

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Front-End PD Interface Controller for AF/AT/UPOE/HDBaseT/4-pair PoE Applications

Description

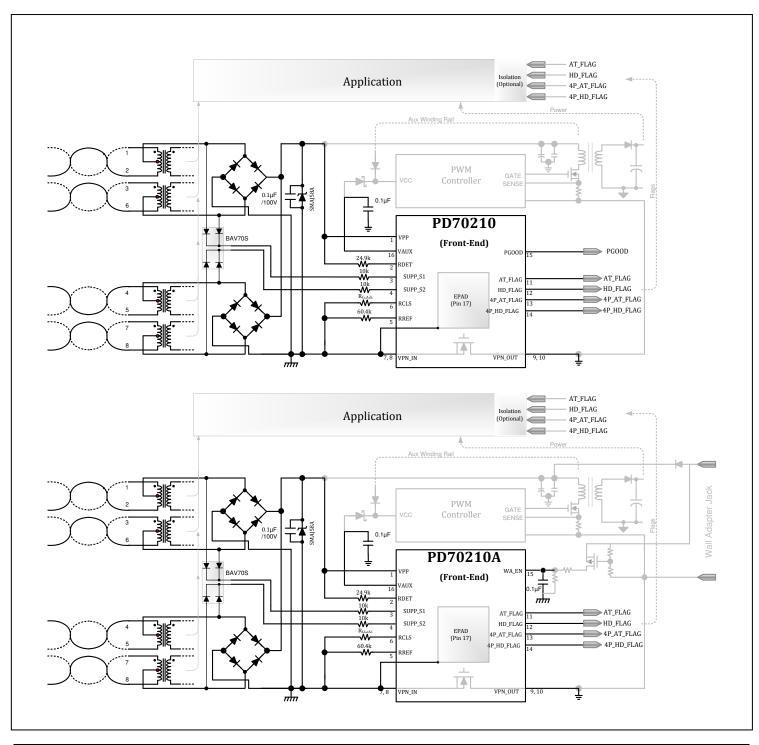
PD70210, PD70210A & PD70210AL is an advanced PD Interface Controller (Front-end IC) for Powered Devices in PoE applications. It supports IEEE802.3af, IEEE802at, HDBaseT, and general 2/4-pair configurations.

PD70210, PD70210A & PD70210AL includes an advanced classification block that supports 2, 3, 4, and 6 event classification. Using the SUPP_Sx pins it also identifies which of the four pairs of the cable actually receives power and generates appropriate flags.

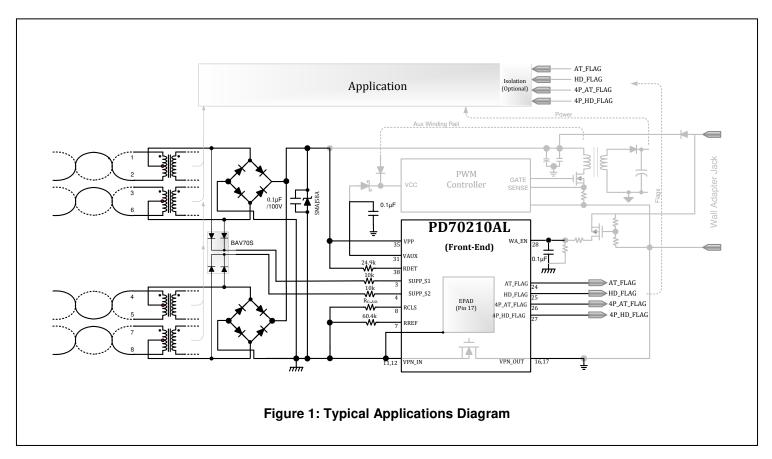
The IC features an internal bleeder for discharging the input capacitor of the DC/DC converter rapidly, so as to ensure fast re-detection and port power-up in case of sudden removal and re-insertion of Ethernet cable into RJ-45.

Features

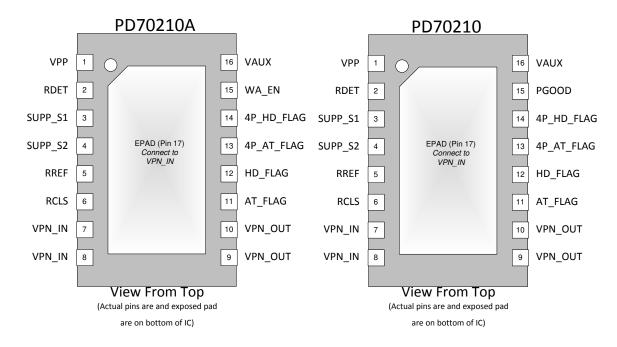
- Supports IEEE802.3af/at, HDBaseT, and other 2-pair/4-pair configurations.
- ♦ PD detection & programmable classification
- ♦ 2,3,4, and 6 event classification
- Integrated 0.3Ω isolating (series-pass) FET
- Inrush current limiting
- Wall adapter support (PD70210A and PD70210AL Only)
- Less than 5μA offset current during detection
- ♦ Lead-free DFN-16 / QFN-38 package


