# imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



## Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China





## PF5103 N-Channel Switch

## Features

- This device is designed for low level analog switching sample and hold circuits and chopper stabilized amplifiers.
- Sourced from process 51.



Marking : PF5103

October 2006

1. Drain 2. Source 3. Gate

23

## Absolute Maximum Ratings \* T<sub>a</sub> = 25°C unless otherwise noted

| Symbol                            | Parameter                                        | Value     | Units |
|-----------------------------------|--------------------------------------------------|-----------|-------|
| V <sub>DG</sub>                   | Drain-Gate Voltage                               | 40        | V     |
| V <sub>GS</sub>                   | Gate-Source Voltage                              | -40       | V     |
| I <sub>GF</sub>                   | Forward Gate Current                             | 50        | mA    |
| T <sub>J</sub> , T <sub>STG</sub> | Operating and Storage Junction Temperature Range | -55 ~ 150 | °C    |

\* These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

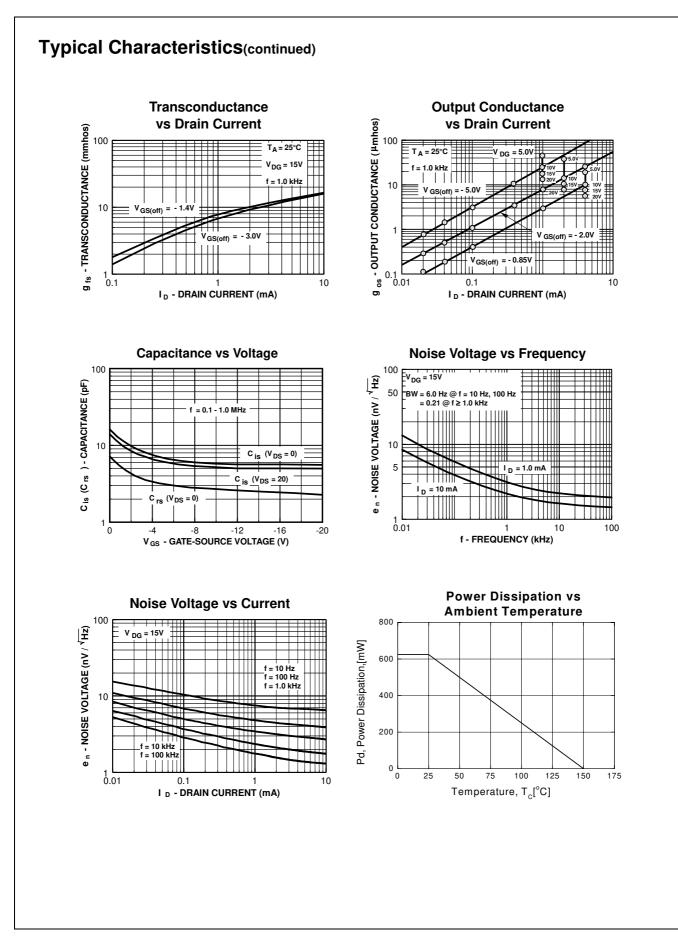
NOTES:

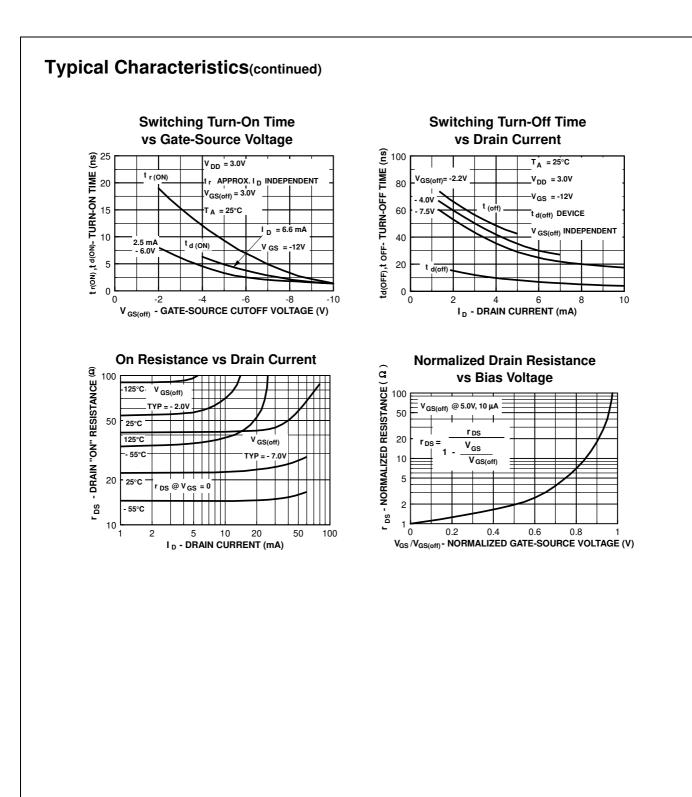
1) These ratings are based on a maximum junction temperature of 150°C.

