect load

4 Port PSE PoE Manager

PRODUCTION DATASHEET

power when it exceeds 200°C. This mechanism protects the device from extreme events, such as high ambient temperature or other thermo-mechanical failures that may damage the PD69104B.

The Alarm threshold can be set by register.


V_{MAIN} Out of Range Protection

The PD69104B automatically disconnects the ports power when V_{main} exceeds 58.5v threshold (with 180mV hysteresis) or drops below 40V threshold (with 180mV hysteresis). This extremely valuable feature protects the load in case the main power source is faulty or damaged.

TYPICAL APPLICATION

This typical application illustrates a simple "plug and play" Power over Ethernet solution for a single Ethernet port, switch or hub.

- 1. Plug the "POS" and "NEG" signals into the RJ45 switch jack.
- 2. Set the AF and AT operation modes through AF/AT and the current set pins (DGND or DVDD).

* For detailed schematics of application and layout recommendations contact sales AMSG@microsemi.com.

PD69104B

21

4 Port PSE PoE Manager

PRODUCTION DATASHEET

Communication Function Description

The following diagram describes the I2C Communication format of the data write/read access:

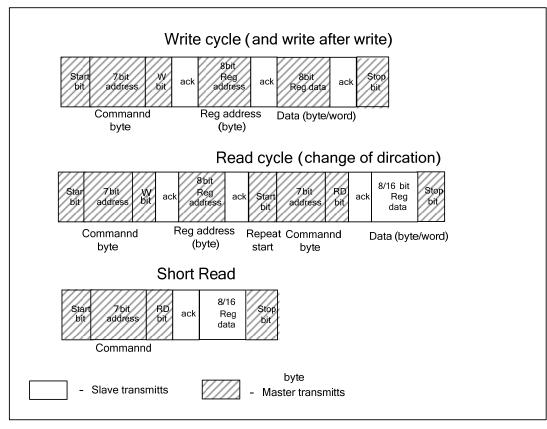


Figure 3: Packet Structure

Address Phase

This phase is common to both read and write accesses:

- Both accesses (read and write) begin with a START indication.
 - The address of the slave is following the START indication. In case of a miss match, the slave ignores the rest of the access and waits for the 'STOP' indication to close the current access. However, in case the slave address matches, the next bit indicates the type of the access (read or write).
- The matched slave acknowledges the first byte.
- The following byte is the internal register address. The slave should acknowledge the byte.

Data Phase

In this phase the read and write accesses behave differently.

Write access

- 1. Byte of write data is transmitted to the slave; the slave acknowledges it.
- 2. A stop indication from the master closes the current access.

Read access

1. Another command byte is received, comprised of the slave address and the real command type (in this case read). The slave acknowledges the byte.

Copyright © 2011	Microsemi
Rev. 1.3	Analog Mixed Signal Group
1 Enterprise	Aliso Viejo, CA 92656, USA; Within the USA: (800) 713-4113, Outside the USA: (949) 221-7100 Fax: (949) 756-0308

22

4 Port PSE PoE Manager PRODUCTION DATASHEET

- 2. At this stage, the master is ready to continue the communication and to sample the read data; hence, the read data must be **ready** on the next rise of the clock pulse.
- 3. A byte of data is transmitted to the master; the master acknowledges it.

I2C High Level Layer

The following diagram describes the supported I2C high-level packet structure.

Figure 4: High Level Packet Structure

Byte/Word Read/Write Transaction

- 1. The first byte is the control byte that consists of the chip address and a read/write operation indication.
- 2. The second byte is the internal chip's address register.
- 3. The following bytes/words are data bytes. In case of a read operation they are read from the slave and in case of a write operation they are written to the slave.

Successive Read/Write Transaction

- The master can continue sending bytes that the slaves write, or continue receiving data from a slave during the address phase.
- The slave will continue to send/receive data bytes from/to the master until a 'stop bit' is asserted by the master.
- Each byte received by the slave (or each byte to be read from the registers) is received from the next register address (each byte address is increased by 1).

Read Byte Transaction

The slave supports a 'send byte' transaction.

- 1. The master begins with a start bit. The following byte consists of the chip address and a read bit.
- 2. If the chip address is correct the slave acknowledges the byte and immediately (at the next sck phase) sends a data byte from a constant address (addr 7'h00)
- 3. A send byte transaction continues with successive read transactions (address 1 address 2 and so on) until the master asserts a stop bit.

Broadcast Support

All slaves answer a general address sent by the master. In case of Auto or Semi-Auto modes the general address is **7'h30** and in case of MSCC Extended Auto mode the general address is **7'h0**.

The broadcast is for master writing only; read access is ignored in a broadcast transaction.