Applications

- ♦ Single HDBaseT or Twin up to 95 Watts
- IEEE802.3af and 802.3at
- ♦ Indoor and outdoor PoE


Front-End PD Interface Controller for AF/AT/UPOE/HDBaseT/4-pair PoE Applications

Typical application


Front-End PD Interface Controller for AF/AT/UPOE/HDBaseT/4-pair PoE Applications

Front-End PD Interface Controller for AF/AT/UPOE/HDBaseT/4-pair PoE Applications

Pin Configuration

PD70210AL

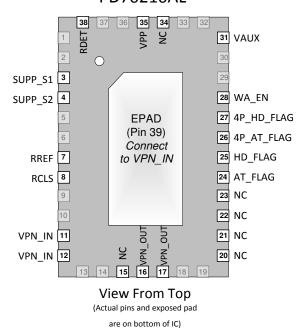


Figure 2: Pinout

^{**} Shaded pins are not exist

Front-End PD Interface Controller for AF/AT/UPOE/HDBaseT/4-pair PoE Applications

Ordering Information

Ambient Temperature	Туре	Package	Part Number	Packaging Type	Part Marking
			PD70210AILD	Bulk	Microsemi Logo
-40°C to 85°C	RoHS compliant, Pb- free	DFN 5 × 4 mm 16L (0.5mm pitch)	PD70210AILD-TR	Tape and Reel	70210A YYWWX*
			PD70210ILD	Bulk	MSC Microsemi Logo
-40°C to 85°C	RoHS compliant, Pb- free	DFN 5 × 4 mm 16L (0.5mm pitch)	PD70210ILD-TR	Tape and Reel	70210 YYWWX* MSC
			PD70210ALILQ	Bulk	Microsemi Logo
-40°C to 85°C	RoHS compliant, Pb- free	QFN 5 × 7 mm 38L (0.5mm pitch)	PD70210ALILQ- TR	Tape and Reel	MSC 70210AL YYWWX*

^{*}Year / Week / Lot number

Selection guide

Feature / IC		PD70210	PD70210A	PD70210AL
Wall adapter support		NA	Available	Available
2P/4P	HDBaseT	Available	Available	Available
support				
Package		DFN 5 × 4 mm 16L	DFN 5 × 4 mm 16L	QFN 5 × 7 mm 38L
Clearance	between	0.2mm	0.2mm	1mm
HV pins				

Front-End PD Interface Controller for AF/AT/UPOE/HDBaseT/4-pair PoE Applications

Pin Description

(PD70210 / PD70210A - DFN 5 × 4 mm 16L)

