

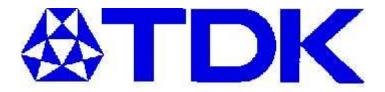
Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832


Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

PFH05W Evaluation Test Board

Application notes

Version 1.0

Table of Contents

Error! Bookmark not defined.	RE USING THE POWER SUPPLY UNIT	BEFOR
5	Getting Started	1.0
6	Test Equipment	1.1
7	Test Setup	1.2
9	Test Points	1.3
10	PMBus and Remote On/Off Functions	1.4
11	Setting the PMBus Address	1.5
12	Turning PFH Module On/Off	1.6
13	Electrical Schematic Drawing	2.0
14	Bill of Material	3.0
15	Board Files	4.0
22	EMI Conducted Test Results	5.0

BEFORE USING THE POWER SUPPLY UNIT

Be sure to read and understand this instruction manual thoroughly before using this product. Pay attention to all cautions and warnings before using this product. Incorrect usage could lead to an electrical shock, damage to the unit or a fire hazard.

⚠ DANGER

Never use this product in locations where flammable gas or ignitable substances are present. There are risks of igniting these substances and exploding by arcing.

⚠ WARNING

- Do not touch this product or its internal components while circuit is live, or shortly after shut down. There may be high voltage or high temperature present and you may receive an electric shock or burn.
- While this product is operating, keep your hands and face away from it as you may be injured by an unexpected situation.
- Do not make unauthorized changes to this product, otherwise you may receive an electric shock and void your warranty.
- Do not drop or insert anything into the product. It might lead to a failure, fire or electric shock.
- Do not use this product if abnormal conditions such as emission of smoke and/or abnormal smell or audible noise, etc... are present. It might lead to fire and/or electric shock. In such cases, please contact TDK Lambda. Do not attempt repair by yourself, as it is dangerous for the user.
- Do not operate these products in the presence of condensation. It might lead to fire or electric shock.

\triangle CAUTION

- This power supply is designed and manufactured for use within an end product such that it is accessible only to trained SERVICE ENGINEERS.
- Confirm that the connections to input/output terminals, and signal terminals are correct as specified in this instruction manual before turning on the power.
- Input voltage, Output current, Output power, ambient temperature, case temperature, and ambient humidity should be kept within the specifications, otherwise the product may be damaged.
- Do not operate and store this product in an environment where condensation might occur. In such case, waterproof treatment is necessary.
- The equipment has been evaluated for use in a Pollution Degree 2 environment.
- Do not use this product in environment with a strong electromagnetic field, corrosive gas or conductive substances.
- For applications, which require very high reliability, such as nuclear related equipment, medical equipment, traffic control equipment, etc., it is necessary to provide a fail-safe mechanism in the end equipment.
- Do not inject abnormal voltages into the output terminal or signal terminal of this product. The injection of reverse voltage or over voltage
 exceeding nominal output voltage into the output terminal or signal terminal might cause damage to internal components.
- · Never operate the product under the over-current or short circuit conditions. Failure or other damage may occur.
- The output voltage of this power supply unit is considered to be a hazardous energy level (The voltage is 2V or more and the electric power is 240W or more). It must not be made accessible to users. Protection must be provided for Service Engineers against indirect contact with the output terminals and/or to prevent tools being dropped across them. While working on this product, the AC input power must be switched off, and the input, output, +VBus, and -VBus terminal voltages should be at a safe level.
- The application circuits and their parameters are for reference only. Be sure to verify effectiveness of these circuits and their parameters before finalizing the circuit design.
- Use a Fast-Blow external fuse to each module to ensure safe operation and compliance with the safety standards to which it is approved. The recommended input fuse rating within the instructions is as follows: 10A, 250V fast acting fuse. The breaking capacity and voltage rating of this fuse may be subject to the end use application.

A CAUTION

• This information in this document is subject to change without prior notice. Please refer to the latest version of the data sheet, etc., for the most up-to date specifications of the product.

• No part of this document may be copied or reproduced in any form without prior written consent TDK-Lambda.