PD69104B

4 Port PSE PoE Manager

PRODUCTION DATASHEET

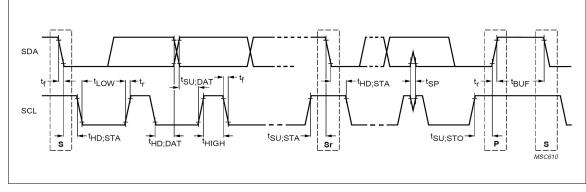
Time Out Mechanism

The I2C has an internal counter of 14ms. The counter resets each time the SCL rises or falls. If the SCL is "stuck" for 14ms, the I2C returns to IDLE state and transaction is ignored (the Time Out mechanism is active between the start bit and the stop bit).

I2C Timing Constraints

		STANDARD-MODE		FAST-MODE		
PARAMETER	SYMBOL	MIN.	MAX.	MIN.	MAX.	
SCL clock frequency	f _{SCL}	0	100	0	400	kHz
Hold time (repeated) START condition. After this period, the first clock pulse is generated	t _{HD;STA}	4.0	-	0.6	-	μs
LOW period of the SCL clock	t _{LOW}	4.7	-	1.3	-	μs
HIGH period of the SCL clock	t _{HIGH}	4.0	-	0.6	-	μs
Set-up time for a repeated START condition	t _{SU;STA}	4.7	-	0.6	-	μs
Data hold time: for CBUS compatible masters (see NOTE, Section 10.1.3) for I ² C-bus devices	t _{HD;DAT}	5.0 0 ⁽²⁾	_ 3.45 ⁽³⁾	0 ⁽²⁾	- 0.9 ⁽³⁾	μs μs
Data set-up time	t _{SU;DAT}	250	-	100 ⁽⁴⁾	-	ns
Rise time of both SDA and SCL signals	t _r	-	1000	$20 + 0.1C_{b}^{(5)}$	300	ns
Fall time of both SDA and SCL signals	t _f	-	300	$20 + 0.1C_{b}^{(5)}$	300	ns
Set-up time for STOP condition	t _{SU;STO}	4.0	-	0.6	-	μs
Bus free time between a STOP and START condition	t _{BUF}	4.7	-	1.3	-	μs
Capacitive load for each bus line	C _b	-	400	-	400	pF
Noise margin at the LOW level for each connected device (including hysteresis)	V _{nL}	0.1V _{DD}	-	0.1V _{DD}	-	V
Noise margin at the HIGH level for each connected device (including hysteresis)	V _{nH}	0.2V _{DD}	-	0.2V _{DD}	-	V

Table 7: Characteristics of the SDA and SCL Bus Lines for F/S-mode I2C-Bus


Notes

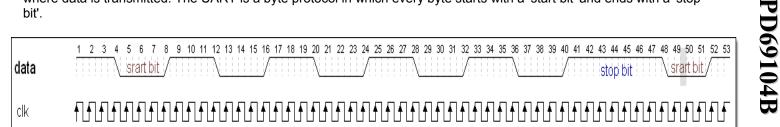
- 1. All values refer to V_{IHmin} and V_{ILmax} levels (see Electrical Characteristics, page 4).
- A device must internally provide a hold time of at least 300ns for the SDA signal (refers to the V_{IHmin} of the SCL signal) to bridge the undefined region of the falling edge of the SCL.
- 3. The maximum tHD;DAT has to be met only if the device does not stretch the LOW period (tLOW) of the SCL signal.
- 4. A Fast-mode I2C-bus device can be used in a Standard-mode I2C-bus system, but the requirement tSU;DAT ³ 250ns must then be met. This is the in case the device does not stretch the LOW period of the SCL signal.
- If the device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line tr max + tSU;DAT = 1000 + 250 = 1250ns (according to the Standard-mode I2C-bus specification) before the SCL line can be released.
- 6. n/a = not applicable

4 Port PSE PoE Manager

PRODUCTION DATASHEET

Figure 5: Definition of Timing for F/S-mode Devices on the I2C-bus

UART Communication Mode – Functional Description


The UART (Universal Asynchronous Receive Transmit) is supported by the PD69104B platform in order to allow communication between PD69104B IC's and an external host, <u>**at Auto mode only**</u>. The PD69104B platform supports UART only as a slave.

Features List

- Slave mode.
- Supports 4,800 to115,200 Baud rate, auto learning mechanism
- Supports 8 bit address.
- Supports 8 bit data access.
- Supports general broadcast transmission.
- 8N1:
 - 8 bits data
 - No parity
 - o 1 stop bit
- Frame transaction header, payload and suffix.
- Time out mechanism (time out for frame and per byte).
- No successive read/write one transaction per register (read/write).
- Half duplex implementation Rx starts after Tx ends
- A filter for glitches cancelling on the RX pin.

The Physical Layer

The UART protocol has two data lines; the Rx, from where the PD69104B receives its data, and the Tx, throughout where data is transmitted. The UART is a byte protocol in which every byte starts with a 'start bit' and ends with a 'stop bit'.

TimeGen 3.0

Figure 6: UART Read/Write Frame