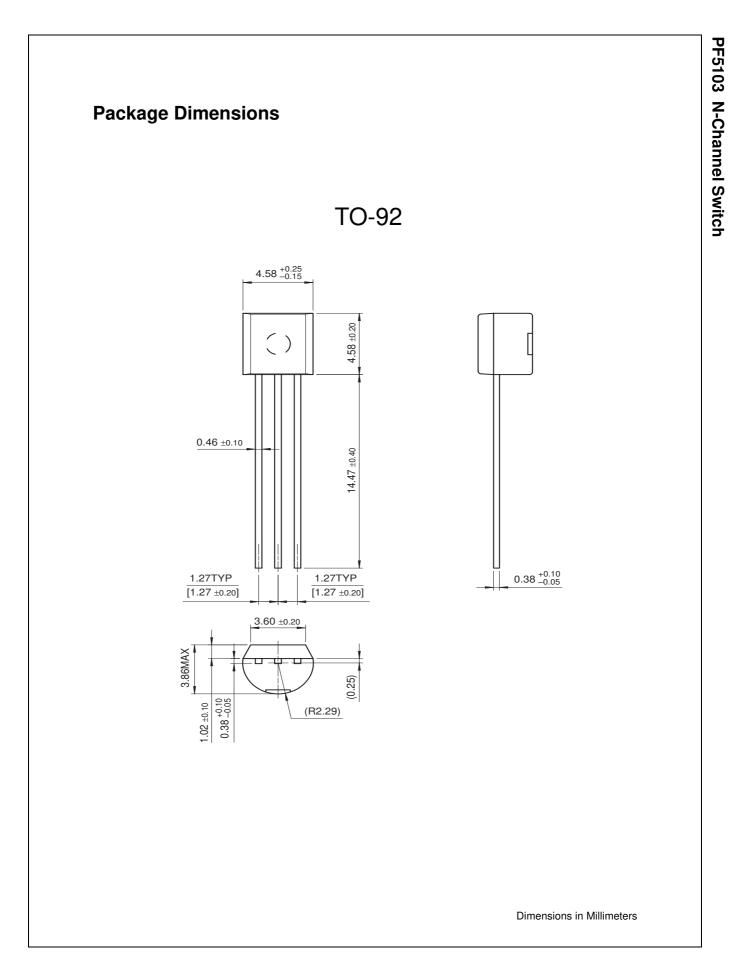
2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

## **Thermal Characteristics\***

| Symbol              | Parameter                               | Value | Units |
|---------------------|-----------------------------------------|-------|-------|
| P <sub>D</sub>      | Total Device Dissipation                | 625   | mW    |
|                     | Derate above 25°C                       | 5.0   | mW/°C |
| $R_{	ext{	heta}JC}$ | Thermal Resistance, Junction to Case    | 125   | °C/W  |
| $R_{\theta JA}$     | Thermal Resistance, Junction to Ambient | 357   | °C/W  |


\* Minimum land pad.