Pin #	Designator PD70210A	Designator PD70210	Description
1	VPP	VPP	Upper rail of the incoming PSE voltage rail – from the positive terminal of the two OR-ed bridge rectifiers (the corresponding lower PoE rail is VPN_IN)
2	RDET	RDET	Internally connects to VPN_IN during detection phase and disengages after it is over. A 25K Ω (or 24.9K), 1% resistor is connected between this pin and VPP
3	SUPP_S1	SUPP_S1	Input pin for sensing the voltage on the diode bridge connected to the data pairs. This pin along with the SUPP_S2 pin can be used to distinguish between 2-pair and 4-pair operation. (For PSEs that operate in 4 pairs but do not generate the classification procedure on both pair but one pair only). Signal is referenced to VPN_IN. Place a 10K resistor in the input of this pin.
4	SUPP_S2	SUPP_S2	Input pin for sensing the voltage on the diode bridge connected to the data pairs. This pin along with the SUPP_S1 pin can be used to distinguish between 2-pair and 4-pair operation. (For PSEs that operate in 4 pairs but do not generate the classification procedure on both pair but one pair only). Signal is referenced to VPN_IN Place a 10K resistor in the input of this pin.
5	RREF	RREF	Bias current resistor. A 60.4k, 1% resistor is connected between RREF and IC ground (VPN_IN)
6	RCLS	RCLS	Sets the Class of the PD. Connect R_{CLASS} (programming resistor) between this pin and IC ground (VPN_IN). Allowed values are 133 Ω , 69.8 Ω , 45.3 Ω , and 30.9 Ω for Class 1, 2, 3, and 4 respectively. If R_{CLASS} is not present, the PD will draw up to 3 mA during classification, thus indicating Class 0 (default Type 1) to the PSE. Signal is referenced to VPN_IN
7, 8	VPN_IN	VPN_IN	Lower rail of the incoming PSE voltage rail – from the negative terminal of the two OR-ed bridge rectifiers (the corresponding upper PoE rail is VPP)
9, 10	VPN_OUT	VPN_OUT	This is in effect, the switched ground for establishing continuity to the PWM section after successful detection, classification, and Power-up. It is connected to the Power ground and PWM controller IC's ground plane of the DC-DC converter section
11	AT_FLAG	AT_FLAG	Open Drain Output. This pin gets actively pulled low when a Type 2 PD-PSE mutually identifies each other via classification. There is a minimum 80 ms delay from the moment that the input capacitor is fully charged to this signal activity. Signal is referenced to VPN_OUT
12	HD_FLAG	HD_FLAG	Open Drain Output. The pin gets actively pulled low when a 2-pair HDBaseT PD-PSE mutually identify each other via classification. There is a minimum 80 ms delay from the moment that the input capacitor is fully charged to this signal activity. Signal is referenced to VPN_OUT
13	4P_AT_FLA G	4P_AT_FLAG	Open Drain Output. The pin gets actively pulled low when a 4-pair version of a (non-standard) Type 2 PD-PSE mutually identifies each other via classification. There is a minimum 80 ms delay from the moment that the input capacitor is fully charged to this signal activity. Signal is referenced to VPN_OUT
14	4P_HD_FLA G	4P_HD_FLAG	Open Drain Output. The pin gets actively pulled low when a 4-pair HDBaseT PD-PSE mutually identify each other via classification. There is a minimum 80 ms delay from the moment that the input capacitor is fully charged to this signal activity. Signal is referenced to VPN_OUT
15	WA_EN		While this input is low (referenced to VPN_IN) the chip work according to internal flow diagram. When this input is high, it enable wall adapter feature. Place 100nF/10V capacitor from WA_EN to VPN_IN pins, locate it close to device. When WA_EN is not used, connect it to VPN_IN. For further information, refer to External source connected to PD device output.
13		PGOOD	Open Drain Output. Power Good output signal from the Front-End stage. This pin gets actively pulled low when power-on occurs. There is a minimum 80 ms delay from the moment VPort exceeds UVLO (~36V), to this PGOOD signal being driven low as per the IEEE standard, to allow the PSE to increase its current limit after power-up is completed. Signal is referenced to VPN_OUT.

Front-End PD Interface Controller for AF/AT/UPOE/HDBaseT/4-pair PoE Applications

16	VAUX	VAUX	Auxiliary voltage rail. This can be used to provide a few mA of startup current for the PWM controller (at typically 10.5V). Signal is referenced to VPN_OUT and is activated once front end power up sequence is end. DC-DC should not startup until Vaux is active.
17 EPAD EPAD Connected on PCB plane to VPN_IN		Connected on PCB plane to VPN_IN	

(PD70210AL - QFN 5 × 7 mm 38L)

(PD/0210#	AL - QFN 5 × 7 mm	1 38L)
Pin #	Designator PD70210AL	Description
1-2	NA	
3	SUPP_S1	Input pin for sensing the voltage on the diode bridge connected to the data pairs. This pin along with the SUPP_S2 pin can be used to distinguish between 2-pair and 4-pair operation. (For PSEs that operate in 4 pairs but do not generate the classification procedure on both pair but one pair only). Signal is referenced to VPN_IN Place a 10K resistor in the input of this pin.
4	SUPP_S2	Input pin for sensing the voltage on the diode bridge connected to the data pairs. This pin along with the SUPP_S1 pin can be used to distinguish between 2-pair and 4-pair operation. (For PSEs that operate in 4 pairs but do not generate the classification procedure on both pair but one pair only). Signal is referenced to VPN_IN Place a 10K resistor in the input of this pin.
5-6	NA	
7	RREF	Bias current resistor. A 60.4k, 1% resistor is connected between this and IC ground (VPN_IN)
8	RCLS	Sets the Class of the PD. Connect R_{CLASS} (programming resistor) between this pin and IC ground (VPN_IN). Allowed values are 133 Ω , 69.8 Ω , 45.3 Ω , and 30.9 Ω for Class 1, 2, 3, and 4 respectively. If R_{CLASS} is not present, the PD will draw up to 3 mA during classification, thus indicating Class 0 (default Type 1) to the PSE. Signal is referenced to VPN_IN
9-10	NA	
11-12	VPN_IN	Lower rail of the incoming PSE voltage rail – from the negative terminal of the two OR-ed bridge rectifiers (the corresponding upper PoE rail is VPP)
13-14	NA	
15	NC	
16-17	VPN_OUT	This is in effect, the switched ground for establishing continuity to the PWM section after successful detection, classification, and Power-up. It is connected to the Power ground and PWM controller IC's ground plane of the DC-DC converter section
18-19	NA	
20-23	NC	
24	AT_FLAG	Open Drain Output. This pin gets actively pulled low when a Type 2 PD-PSE mutually identifies each other via classification. There is a minimum 80 ms delay from the moment that the input capacitor is fully charged to this signal activity. Signal is referenced to VPN_OUT
25	HD_FLAG	Open Drain Output. The pin gets actively pulled low when a 2-pair HDBaseT PD-PSE mutually identify each other via classification. There is a minimum 80 ms delay from the moment that the input capacitor is fully charged to this signal activity. Signal is referenced to VPN_OUT
26	4P_AT_FLAG	Open Drain Output. The pin gets actively pulled low when a 4-pair version of a (non-standard) Type 2 PD-PSE mutually identifies each other via classification. There is a minimum 80 ms delay from the moment that the input capacitor is fully charged to this signal activity. Signal is referenced to VPN_OUT