Reference Documents:

- 1.) PFH Instruction Manual
- 2.) PFH PMBus Specification Customer Release

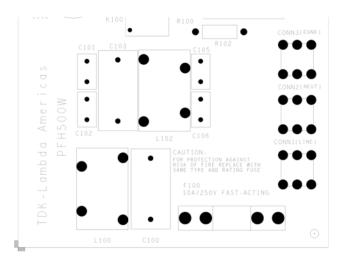
1.0 Getting Started

PFH05W##-100-EVK-S1 & PFH05W##-1D0-EVK-S1 Evaluation Boards

PFH05W-001-EVK-S0 Evaluation Board

1.1 Test Equipment

1.) AC Voltage Source: capable of single-phase output AC voltage 85 V_{AC} to 265 V_{AC}, 47 Hz to 63 Hz¹, adjustable, with minimum power rating 500 W, the AC voltage source to be used should meet IEC60950 reinforced insulation requirement.

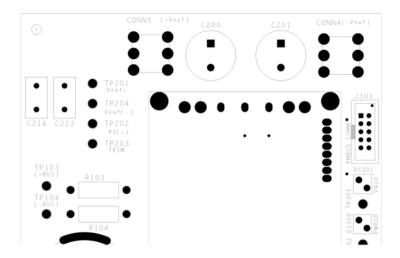

2018

- **NOTE: 1.** Input frequency above 63Hz, refer to PFH Datasheet
- 2.) DC Multimeter: capable of 0V to 500V input range.
- **3.)** Output Load: DC load capable of 60 V_{DC} or greater, DC Load current up to 42A or greater (12V/42A, 28V/18A, or 48V/10.5A), and 500 W or greater, with display such as load current and load power.
- **4.)** Fan: 200 LFM to 400 LFM forced air cooling is recommended, but not a must.

1.2 Test Setup

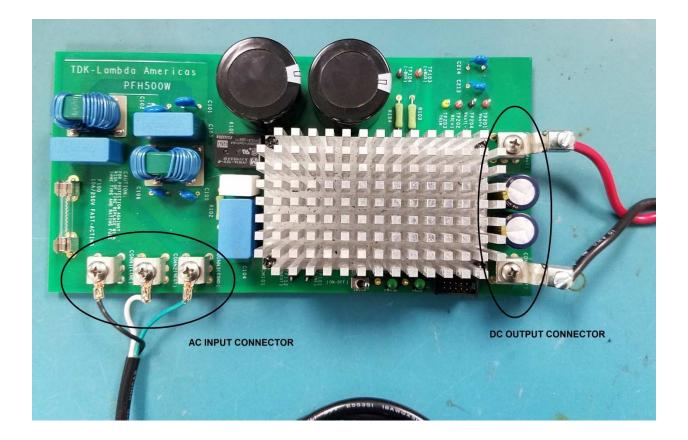
1.) Electrical Input Connections: **CONN1**: **LINE**, Input Line Connection

CONN2: NEUT, Input Neutral Connection
CONN3: EGND, Earth Ground Connection

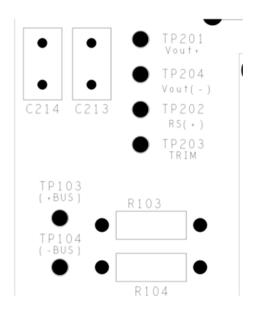

NOTE: Refer to the PFH Datasheet for specific module's AC Input Current requirement when sizing wire gauge and cable length.

2.) Electrical Output Connection: **CONN5** +Vout, Output Load Connections

(Red Cable)


CONN4 -Vout, Output Load Return Connections

(Black Cable)



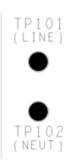
A WARNING

Make sure ALL input and output cables are de-energized before making electrical connections to the Evaluation Test Board

1.3 Test Points

1.) Secondary Test Points: TP201 **Vout+**, Monitor Output Voltage

TP204 **Vout(-)**, Monitor Output Voltage return


TP202 **RS(+)**, Output Remote Sense (+) connection

TP203 **TRIM**, Trim Test connection

⚠ WARNING HAZARDOUS VOLTAGE

2.) Primary Test Points: TP103 +BUS, Monitor 400Vdc

TP104 -BUS, Monitor 400Vdc return

TP101 *LINE*, Monitor AC Line Input
TP102 *NEUT*, Monitor AC Neutral Input

1.4 PMBus and Remote On/Off Functions

1.) PMBus Connections (J301)

