imall

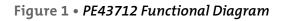
Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

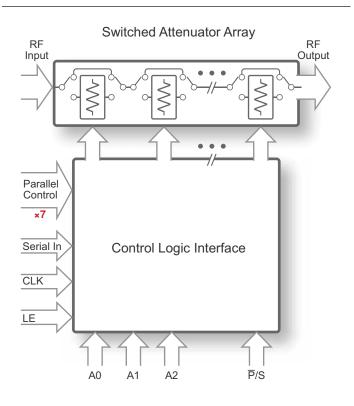
With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China


UltraCMOS® RF Digital Step Attenuator, 9 kHz–6 GHz


Features

- Flexible attenuation steps of 0.25 dB, 0.5 dB and 1 dB up to 31.75 dB
- · Glitch-less attenuation state transitions
- Monotonicity: 0.25 dB up to 4 GHz, 0.5 dB up to 5 GHz and 1 dB up to 6 GHz
- Extended +105 °C operating temperature
- Parallel and Serial programming interfaces with Serial Addressability
- Packaging—32-lead 5 × 5 mm QFN

Applications

- 3G/4G wireless infrastructure
- · Land mobile radio (LMR) system
- · Point-to-point communication system

Product Description

The PE43712 is a 50Ω, HaRP[™] technology-enhanced,7-bit RF digital step attenuator (DSA) that supports a broad frequency range from 9 kHz to 6 GHz. It features glitch-less attenuation state transitions and supports 1.8V control voltage and an extended operating temperature range to +105 °C, making this device ideal for many broadband wireless applications.

The PE43712 is a pin-compatible upgraded version of the PE43601 and PE43701. An integrated digital control interface supports both Serial Addressable and Parallel programming of the attenuation, including the capability to program an initial attenuation state at power-up.

The PE43712 covers a 31.75 dB attenuation range in 0.25 dB, 0.5 dB and 1 dB steps. It is capable of maintaining 0.25 dB monotonicity through 4GHz, 0.5 dB monotonicity through 5 GHz and 1 dB monotonicity through 6 GHz. In addition, no external blocking capacitors are required if 0 VDC is present on the RF ports.

The PE43712 is manufactured on Peregrine's UltraCMOS[®] process, a patented variation of silicon-on-insulator (SOI) technology on a sapphire substrate.

^{©2015,} Peregrine Semiconductor Corporation. All rights reserved. • Headquarters: 9380 Carroll Park Drive, San Diego, CA, 92121

Peregrine's HaRP technology enhancements deliver high linearity and excellent harmonics performance. It is an innovative feature of the UltraCMOS process, offering the performance of GaAs with the economy and integration of conventional CMOS.

Absolute Maximum Ratings

Exceeding absolute maximum ratings listed in **Table 1** may cause permanent damage. Operation should be restricted to the limits in **Table 2**. Operation between operating range maximum and absolute maximum for extended periods may reduce reliability.

ESD Precautions

When handling this UltraCMOS device, observe the same precautions as with any other ESD-sensitive devices. Although this device contains circuitry to protect it from damage due to ESD, precautions should be taken to avoid exceeding the rating specified in **Table 1**.

Latch-up Immunity

Unlike conventional CMOS devices, UltraCMOS devices are immune to latch-up.

Table 1 • Absolute Maximum Ratings for PE43712

Parameter/Condition	Min	Max	Unit
Supply voltage, V _{DD}	-0.3	5.5	V
Digital input voltage	-0.3	3.6	V
RF input power, 50Ω 9 kHz–48 MHz >48 MHz–6 GHz		Figure 5 +31	dBm dBm
Storage temperature range	-65	+150	°C
ESD voltage HBM, all pins ⁽¹⁾		3000	V
ESD voltage CDM, all pins ⁽²⁾		1000	V
Notes: Human body model (MIL-STD 883 Method 3015). Charged device model (JEDEC JESD22-C101). 		1	1

Recommended Operating Conditions

Table 2 lists the recommending operating condition for the PE43712. Devices should not be operated outside the recommended operating conditions listed below.

 Table 2 • Recommended Operating Condition for PE43712

Parameter	Min	Тур	Max	Unit
Supply voltage, V _{DD}	2.3		5.5	V
Supply current, I _{DD}		150	200	μΑ
Digital input high	1.17		3.6	V
Digital input low	-0.3		0.6	V
Digital input current			17.5	μΑ
RF input power, CW ⁽¹⁾ 9 kHz–48 MHz >48 MHz–6 GHz			Figure 5 +23	dBm dBm
RF input power, pulsed ⁽²⁾ 9 kHz–48 MHz >48 MHz–6 GHz			Figure 5 +28	dBm dBm
Operating temperature range	-40	+25	+105	°C
 Notes: 1) 100% duty cycle, all bands, 50Ω. 2) Pulsed, 5% duty cycle of 4620 µs period, 50Ω. 	1	1		1

Electrical Specifications

Table 3 provides the PE43712 key electrical specifications at 25 °C, $V_{DD} = 3.3V$, RF1 = RF_{IN}, RF2 = RF_{OUT} (Z_S = Z_L = 50 Ω), unless otherwise specified.