Front-End PD Interface Controller for AF/AT/UPOE/HDBaseT/4-pair PoE Applications

Microsemi.

		Open Drain Output. The pin gets actively pulled low when a 4-pair HDBaseT PD-PSE mutually identify each
27	40 110 5146	
27	4P_HD_FLAG	other via classification. There is a minimum 80 ms delay from the moment that the input capacitor is fully
		charged to this signal activity. Signal is referenced to VPN_OUT
		While this input is low (referenced to VPN_IN) the chip work according to internal flow diagram. When this
		input is high, it enable wall adapter feature. Place 100nF/10V capacitor from WA_EN to VPN_IN pins, locate it
28	WA_EN	close to device. When WA_EN is not used, connect it to VPN_IN. For further information, refer to External
	_	
		source connected to PD device output.
29-30	NA	
		Auxiliary voltage rail. This can be used to provide a few mA of startup current for the PWM controller (at
31	VAUX	typically 10.5V). Signal is referenced to VPN OUT and is activated once front end power up sequence is end.
	77.07.	DC-DC should not startup until Vaux is active .
22.22	ALA.	De De Silvana inot Startago antin Vauxio active :
32-33	NA	
34	NC	
25	\/DD	Upper rail of the incoming PSE voltage rail – from the positive terminal of the two OR-ed bridge rectifiers (the
35	VPP	corresponding lower PoE rail is VPN_IN)
36-37	NA	
20	DDET	Internally connects to VPN_IN during detection phase and disengages after it is over. A 25KΩ (or 24.9K), 1%
38	RDET	resistor is connected between this pin and VPP
39	EPAD	Connected on PCB plane to VPN_IN

Front-End PD Interface Controller for AF/AT/UPOE/HDBaseT/4-pair PoE Applications

Functional Block Diagram

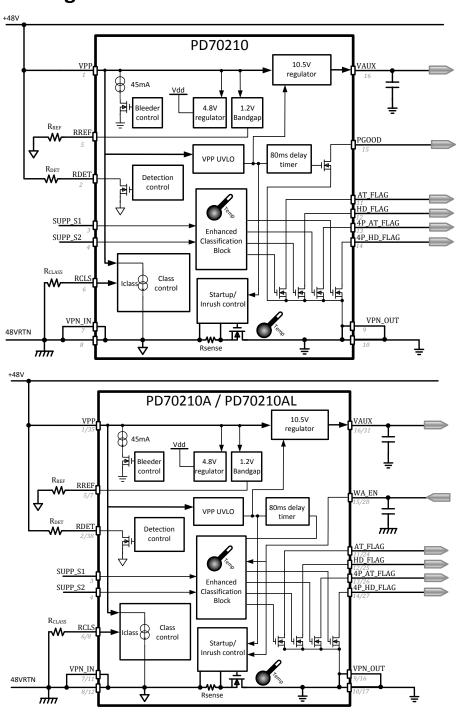


Figure 3: Block Diagram

Front-End PD Interface Controller for AF/AT/UPOE/HDBaseT/4-pair PoE Applications

Absolute Maximum Ratings

Performance is not necessarily guaranteed over this entire range. These are maximum stress ratings only. Exceeding these ratings, even momentarily, can cause immediate damage, or negatively impact long-term operating reliability. Voltages are with respect to IC ground (VPN IN) unless otherwise specified.

		Min	Max	Units
VPP, RDET		-0.3	74	V
PGOOD, AT_F	FLAG, HD_FLAG, 4P_AT_FLAG,	-0.3	20	V
4P_HD_FLAG	referenced to VPN_OUT			
SUPP_S1, SUI	PP_S2	0	V _{VPP} + 1.5	V
RREF, RCLS, V	VA_EN	-0.3	5	V
Junction Tem	perature	-40	150	°C
Lead Solderin	g Temperature (40s, reflow)		260	°C
Storage Temp	perature	-65	150	°C
ESD rating	HBM (PD70210)		±1.5	kV
	HBM (PD70210A / PD70210AL)		±1.25	kV
	MM	_	±100	V
	CDM		±500	V

Operating Ratings

Performance is generally guaranteed over this range as further detailed below under Electrical Characteristics. Voltages are with respect to IC ground (VPN_IN).