Pin #:	Description:
1	Not Used
2	Not Used
3	Not Used
4	Not Used
5	USB 3.3Vdc
6	SGND
7	Not Used
8	PMBus Alert
9	PMBus Clock
10	PMBus Data

NOTE: NOTE: J301 is compatible with TI USB Interface Adapter EVM (Evaluation Module), TI part #: <u>USB-TO-GPIO</u>. This adapter is available from,

- <u>TI</u>
- <u>Digi-Key</u>
- Newark Element
- Mouser Electronics
- Arrow

Texas Instruments offers a Free SMBus tool in their FUSION DIGITAL POWER STUDIO that allows the user to send and read PMBus commands to and from the module.

http://www.ti.com/tool/FUSION-DIGITAL-POWER-STUDIO

FUSION DIGITAL POWER STUDIO System Requirements

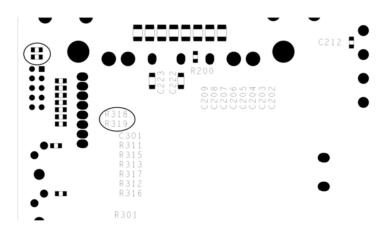
- Window-Based application, support Window XP and Window 7
- Design, Configure & monitor TI digital power controllers and sequencers/health monitors using TI USB Adapter
- Support multiple devices in the same bus in Online (connected to live devices), Offline (file-base virtual devices), and Hybrid mode (mix of online & offline)
- Support exporting device's configuration to different files formats for 3rd party programming
- Support Command Line Tools for scripting & automation

MARNING When AC voltage is applied to the Evaluation Test Board the 450V bulk capacitors ARE energized at ALL time

2.) Remote On/Off (SW200) **SW200**, Will either turn the module On or put it into Standby

3.) Auxiliary Voltage (DS301) **DS301**, The LED will Turn-On when the 450Vdc bulk capacitors

are energized above 70Vdc


4.) Power Good (DS300) **DS300**, The LED will Turn-On once the module's output has

been Turned-On

5.) Test Points TP301 Monitor Auxiliary Voltage

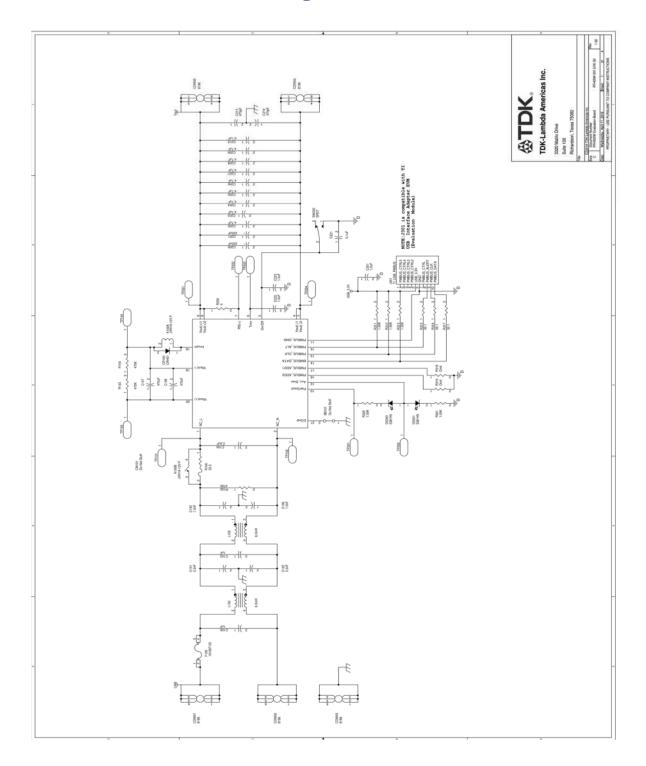
TP302 Monitor Power Good Signal

1.5 Setting the PMBus Address

- The PMBus address setting on the Evaluation Test Board comes with the Factory default setting, Address: 0x58 (Hex) (R318 & R319 are not populated)
- To change PMBus address to a different address R318 (AD1) and R319 (AD2) must be populated with appropriate resistor values located in "PFH PMBus Specification Customer Release" document.