Table 3 • PE43712 Electrical Specifications

Parameter	Condition	Frequency	Min	Тур	Мах	Unit
Operating frequency			9 kHz		6 GHz	As shown
Attenuation range	0.25 dB step 0.5 dB step 1 dB step			0–31.75 0–31.50 0–31.00		dB dB dB
Insertion loss		9 kHz–1.0 GHz 1.0–2.2 GHz 2.2–4.0 GHz 4.0–6.0 GHz		1.3 1.6 1.95 2.45	1.5 1.85 2.4 2.8	dB dB dB dB
	0.25 dB step					
	0–8 dB	9 kHz–2.2 GHz			± (0.20 + 1.5% of attenuation setting)	dB
	8.25–31.75 dB	9 kHz–2.2 GHz			± (0.20 + 2.0% of attenuation setting)	dB
	0–31.75 dB	>2.2–3.0 GHz			± (0.15 + 3.0% of attenuation setting)	dB
Attenuation arror	0–31.75 dB	>3.0-4.0 GHz			± (0.25 + 3.5% of attenuation setting)	dB
Attenuation error	0.50 dB step	I			•	
	0–8 dB	9 kHz–2.2 GHz			± (0.20 + 1.5% of attenuation setting)	dB
	8.5–31.5 dB	9 kHz–2.2 GHz			± (0.20 + 2.0% of attenuation setting)	dB
	0–31.5 dB	>2.2-3.0 GHz			± (0.15 + 3.0% of attenuation setting)	dB
	0–31.5 dB	>3.0–5.0 GHz			± (0.25 + 5.0% of attenuation setting)	dB

 Table 3 • PE43712 Electrical Specifications (Cont.)

Parameter	Condition	Frequency	Min	Тур	Мах	Unit				
	1 dB step									
	0–8 dB	9 kHz–2.2 GHz			\pm (0.20 + 1.5% of attenuation setting)	dB				
	9–31 dB	9 kHz–2.2 GHz			\pm (0.20 + 2.0% of attenuation setting)	dB				
Attenuation error	0–31 dB	>2.2–3.0 GHz			± (0.15 + 3.0% of attenuation setting)	dB				
	0–31 dB	>3.0–5.0 GHz			± (0.25 + 5.0% of attenuation setting)	dB				
	0–31 dB	>5.0–6.0 GHz			\pm (0.25 + 5.0% of attenuation setting)	dB				
Return loss	Input port or output port	9 kHz–4 GHz 4–6 GHz		13 15		dB dB				
Relative phase	All states	9 kHz–4 GHz 4–6 GHz		27 42		deg deg				
Input 0.1dB compression point ^(*)		48 MHz–6 GHz		31		dBm				
Input IP3	Two tones at +18 dBm, 20 MHz	4 GHz		57		dBm				
	spacing	6 GHz		56		dBm				
RF T _{rise} /T _{fall}	10%/90% RF			200		ns				
Settling time	RF settled to within 0.05 dB of final value			1.6		μs				
Switching time	50% CTRL to 90% or 10% RF			275		ns				
Attenuation transient (envelope)		2 GHz		0.3		dB				
Note: * The input 0.1dB con	npression point is a linearity figure of merit.	Refer to Table 2 for the	operating	RF input po	ower (50Ω).	-				

Switching Frequency

The PE43712 has a maximum 25 kHz switching rate.

Switching frequency is defined to be the speed at which the DSA can be toggled across attenuation states. Switching time is the time duration between the point the control signal reaches 50% of the final value and the point the output signal reaches within 10% or 90% of its target value.

Spurious Performance

The typical spurious performance of the PE43712 is -130 dBm.

Glitch-less Attenuation State Transitions

The PE43712 features a novel architecture to provide the best-in-class glitch-less transition behavior when changing attenuation states. When RF input power is applied, the output power spikes are greatly reduced (≤ 0.3 dB) during attenuation state changes when comparing to previous generations of DSAs.

Truth Tables

Table 4–Table 6 provide the truth tables for thePE43712.

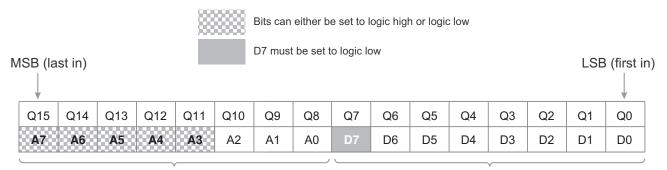
Table 4 • Parallel Truth Table

	Para	Attenuation Setting					
D6	D5	D4	D3	D2	D1	D0	RF1–RF2
L	L	L	L	L	L	L	Reference IL
L	L	L	L	L	L	н	0.25 dB
L	L	L	L	L	Н	L	0.5 dB
L	L	L	L	Н	L	L	1 dB
L	L	L	н	L	L	L	2 dB
L	L	Н	L	L	L	L	4 dB
L	Н	L	L	L	L	L	8 dB
н	L	L	L	L	L	L	16 dB
Н	Н	Н	Н	Н	Н	Н	31.75 dB

Table 5	•	Serial	Address	Word	Truth	Table
---------	---	--------	---------	------	-------	-------