	Min	Max	Units
VPP	0	57	V
Ambient Temperature*	-40	85	°C
Detection Range	1.1	10.1	V
Mark Event Range	4.9	10.1	V
Class Event Range	13.7	20.9	V

^{*} Corresponding Max Operating Junction Temperature is 125°C.

Thermal Properties

Thermal Resistance	Min	Тур	Max	Units
θЈΑ		31		°C/W
θЈР		3		°C/W
θЈС		4		°C/W

Note: θ_{Jx} numbers assume no forced airflow. Junction Temperature is calculated using $T_J = T_A + (P_D \times \theta_{JA})$. θ_{JA} in particular is a function of the PCB construction. Stated number above is for a four-layer board in accordance with JESD-51 (JEDEC).

Front-End PD Interface Controller for AF/AT/UPOE/HDBaseT/4-pair PoE Applications

Electrical Characteristics

Unless otherwise specified under conditions, the Min and Max ratings stated below apply over the entire specified operating ratings of the device. Typ values state, are either by design or by production testing at 25°C ambient. Voltages are with respect to IC ground (VPN IN).

Symbol	Parameter	Conditions	Min	Тур	Max	Units
Input Volta	ge					
I _{IN}	IC input current with I _{CLASS} off	VPP=55V		1	3	mA
Detection p	hase					
V _{DET}	Detection range		1.1		10.1	V
R _{DET_TH}	R _{DET} disconnect threshold		10.1		12.8	V
R _{DS_DET_ON}	On-resistance of internal FET during detection				50	Ω
R _{DS_DET_OFF}	Off-resistance of internal FET after detection		2			ΜΩ
I _{OFFSET_DET}	Input offset current	1.1V ≤ VPP ≤ 10.1V, T _J ≤ 85°C			5	μΑ
$V_{R_DET_ON}$	R _{DET} reconnection threshold when VPP goes low		2.8	3.0	4.85	V
Classification	on phase					
V _{CLS_ON}	Classification sink turn-on threshold		11.4		13.7	V
V _{CLS_OFF}	Classification sink turn-off threshold		20.9		23.9	V
V _{HYS_CLS_ON}	Hysteresis of V _{CLS_ON} threshold			1		V
V _{MARK_TH}	Mark detection threshold (VPP falling)		10.1		11.4	V
I _{MARK}	Current sink in Mark event region		0.25		4	mA

Front-End PD Interface Controller for AF/AT/UPOE/HDBaseT/4-pair PoE Applications

Symbol	Parameter	Conditions	Min	Тур	Max	Units
I _{CLASS_CLIM}	Current limit of class current		50	68	80	mA
		R _{CLASS} = not present (Class 0)			3	
	Classification	$R_{CLASS} = 133 \Omega \text{ (Class 1)}$	9.5	10.5	11.5	
I _{CLASS}	current sink	$R_{CLASS} = 69.8 \Omega \text{ (Class 2)}$	17.5	18.5	19.5	mA
		$R_{CLASS} = 45.3 \Omega \text{ (Class 3)}$	26.5	28.0	29.5	
		$R_{CLASS} = 30.9 \Omega \text{ (Class 4)}$	38.0	40.0	42.0	
Isolation FE	T					
R _{DSON}	On resistance	Total resistance between VPN_IN to VPN_OUT; ILOAD < 600mA, -40°C <t<sub>A < 85°C</t<sub>		0.22	0.3	Ω
I _{CLIM_INRUSH}	Inrush current limit		105	240	325	mA
ОСР	Overcurrent protection		2.2			А
I _{LOAD}	Continuous operation load (*)				2	А
Undervolta	ge Lockout		1	•	1	
UVLO _{ON}	Threshold that marks start of Inrush phase		36		42	V
UVLO _{OFF}	Threshold where pass-FET turns off as VPP collapses		30.5		34.5	V
DC-DC Inpu	it Cap Discharger					
	Discharge current	12V ≤ VPP ≤ 30V	22.8		60	mA
I _{CAP_DIS}	(PD70210)	7V ≤ VPP ≤ 12V	10			mA
I _{CAP_DIS}	Discharge current (PD70210A)	7V ≤ VPP ≤ 30V	22.8		60	mA
timer _{dis}	Discharge timer	Time for which discharge circuit is activated	430			ms
References	, Rails and Logic					
V _{AUX}	Auxiliary voltage	0mA < I _{AUX} < 4mA	9.8	10.5	12.0	V
I _{AUX_CLIM}	Aux current limit		10		32	mA