Example: Suppose a PMBus address of 0x51 was desired instead of 0x58.

R318 (PMBus AD1): Not Populated → Populate with 14K (0805 Resistor)
R319 (PMBus AD2): Not Populated → Populate with 69.8K (0805 Resistor)


1.6 Turning PFH Module On/Off

- 1.) Before applying AC voltage to the module make sure,
 - a. The surface under the test fixture is a non-conductive surface
 - b. Securely connect Input and Output cables to the test board
 - c. Securely connect all monitoring devices to test board

<u>MARNING When AC voltage is applied to the Evaluation Test Board the 450V bulk capacitors ARE</u> energized at ALL time

- 2.) Apply AC input voltage to test fixture
 - a. AC input voltage range 100Vac 265Vac
 - b. AC input voltage range < 100Vac, de-rated 6.7W/V
 - c. Once AC input voltage is applied, Auxiliary Voltage LED (DS301) will Turn-On
- 3.) Turning On PFH module can be accomplished 1 of 2 ways,
 - i. Remote On/Off
 - ii. PMBus
 - a. The method chosen to turn On PFH has to be the **SAME** method to turn Off PFH
 - i. Example: If Remote On/Off turns On PFH, then PMBus cannot turn it Off. Only Remote On/Off can turn Off PFH.
 - b. Method 1: Toggle Remote On/Off,
 - I. Toggle Remote On/Off switch (SW200) On Will turn PFH On
 - II. Toggle Remote On/Off switch (SW200) Off Will turn PFH Off.
 - c. Method 2: PMBus,
 - I. Write Byte 0x80 to CMD 0x01 Turns PFH On
 - II. Write Byte 0x00 to CMD 0x01 Turn PFH Off
 - d. Once PFH is turned On, Power Good LED (DS300) will turn On
 - e. When PFH is turned Off, Power Good LED (DS300) will turn Off