		Address						
A7 (MSB)	A 6	A 5	A 4	A 3	A2	A 1	A 0	Setting
Х	Х	Х	Х	Х	L	L	L	000
Х	Х	Х	Х	Х	L	L	н	001
Х	Х	Х	Х	Х	L	н	L	010
Х	Х	Х	Х	Х	L	н	н	011
Х	Х	Х	Х	Х	н	L	L	100
Х	Х	Х	Х	Х	н	L	н	101
Х	Х	Х	Х	Х	н	н	L	110
Х	Х	Х	Х	Х	Н	Н	Н	111

 Table 6 • Serial Attenuation Word Truth Table


		Attenuation						
D7	D6	D5	D4	D3	D2	D1	D0 (LSB)	Setting RF1–RF2
L	L	L	L	L	L	L	L	Reference IL
L	L	L	L	L	L	L	Н	0.25 dB
L	L	L	L	L	L	н	L	0.5 dB
L	L	L	L	L	н	L	L	1 dB
L	L	L	L	н	L	L	L	2 dB
L	L	L	Н	L	L	L	L	4 dB
L	L	н	L	L	L	L	L	8 dB
L	н	L	L	L	L	L	L	16 dB
L	н	н	Н	н	н	н	Н	31.75 dB

Serial Addressable Register Map

Figure 2 provides the Serial Addressable register map for the PE43712.

Figure 2 • Serial Addressable Register Map

Address Word

Attenuation Word

The attenuation word is derived directly from the value of the attenuation state. To find the attenuation word, multiply the value of the state by four, then convert to binary.

For example, to program the 18.25 dB state at address 3:

4 × 18.25 = 73 73 → 01001001

Address Word: XXXXX011 Attenuation Word: 01001001 Serial Input: XXXXX01101001001

Programming Options

Parallel/Serial Selection

Either a Parallel or Serial addressable interface can be used to control the PE43712. The \overline{P}/S bit provides this selection, with $\overline{P}/S = LOW$ selecting the Parallel interface and $\overline{P}/S = HIGH$ selecting the Serial interface.

Parallel Mode Interface

The Parallel interface consists of seven CMOScompatible control lines that select the desired attenuation state, as shown in **Table 4**.

The Parallel interface timing requirements are defined by **Figure 4** (Parallel Interface Timing Diagram), **Table 9** (Parallel and Direct Interface AC Characteristics) and switching time (**Table 3**).

For Latched Parallel programming, the Latch Enable (LE) should be held LOW while changing attenuation state control values, then pulse LE HIGH to LOW (per **Figure 4**) to latch new attenuation state into the device.

For Direct Parallel programming, the LE line should be pulled HIGH. Changing attenuation state control values will change device state to new attenuation. Direct mode is ideal for manual control of the device (using hardwire, switches, or jumpers).

Serial-Addressable Interface

The Serial-Addressable interface is a 16-bit Serial-In, Parallel-Out shift register buffered by a transparent latch. The 16-bits make up two words comprised of 8bits each. The first word is the Attenuation Word, which controls the state of the DSA. The second word is the Address Word, which is compared to the static (or programmed) logical states of the A0, A1 and A2 digital inputs. If there is an address match, the DSA changes state; otherwise its current state will remain unchanged. **Figure 3** illustrates an example timing diagram for programming a state. It is required that all Parallel control inputs be grounded when the DSA is used in Serial-Addressable mode.

The Serial-Addressable interface is controlled using three CMOS-compatible signals: SI, Clock (CLK) and LE. The SI and CLK inputs allow data to be serially entered into the shift register. Serial data is clocked in LSB first. The shift register must be loaded while LE is held LOW to prevent the attenuator value from changing as data is entered. The LE input should then be toggled HIGH and brought LOW again, latching the new data into the DSA. The Address Word truth table is listed in **Table 5**. The Attenuation Word truth table is listed in **Table 6**. A programming example of the serial register is illustrated in **Figure 2**. The Serial timing diagram is illustrated in **Figure 3**.

Power-up Control Settings

The PE43712 will always initialize to the maximum attenuation setting (31.75 dB) on power-up for both the Serial Addressable and Latched Parallel modes of operation and will remain in this setting until the user latches in the next programming word. In Direct Parallel mode, the DSA can be preset to any state within the 31.75 dB range by pre-setting the Parallel control pins prior to power-up. In this mode, there is a 400 µs delay between the time the DSA is poweredup to the time the desired state is set. During this power-up delay, the device attenuates to the maximum attenuation setting (31.75 dB) before defaulting to the user defined state. If the control pins are left floating in this mode during power-up, the device will default to the minimum attenuation setting (insertion loss state).

Dynamic operation between Serial and Parallel programming modes is possible.

If the DSA powers up in Serial mode ($\overline{P}/S = HIGH$), all the Parallel control inputs DI[6:0] must be set to logic LOW. Prior to toggling to Parallel mode, the DSA must be programmed serially to ensure D[7] is set to logic LOW.

If the DSA powers up in either Latched or Direct Parallel mode, all Parallel pins DI[6:0] must be set to logic LOW prior to toggling to Serial Addressable mode ($\overline{P}/S = HIGH$), and held LOW until the DSA has been programmed serially to ensure bit D[7] is set to logic LOW.