Front-End PD Interface Controller for AF/AT/UPOE/HDBaseT/4-pair PoE Applications

Symbol	Parameter	Conditions	Min	Тур	Max	Units
V _{REF}	Bias current reference voltage		1.17	1.2	1.23	V
V FLAG_LO	Low level flag	For AT_FLAG, HD_FLAG, 4P_AT_FLAG, 4P_HD_FLAG, I _{FLAG} = 3mA			0.4	V
V _{PGOOD_LO}	Power good active low voltage	I _{PGOOD} = 3mA *PD70210 Only			0.4	V
t _{FLAG}	Delay timer between start of inrush and flags declared	For AT_FLAG, HD_FLAG, 4P_AT_FLAG, 4P_HD_FLAG	80			ms
t _{PGOOD}	Delay timer between start of inrush and power good declared	*PD70210 Only	80			ms
I _{FLAG_max}	Flag Current driving capability	For AT_FLAG, HD_FLAG, 4P_AT_FLAG, 4P_HD_FLAG	5			mA
I _{PGOOD_max}	Power good current capability	*PD70210 Only	5			mA
V _{SUPP_HI}	SUPP_Sx high voltage threshold	For SUPP_S1 and SUPP_S2	25		35	V
Wall Adapt	er enable pin					
V _{IH}	Input high logic	*PD70210A, PD70210AL Only	2.4			V
V _{IL}	Input low logic	*PD70210A, PD70210AL Only			0.8	V

^(*) Actual maximum load is subject to the application environment conditions, such as ambient temperatures, air flow, mutual heating by other components etc.

Front-End PD Interface Controller for AF/AT/UPOE/HDBaseT/4-pair PoE Applications

Truth Table for Status of Flags

Number of Fingers "N"	SUPP_S1	SUPP_S2	AT_FLAG	HD_FLAG	4P_AT_FLAG	4P_HD_FLAG
(N-Event						
Classification)						
1	Х	Х	Hi Z	Hi Z	Hi Z	Hi Z
2	Н	L	0V	Hi Z	Hi Z	Hi Z
2	L	Н	0V	Hi Z	Hi Z	Hi Z
2	Н	Н	0V	Hi Z	0V	Hi Z
3	L	Н	0V	0V	Hi Z	Hi Z
3	Н	L	0V	0V	Hi Z	
3	Н	Н	0V	0V	0V	Hi Z
4	X	X	0V	0V	0V	Hi Z
5	RESERVED FOR FUTURE					
6	X	X	0V	0V	0V	0V

Note: Flags state is set only once at port turn on, while VPP-VPNin voltage crosses UVLO_{ON}. If SUPP_S1 and SUPP_S2 pins are changing after port turn on, the flags do not change accordingly.

Wall Adapter mode (PD70210A/L)

PD70210A / PD70210AL support wall adapter functionality, i.e. by setting WA_EN pin high it will give priority to the wall adapter jack to supply the load.

WA_EN pin is used while connecting a wall-adapter voltage between VPP and VPN_OUT by means of an ORing diode.

While WA_EN, Wall-adapter enable pin, is held low (referenced to VPN_IN), the front-end works as a normal PD.

When WA EN is raised high (referenced to VPN IN) three internal operations are forced:

- The Isolation FET is turned OFF.
- All output flags AT FLAG, HD FLAG, 4P AT FLAG and 4P HD FLAG are activated (low state).
- Vaux output voltage is turned ON.

While activating WA EN pin, the wall-adapter will supply input voltage for the DC-DC converter.

Having WA EN at high state does not dis able detection and classification modes.

Front-End PD Interface Controller for AF/AT/UPOE/HDBaseT/4-pair PoE Applications

Applications Information

PD70210 application is described in the following paragraph

Peripheral devices

- An 100nF/100V capacitor should be placed between device VPP and VPNI pins, and located as close as
 possible to the device.
- An 58V TVS should be placed between device VPP and VPNI pins.
- An 10K ohm resistor should be placed on SUPP_S1 and SUPP_S2 lines between diode bridge and PD70210/A device.
- When WA_EN is used, an 100nF/10V Capacitor should be placed between WA_EN and VPNi pin close to PD70210/A device.
- When not used, WA_EN should be connected to VPNi pin.

The Peripheral d devices are presented in Figure 4 and Figure 5.

Operation with an External DC Source

PD applications utilizing PD70210A IC may be operated with an external power source (DC wall adaptor). There are two cases of providing power with an external source, the cases are presented in Figure 4 and Figure 5.