2.0 Electrical Schematic Drawing

3.0 Bill of Material

PFH05W-001-EVK-S0 Bill of Material

Part Reference	Mfr Part Number1	Value	Description	Voltage	Mfr1
BMPR1 BMPR2			·		
BMPR3 BMPR4		Rubber			
BMPR5 BMPR6	SJ-5027 (BLACK)	Bumper	Bumper, Rubber, 0.63" Dia x 0.31"		3M
C100 C103	B32923C3105M2040	1uF	Film Capacitor,305V, X2 Cap	250V	TDK
C101 C102	CS45-E2GA332M-NKA	3.3nF	Film Capacitor,305V, Y2 Cap	250V	TDK
C104	B32923C3225M1040	2.2uF	Film Capacitor,305V, X2 Cap	250V	TDK
C105 C106	CS45-E2GA102M-NKA	1.0nF	Film Capacitor, 305V, Y2 Cap	250V	TDK
C107 C108	B43508B5477M007	470uF	Electrolytic Capacitor, 450V, 35X40	450V	TDK
C200 C201	EEUFC2A221	220uF	Electrolytic Capacitor, 100V, 16X25	100V	Panasonic
C202 C203					
C204 C205					
C206 C207					
C208 C209	C3225X7S2A475K200AB	4.7uF	Ceramic Capacitor, 100V, 1210, 4.7uF	100V	TDK
C212 C221	C2012X7R2A104K125AA	0.1uF	Ceramic Capacitor, 100V, 0805	50V	TDK
C213 C214	CS45-B2GA471K-NKA	470pF	Film Capacitor,305V, Y2 Cap	250V	TDK
C222 C223	C3216X7R2A105MT	1.0uF	Ceramic Capacitor,100V, 1206, 1.0uF	100V	TDK
C301	C2012X7R1E105KT	1.0uF	Ceramic Capacitor, 25V, 0805	25V	TDK
CONN1 CONN2					
CONN3 CONN4					Keystone
CONN5	8196	8196	PC Screw Terminal		Electronics
CR100	CRH01	CRH01	PN Diode, Single Package, SMT		TOSHIBA
			3		Chicago
DS300 DS301	5381H5	5381H5	LED, Green, Thru Hole		Miniature Lamp
F100	312010	312010	Fuse, 10A Fuse, Fast-Blow		Littlefuse
	1A1907-03		Fuse, Fuse Clips, PWB		BUSSMANN
		TI USB PMB			
J301	N2510-6003-RB	US	.100" x .100" Four-Wall Header		3m
K100	JVN1A-12V-F	JVN1A-12V-F	RELAY SPST		Panasonic
L100 L102	ARA00499	6.3mH	Com Ind, 6325uH, Thru Hole		TDK-Lambda
PWB100	ZB00511	ZB00511	PWB. (n) oz. Cu062"		
R100	A5MC-220J	22.0	Res,22.0,5.0W	250V	UCHIHASHI
R102 R103	7.66 2236		1.00)=10,01011	2001	00
R104	SPR2C474J	470K	Res,470K,2.0W	250V	KOA SPEER
R200	RK73Z2ATTE	0	Res,0,2.0A,70C,0805	N/A	KOA SPEER
R300 R301	RK73H2ATTE1001F	1.00K	Res,1.00K,0.125W,100ppm,70C,0805	150V	KOA SPEER
R311 R312	1117 01127 11 12 100 11	1.0010	1100,110013,0112011,10000111,700,0000	1001	11071 OF EET
R313	RK73H2ATTE1501F	1.50K	Res,1.50K,0.125W,100ppm,70C,0805	150V	KOA SPEER
R315 R316			,,,,,,,,,,,,,,,,,		
R317	RK73H2ATTE30R1F	30.1	Res,30.1,0.125W,100ppm,70C,0805	150V	KOA SPEER
R318 R319	N/A	Omit	Res.Omit.0805	N/A	N/A
SW200	T101SHCQE	SPDT	SPDT two position switch vertical (On None On)		C&K
TP101 TP102		·	2. 2.1 2 position of the control (2.1140110 011)		Keystone
TP104 TP204	5011	5011	Test Point, Black, Thru Hole		Electronics
TP103 TP201					Keystone
TP202	5010	5010	Test Point, Red, Thru Hole		Electronics
TP203 TP301					Keystone
TP302	5014	5014	Test Point, Yellow, Thru Hole		Electronics

4.0 Board Files

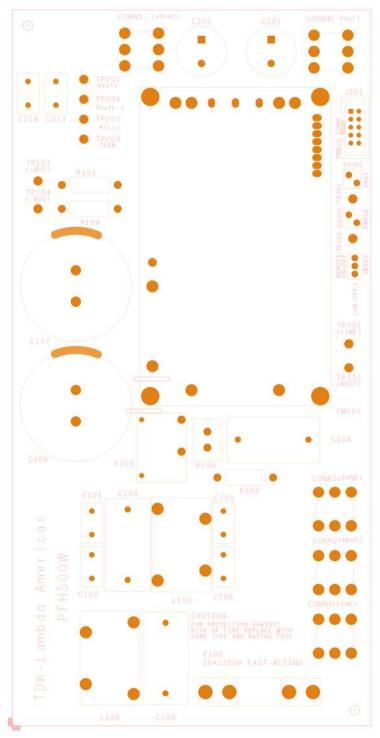


FIGURE 1 Top side Component Placement

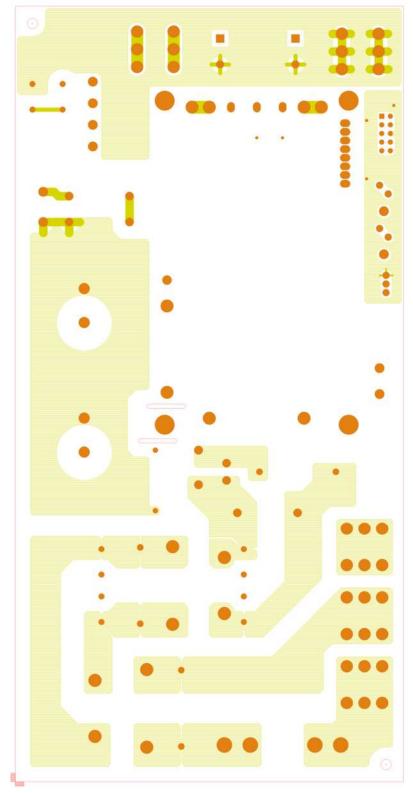


FIGURE 2 Top Layer (Etch 1)