The sequencing is only required once on power-up. Once completed, the DSA may be toggled between Serial and Parallel programming modes at will.

Figure 3 • Serial Timing Diagram

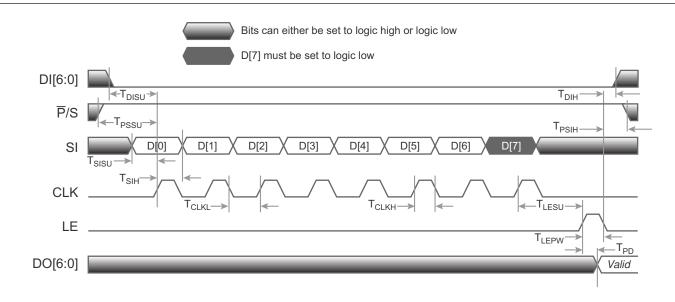


Figure 4 • Latched Parallel/Direct Parallel Timing Diagram

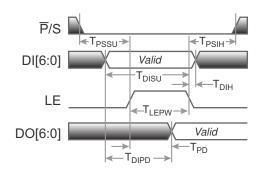
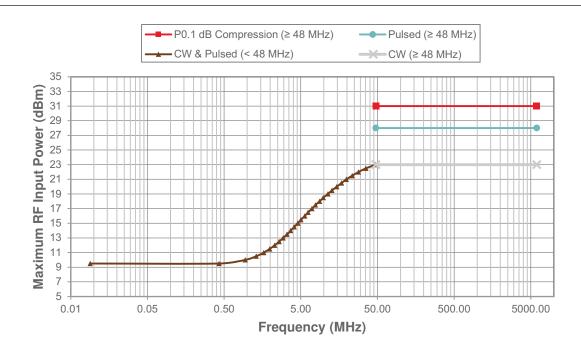


 Table 7 • Latch and Clock Specifications

Latch Enable	Shift Clock	Function
0	1	Shift register clocked
<u>↑</u>	Х	Contents of shift register transferred to attenuator core

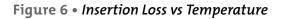
PE43712 UltraCMOS® RF Digital Step Attenuator

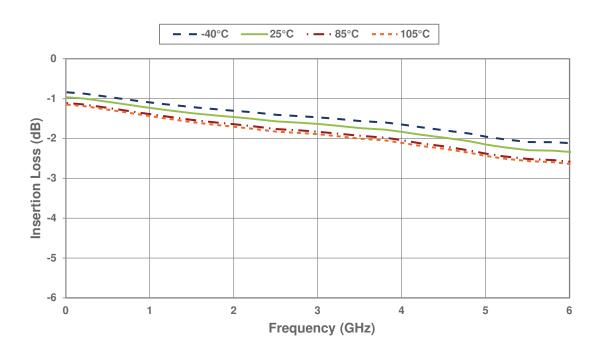

Table 8 • Serial Interface AC Characteristics(*)

Parameter/Condition	Min	Max	Unit
Serial clock frequency, F _{CLK}		10	MHz
Serial clock HIGH time, T _{CLKH}	30		ns
Serial clock LOW time, T _{CLKL}	30		ns
Last Serial clock rising edge setup time to Latch Enable rising edge, T_{LESU}	10		ns
Latch Enable minimum pulse width, T _{LEPW}	30		ns
Serial data setup time, T _{SISU}	10		ns
Serial data hold time, T _{SIH}	10		ns
Parallel data setup time, T _{DISU}	100		ns
Parallel data hold time, T _{DIH}	100		ns
Address setup time, T _{ASU}	100		ns
Address hold time, T _{AH}	100		ns
Parallel/Serial setup time, T _{PSSU}	100		ns
Parallel/Serial hold time, T _{PSIH}	100		ns
Digital register delay (internal), T _{PD}		10	ns
Note: * V_{DD} = 3.3V or 5.0V, –40 °C < T _A < +105 °C, unless otherwise specified.	1		

Table 9 • Parallel and Direct Interface AC Characteristics (*)

Parameter/Condition	Min	Max	Unit		
Latch Enable minimum pulse width, T _{LEPW}	30		ns		
Parallel data setup time, T _{DISU}	100		ns		
Parallel data hold time, T _{DIH}	100		ns		
Parallel/Serial setup time, T _{PSSU}	100		ns		
Parallel/Serial hold time, T _{PSIH}	100		ns		
Digital register delay (internal), T _{PD}		10	ns		
Digital register delay (internal, direct mode only), T _{DIPD}		5	ns		
Note: * $V_{DD} = 3.3V$ or 5.0V, -40 °C < T_A < +105 °C, unless otherwise specified.					


Figure 5 • Power De-rating Curve, 9 kHz–6 GHz, –40 to +105 °C Ambient, 50Ω



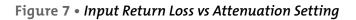

Typical Performance Data

Figure 6–Figure 32 show the typical performance data at 25 °C and V_{DD} = 3.3V, RF1 = RF_{IN}, RF2 = RF_{OUT} (Z_S = Z_L = 50 Ω) unless otherwise specified.