## Electrical Characteristics T<sub>C</sub> = 25°C unless otherwise noted


| Symbol               | Parameter                         | Test Condition                                                                     | MIN          | MAX          | Units          |
|----------------------|-----------------------------------|------------------------------------------------------------------------------------|--------------|--------------|----------------|
| Off Charac           | teristics                         |                                                                                    |              |              |                |
| V <sub>(BR)GSS</sub> | Gate-Source Breakdwon Voltage     | $I_{G} = -1.0 \mu A, V_{DS} = 0$                                                   | -40          |              | V              |
| I <sub>GSS</sub>     | Gate Reverse Current              | $V_{GS} = -15V, V_{DS} = 0$<br>$V_{GS} = -15V, V_{DS} = 0, T_a = 125^{o}C$         |              | -200<br>-500 | pA<br>nA       |
| V <sub>GS(off)</sub> | Gate-Source Cutoff Voltage        | V <sub>DS</sub> = 15V, I <sub>D</sub> = 1.0nA                                      | -1.2         | -2.7         | V              |
| V <sub>GS(f)</sub>   | Gate-Source Forward Voltage       | $V_{DS} = 0V, I_{G} = 10mA$                                                        |              | 1.0          | V              |
| On Charac            | teristics                         | · · · · · ·                                                                        |              |              |                |
| I <sub>DSS</sub>     | Zero-Gate Voltage Drain Current * | $V_{DS} = 15V, V_{GS} = 0$                                                         | 10           | 40           | mA             |
| Small Sign           | al Characteristics                | · · · ·                                                                            |              |              |                |
| g <sub>fs</sub>      | Forward Transfer conductance      | $V_{DG} = 15V, I_D = 500uA, f = 1.0KHz$<br>$V_{DG} = 15V, I_D = 2.0mA, f = 1.0KHz$ | 3500<br>7500 |              | μmhos<br>μmhos |
| g <sub>oss</sub>     | Output Conductance                | V <sub>DG</sub> = 15V, I <sub>D</sub> = 500uA, f = 1.0KHz                          |              | 25           | μmhos          |
| Ciss                 | Input Capacitance                 | $V_{DG} = 15V, V_{GS} = 0V, f = 1.0MHz$                                            |              | 16           | pF             |
| Crss                 | Reverse Transfer Capacitance      | V <sub>DG</sub> = 15V, V <sub>GS</sub> = 0V, f = 1.0MHz                            |              | 6            | pF             |

#### **Typical Characteristics Common Drain-Source Parameter Interactions** r <sub>DS</sub> - DRAIN "ON" RESISTANCE <sup>50</sup> ຳ g fs - TRANSCONDUCTANCE (mmhos) 10 100 T<sub>A</sub> = 25°C V<sub>GS(off)</sub> = - 2.0 V <sub>GS</sub> = 0 V I D - DRAIN CURRENT (mA) 0.2 V r<sub>DS</sub> 8 50 0.4 V 6 0.6 \ 20 g 4 0.8 V I<sub>DSS</sub> , g fs @ V<sub>DS</sub> = 15\ \_V<sub>GS</sub> = 0 PULSED ¬r<sub>DS</sub> @ 1.0 mA, V<sub>GS</sub> = 0 \_V<sub>GS</sub>(off) @ V<sub>DS</sub> = 15V, \_I<sub>D</sub> = 1.0 nA 1.0 V 10 2 1.4 - 1.2 V DSS 5 ∟ −0.5 ĝ 5 0 -1 -2 -5 -10 Ó0 0.4 1.2 0.8 1.6 2 V<sub>GS (OFF)</sub> - GATE CUTOFF VOLTAGE (V) V<sub>DS</sub>- DRAIN-SOURCE VOLTAGE (V) **Transfer Characteristics Transfer Characteristics** 40 16 V<sub>GS(off)</sub> = - 3.0 V V<sub>GS(off)</sub> = - 1.6 V V <sub>DS</sub> = 15 V 55°C I DRAIN CURRENT (mA) I D - DRAIN CURRENT (mA) . 55°C 25°C . 25°C 30 12 125°C 125°C V<sub>GS(off)</sub> = 2.0 V 125°C 20 8 25°C - 55°C V<sub>GS(off)</sub> = - 1.1 V 125°C 25°C V <sub>DS</sub> = 15 V 10 55°0 0 **L** 0 0⊾ 0 -1 -2 -3 -0.5 -1 -1.5 V<sub>GS</sub>- GATE-SOURCE VOLTAGE (V) V<sub>GS</sub>- GATE-SOURCE VOLTAGE (V) **Transfer Characteristics Transfer Characteristics** g fs - TRANSCONDUCTANCE (mmhos) g fs - TRANSCONDUCTANCE (mmhos) 30 30 V<sub>GS(off)</sub> = - 3.0 V - 55°C 1.6 V V<sub>GS(off)</sub> = 25°C . 55°C 125°C . 25°C 20 20 V<sub>GS(off)</sub> = - 2.0 V 125°C - 55°C 25°C V<sub>GS(off)</sub> = - 1.1 V 125°C 10 10 55°C 25°C 125°C $V_{DS} = 15 V$ V <sub>DS</sub> = 15 V 0 0 -3 0 -0.5 -1 -2 -1.5 -1 V<sub>GS</sub>- GATE-SOURCE VOLTAGE (V) V<sub>GS</sub>- GATE-SOURCE VOLTAGE (V)