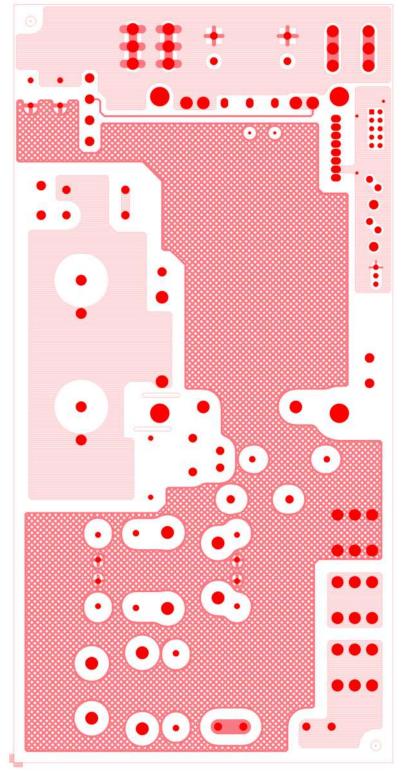


FIGURE 3 Internal Layer (Etch 2)

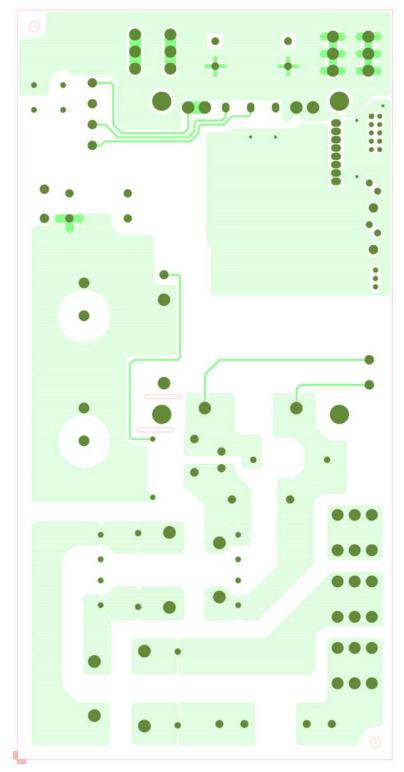


FIGURE 4 Internal Layer (Etch 3)

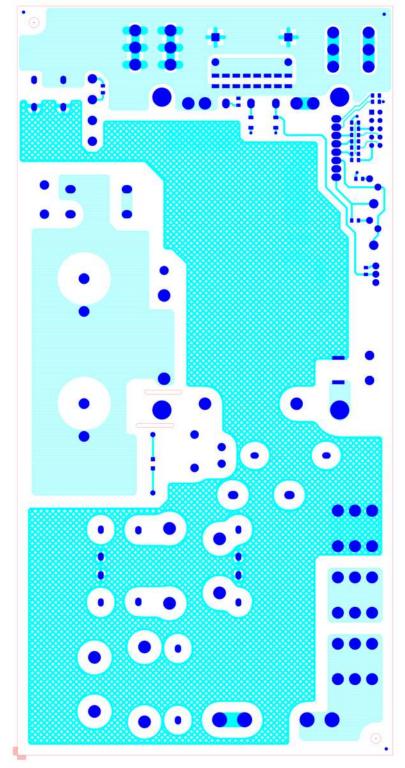


FIGURE 5 Bottom Layer (Etch 4)