- 1) External source connected to application's low voltage supply rails. External source voltage level is dependent on DCDC output characteristics. Described in Figure 4
- 2) External source connected to PD device output connection toward the application (VPP to VPN_{OUT}). External source voltage level is dependent on DCDC input requirements. Described in Figure 5

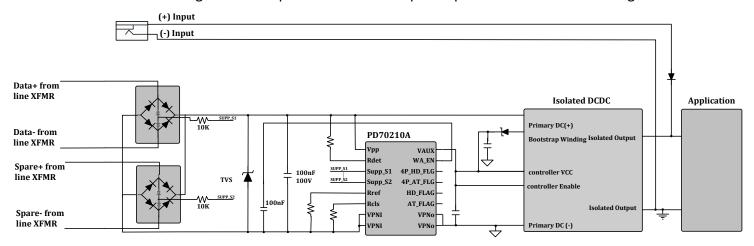


Figure 4: External Power Input connected to Application supply Rails

Front-End PD Interface Controller for AF/AT/UPOE/HDBaseT/4-pair PoE Applications

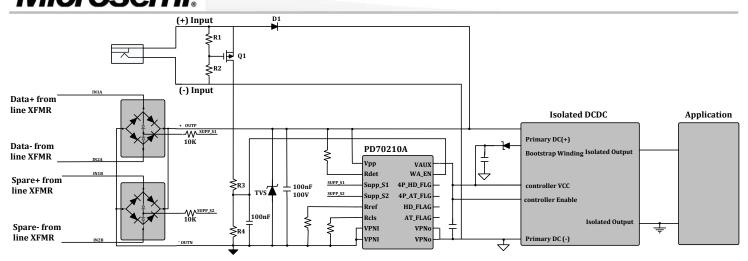


Figure 5: External Power Input connected to PD70210A Output

External source connected to PD device output (Figure 5)

PD70210A WA_EN pin is used for disabling the isolation switch and thus PSE input power, when an external adapter is connected.

WA EN resistors divider depends on the VinH threshold of the PD70210A.

Figure 6 is zooming into the resistors to be selected in external adapter connection.

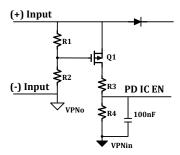


Figure 6: External Power Input resistors dividers

R1 and R2 sets a rough threshold for Pfet Q1 enable, to detect whether external adapter exists or not. It should be set to be lower threshold than PD70210A disable levels.

R3 and R4 sets PD70210A disable threshold.

So in case of 36V-57V external adapter. The disable setting can be selected as follows:

Pfet enable threshold = 30V.

Front-End PD Interface Controller for AF/AT/UPOE/HDBaseT/4-pair PoE Applications

R1 and R2 setting should be so that the value of Q1 VGS < 20V at max voltage condition of external adapter.

While external adapter voltage is above 30V, Q1 will be above its VGS_{th} value.

$$VGS = Vext_adapter \times \frac{R1}{R1 + R2}$$

R1 is selected as $2K\Omega$.

$$R2 = R1 \times \frac{Vext_adapter - VGS}{VGS}$$

Using R1=2K Ω , Vext_adapter=30V and VGS= maximum VGS_{th} =3.5V. we get R2 value.

$$R2 = 15K\Omega$$

R3 and R4 are set to the range of few $K\Omega$ - 10's of $K\Omega$ using the equation below:

=

(I)
$$PD70210A_Wa_en = Vext_adapter_PD70210A \times \frac{R4}{(R3+R4)}$$

Using R3=15K Ω , Vext_adapter=33.7V and from data sheet we use PD70210A_WA_EN=2.4V as turn Off min threshold.

Solving the equation, we get the valid resistors values for an adapter of 36V and above.

$$R3 = 15K\Omega$$

$$R4 = 1.15K\Omega$$

Front-End PD Interface Controller for AF/AT/UPOE/HDBaseT/4-pair PoE Applications

Thermal Protection

PD70210, PD70210A & PD70210AL are protected from excessive internal temperatures that may occur during various operating procedures. Two temperature sensors are located on the chip, monitoring the temperatures of the following:

- Isolating Switch (pass-FET)
- Classification Current Sink

Each of the over temperature sensor activates a protection mechanism that will disconnect the Isolation (pass) FET or the classification circuit respectively. This protects the device from being permanently damaged or even from long-term degradation.