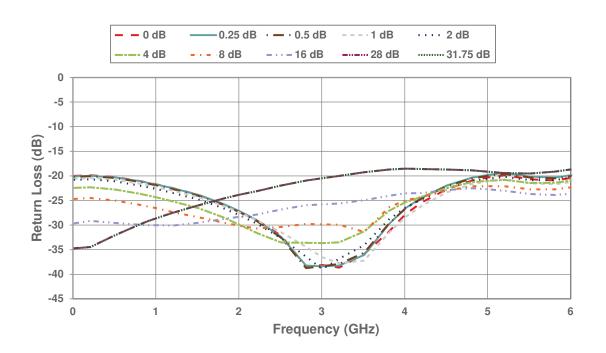
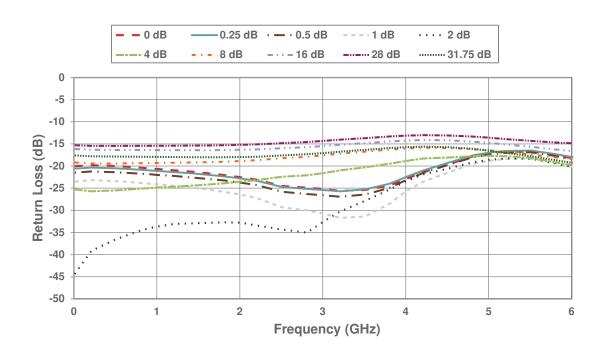
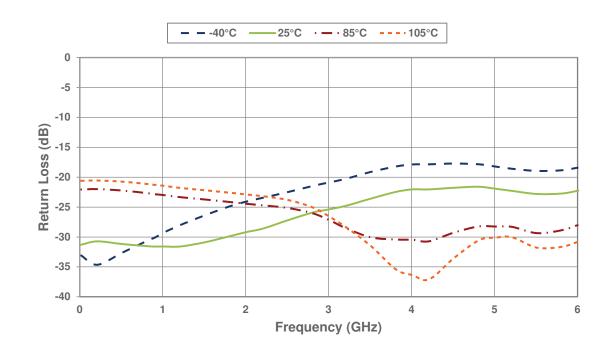




Figure 8 • Output Return Loss vs Attenuation Setting

PE43712 UltraCMOS® RF Digital Step Attenuator

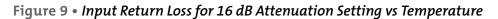
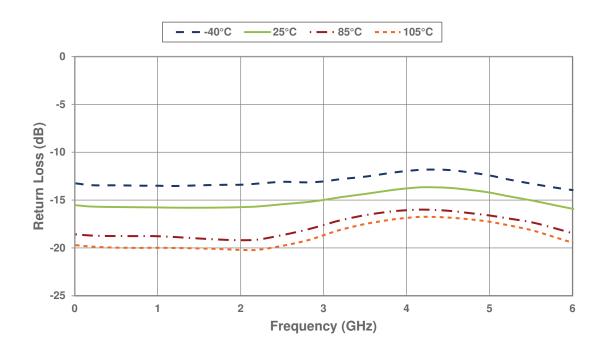




Figure 10 • Output Return Loss for 16 dB Attenuation Setting vs Temperature

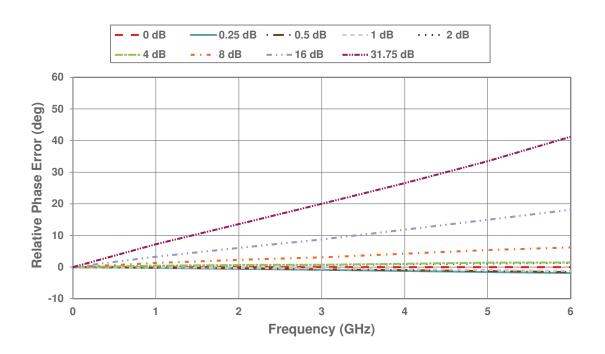
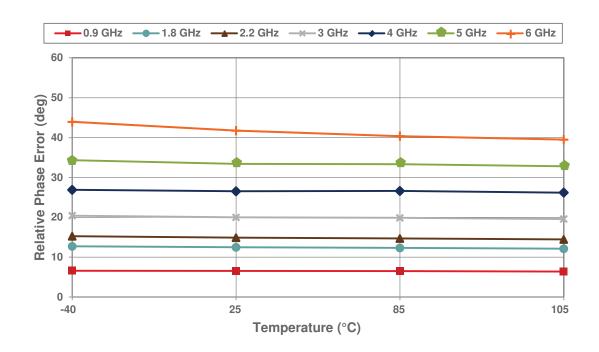