PF5103 N-Channel Switch







## TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks

ACEx™ ActiveArray™ Bottomless™ Build it Now<sup>™</sup> CoolFET™  $CROSSVOLT^{\mathrm{TM}}$ DOME™ EcoSPARK™ E<sup>2</sup>CMOS™ EnSigna™ FACT™ FAST<sup>®</sup> FASTr™ FPS™ FRFET™

FACT Quiet Series™ GlobalOptoisolator™ GTO™ HiSeC™ I<sup>2</sup>C™ i-Lo™ ImpliedDisconnect<sup>™</sup> IntelliMAX™ ISOPLANAR™ LittleFET™ MICROCOUPLER™ MicroFET™ MicroPak™ MICROWIRE™ MSX™ MSXPro™ Across the board. Around the world.™

OCX™ OCXPro™ **OPTOLOGIC<sup>®</sup> OPTOPLANAR™** PACMAN™ POP™ Power247™ PowerEdge™ PowerSaver™ PowerTrench<sup>®</sup> **QFET<sup>®</sup>** QS™ QT Optoelectronics<sup>™</sup> Quiet Series™ RapidConfigure™ RapidConnect<sup>™</sup> uSerDes™ ScalarPump™

SILENT SWITCHER® SMART START™ SPM™ Stealth™ SuperFET™ SuperSOT™-3 SuperSOT<sup>™</sup>-6 SuperSOT<sup>™</sup>-8 SyncFET™ ТСМ™ TinyBoost™ TinyBuck™ TinyPWM™ TinyPower™ TinyLogic<sup>®</sup> TINYOPTO™ TruTranslation™ UHC™

UltraFET<sup>®</sup> UniFET™ VCX™ Wire™

## DISCLAIMER

The Power Franchise<sup>®</sup> Programmable Active Droop™

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN;NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPE-CIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

## LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

#### As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

## **PRODUCT STATUS DEFINITIONS**

## **Definition of Terms**

| Datasheet Identification | Product Status         | Definition                                                                                                                                                                                                                        |
|--------------------------|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Advance Information      | Formative or In Design | This datasheet contains the design specifications for<br>product development. Specifications may change in<br>any manner without notice.                                                                                          |
| Preliminary              | First Production       | This datasheet contains preliminary data, and<br>supplementary data will be published at a later date.<br>Fairchild Semiconductor reserves the right to make<br>changes at any time without notice in order to improve<br>design. |
| No Identification Needed | Full Production        | This datasheet contains final specifications. Fairchild<br>Semiconductor reserves the right to make changes at<br>any time without notice in order to improve design.                                                             |
| Obsolete                 | Not In Production      | This datasheet contains specifications on a product<br>that has been discontinued by Fairchild semiconductor.<br>The datasheet is printed for reference information only.                                                         |
|                          |                        |                                                                                                                                                                                                                                   |

6