Front-End PD Interface Controller for AF/AT/UPOE/HDBaseT/4-pair PoE Applications

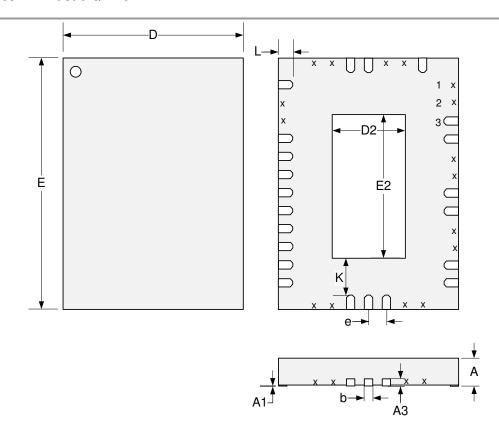
Package Dimensions

LD

16 Pin Plastic DFN 5x4 mm

	MILLIN	IETERS	INCHES		
Dim	MIN	MAX	MIN	MAX	
Α	0.80	1.00	0.031	0.039	
A1	0.00	0.05	0.000	0.002	
A3	0.20	REF	0.008 REF		
D	5.00 BSC		0.197 BSC		
E	4.00 BSC		0.157 BSC		
D2	4.20	4.45	0.165	0.175	
E2	2.30	2.55	0.091	0.100	
е	0.50 BSC		0.0197 BSC		
K	0.20 MIN		0.008 MIN		
L	0.30	0.50	0.012	0.020	
b	0.18	0.30	0.007	0.012	

Note:


1. Dimensions do not include mold flash or protrusions; these shall exceed not 0.155mm(.006") on any side. Lead dimension shall not include solder coverage.

Front-End PD Interface Controller for AF/AT/UPOE/HDBaseT/4-pair PoE Applications

LD

38 Pin Plastic QFN 5x7 mm

	MILLIN	/IETERS	INCHES		
Dim	MIN	MAX	MIN	MAX	
Α	0.80	1.00	0.031	0.039	
A1	0.00	0.05	0	0.002	
A3	0.20	REF	0.008 REF		
b	0.18	0.30	0.007	0.012	
D	5.00	BSC	0.196 BSC		
E	7.00	BSC	0.275 BSC		
D2	1.85	2.10	0.073	0.083	
E2	3.85	4.10	0.152	0.161	
е	0.50	BSC	0.020 BSC		
K	1.016	-	0.040	-	
Ĺ	0.30	0.50	0.012	0.020	

Note:

- 1. Dimensions do not include protrusions; these shall not exceed 0.155mm (.006") on any side. Lead dimension shall not include solder coverage.
- 2. Dimensions are in millimeters, inches for reference only.

Front-End PD Interface Controller for AF/AT/UPOE/HDBaseT/4-pair PoE Applications

The information contained in the document (unless it is publicly available on the Web without access restrictions) is PROPRIETARY AND CONFIDENTIAL information of Microsemi and cannot be copied, published, uploaded, posted, transmitted, distributed or disclosed or used without the express duly signed written consent of Microsemi. If the recipient of this document has entered into a disclosure agreement with Microsemi, then the terms of such Agreement will also apply. This document and the information contained herein may not be modified, by any person other than authorized personnel of Microsemi. No license under any patent, copyright, trade secret or other intellectual property right is granted to or conferred upon you by disclosure or delivery of the information, either expressly, by implication, inducement, estoppels or otherwise. Any license under such intellectual property rights must be approved by Microsemi in writing signed by an officer of Microsemi.

Microsemi reserves the right to change the configuration, functionality and performance of its products at anytime without any notice. This product has been subject to limited testing and should not be used in conjunction with life-support or other mission-critical equipment or applications. Microsemi assumes no liability whatsoever, and Microsemi disclaims any express or implied warranty, relating to sale and/or use of Microsemi products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Any performance specifications believed to be reliable but are not verified and customer or user must conduct and complete all performance and other testing of this product as well as any user or customers final application. User or customer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is the customer's and user's responsibility to independently determine suitability of any Microsemi product and to test and verify the same. The information contained herein is provided "AS IS, WHERE IS" and with all faults, and the entire risk associated with such information is entirely with the User. Microsemi specifically disclaims any liability of any kind including for consequential, incidental and punitive damages as well as lost profit. The product is subject to other terms and conditions which can be located on the web at http://www.microsemi.com/legal/tnc.asp

Revision History

Revision Level / Date	Para. Affected	Description
1.0 / 10 June 2013	-	Initial Release
1.1 / 16 Oct 2013	-	Fix Vaux description and cap GND symbol
1.2 / 05 Nov 2013	-	Fix Figure 1 RREF
1.34 / 31 Dec 2013	Package	Add new package option PD70210AL 38pin 5 X 7 QFN Update package drawing and add application diagram for the new package Update Flag table and typos
1.36 / 07 Jan 2014		Adding IC marking information
1.37 / 24 Jan 2014		Fix ILQ package information
1.38 / 24 Apr 2014		Add continous current and thermal properties
1.40 / 25 June 2014		Add WA_EN information
1.50 / 07 Oct 2014	Page 14	Add details for Flags description
1.51 / 08 Oct 2015	Page 7, 8 Page 12	Fix Vaux pin description (without 80mS delay), Add UVLO_ON missing information.

© 2015 Microsemi Corp. All rights reserved.

For support contact: sales_AMSG@microsemi.com

Visit our web site at: www.microsemi.com Catalog Number: DS PD70210 PD70210A