Figure 12 • Relative Phase Error for 31.75 dB Attenuation Setting vs Frequency

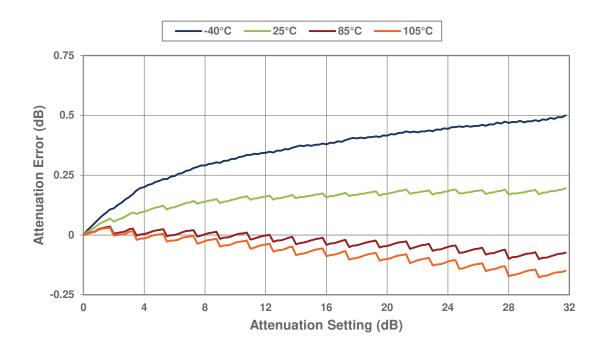
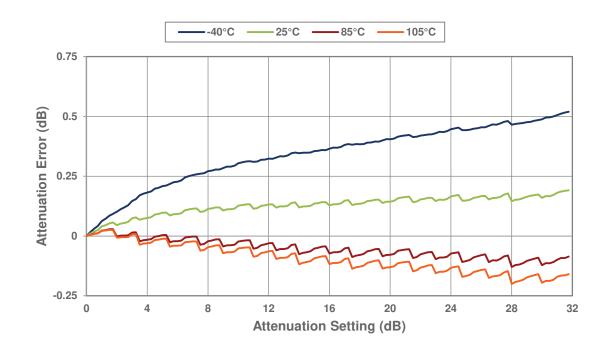



Figure 14 • Attenuation Error @ 1800 MHz vs Temperature

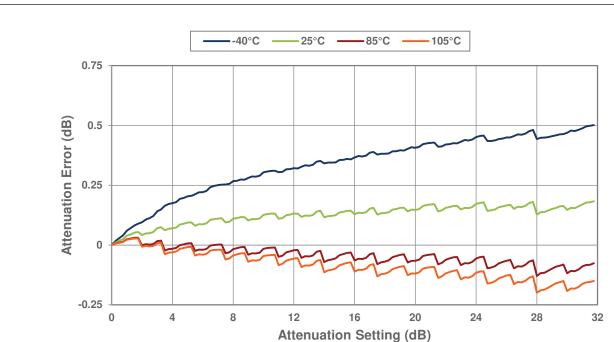
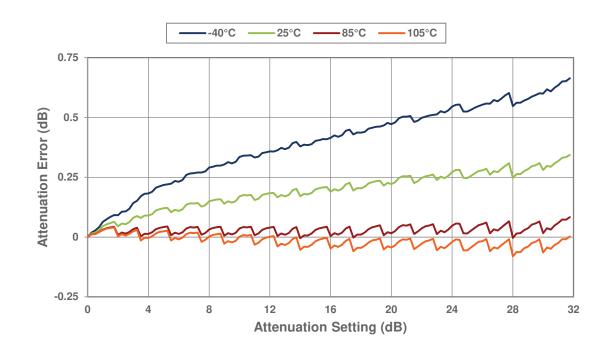
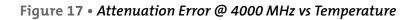




Figure 15 • Attenuation Error @ 2200 MHz vs Temperature

Figure 16 • Attenuation Error @ 3000 MHz vs Temperature

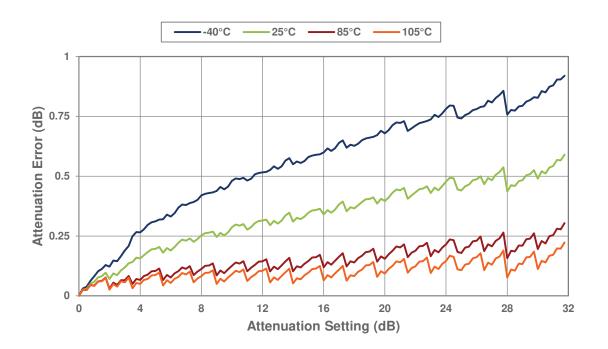
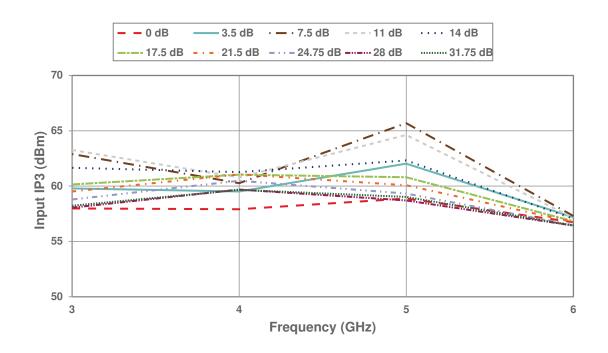
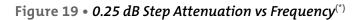
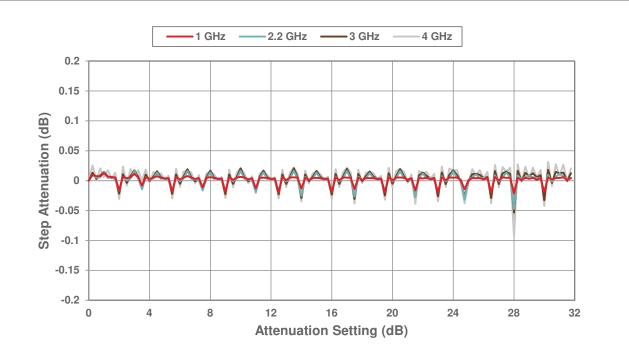
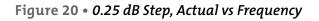
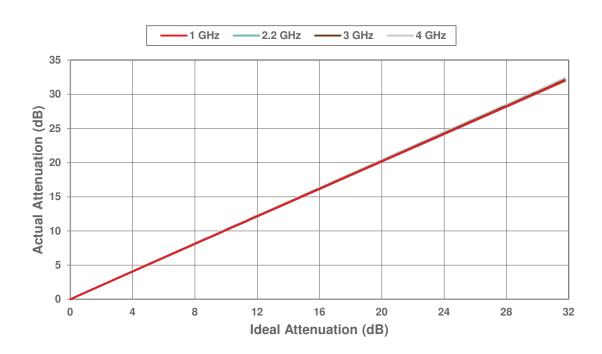
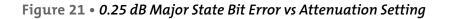





Figure 18 • IIP3 vs Attenuation Setting






Note: * Monotonicity is held so long as step attenuation does not cross below -0.25 dB.

PE43712 UltraCMOS® RF Digital Step Attenuator

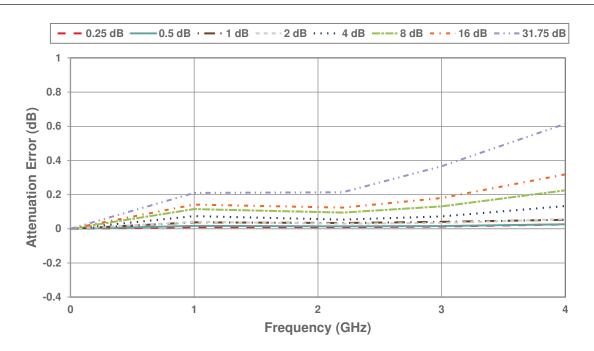
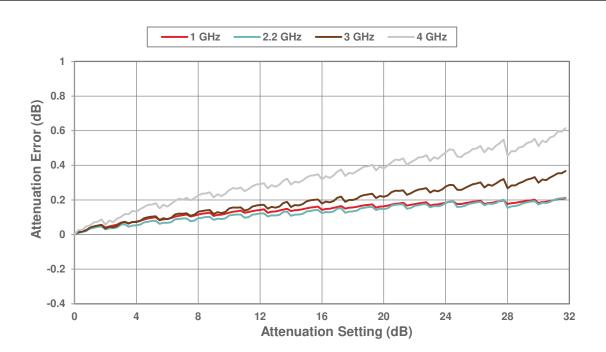
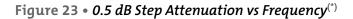
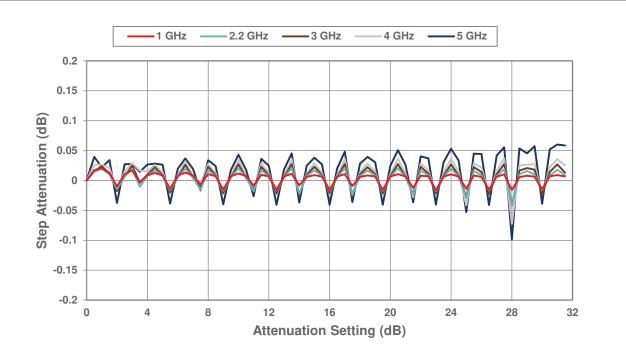
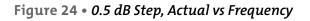
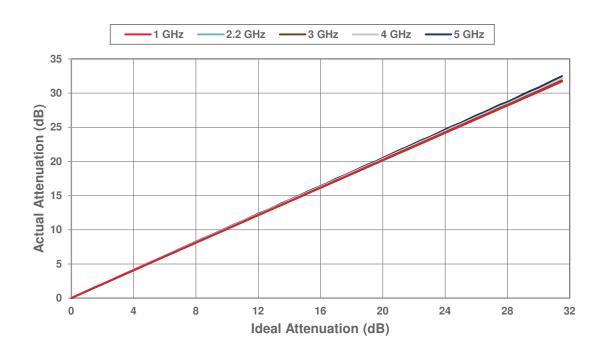
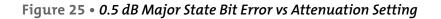





Figure 22 • 0.25 dB Attenuation Error vs Frequency







Note: * Monotonicity is held so long as step attenuation does not cross below -0.5 dB.

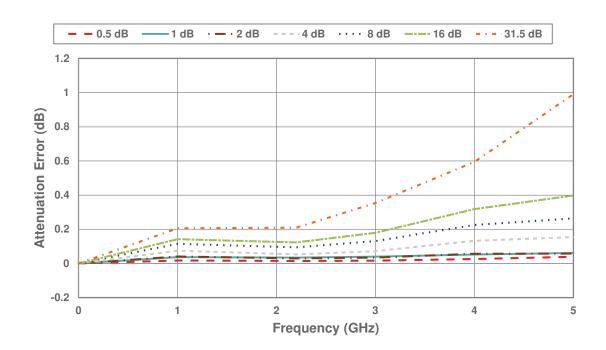
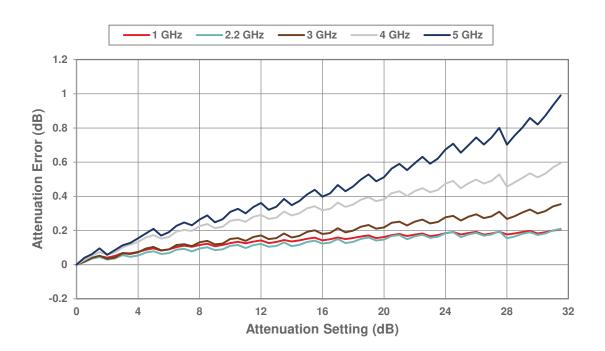
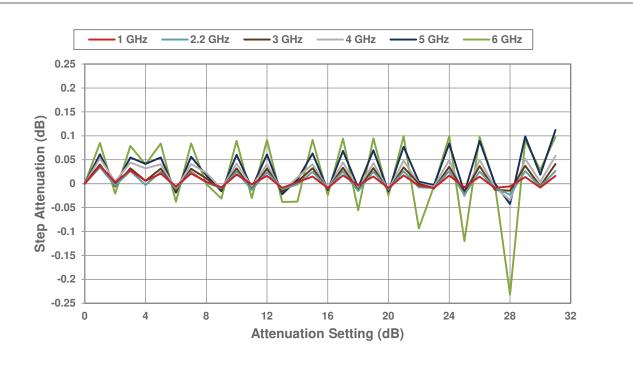
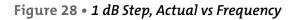
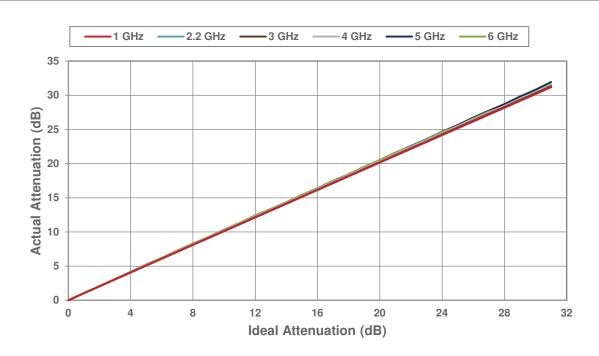




Figure 26 • 0.5 dB Attenuation Error vs Frequency





Note: * Monotonicity is held so long as step attenuation does not cross below -1 dB.

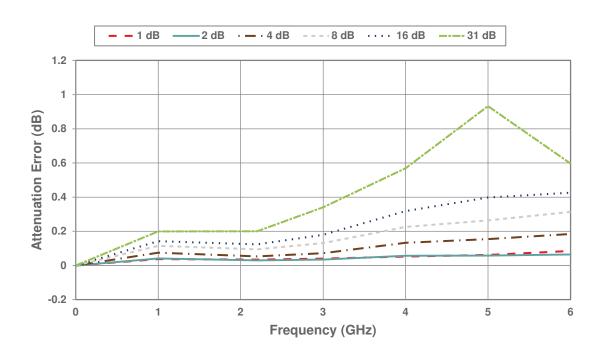
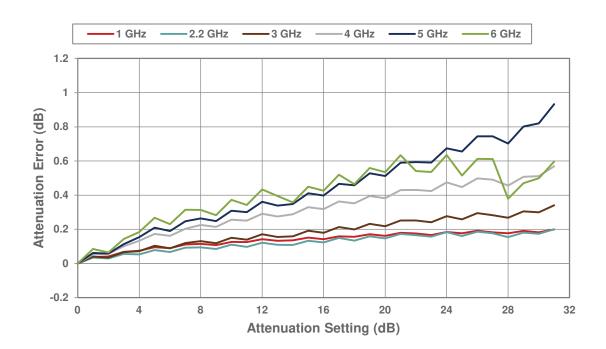



Figure 30 • 1 dB Attenuation Error vs Frequency

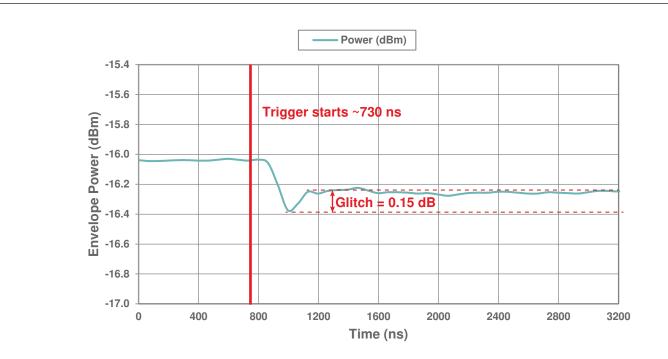
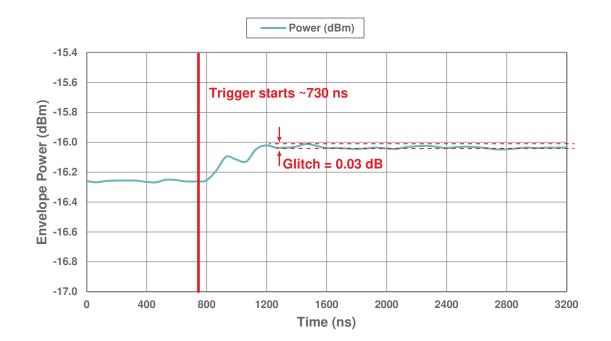



Figure 31 • Attenuation Transient (15.75–16 dB), Typical Switching Time = 275 ns

Figure 32 • Attenuation Transient (16–15.75 dB), Typical Switching Time = 275 ns