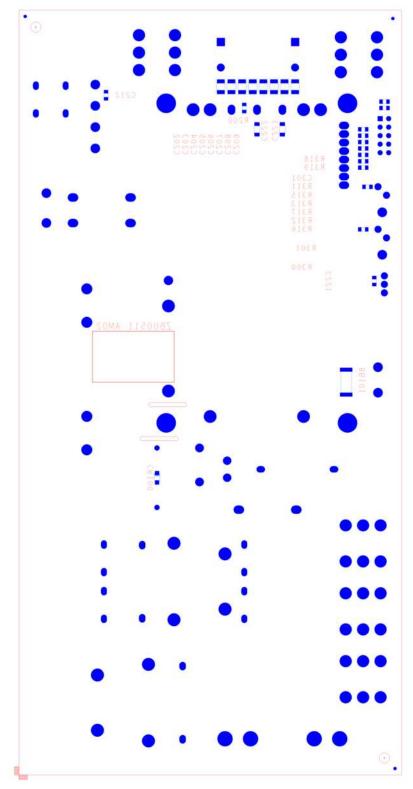


FIGURE 6 Bottom side Component Placement

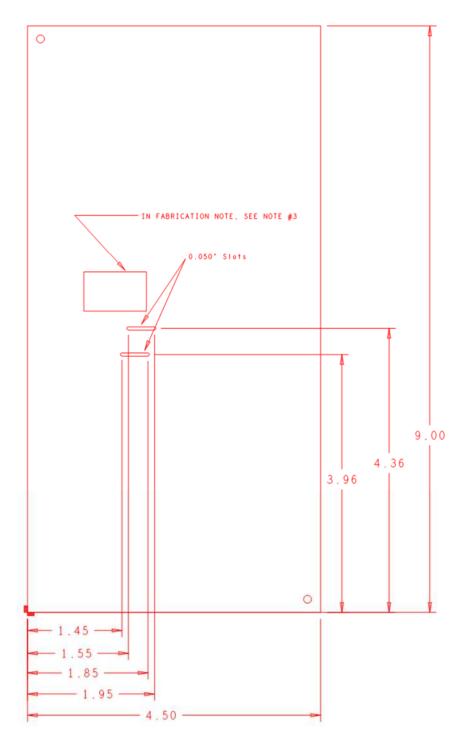


FIGURE 7 Circuit Outline

5.0 EMI Conducted Test Results

Conducted Emissions CISPR22 Class B Test Results

EUT Model: PFH500F-28-100-R **Test Dates:** 04/12/2018

Test Location: National Technical Systems **Engineer:** Michael D. Lawrence - TDK

1701 E. Plano Parkway #150 Ervin Williams - NTS

Plano, TX 75074

Test Equipment

Asset #:	Device:	Manufacture:	Model:	Cal Date:	Cal Due Date:
NTS -	Spectrum	Agilent	E4440A	6/29/17	6/29/18
WC021859	Analyzer PSA				
	Series				
NTS -	LISN	ROHDE &	ESH3-Z5	5/8/17	5/8/18
WC021314		SCHWARZ			
NTS -	Transient Limiter	HAMEG	HZ560	7/4/17	7/4/18
WC021350		Instruments			

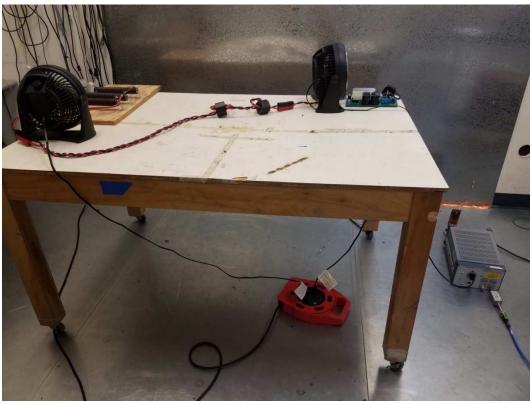
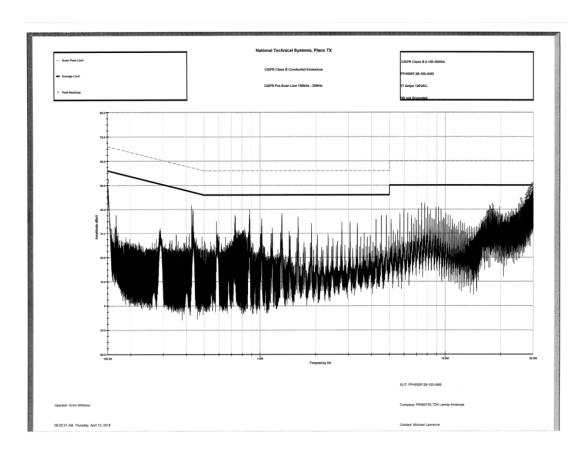
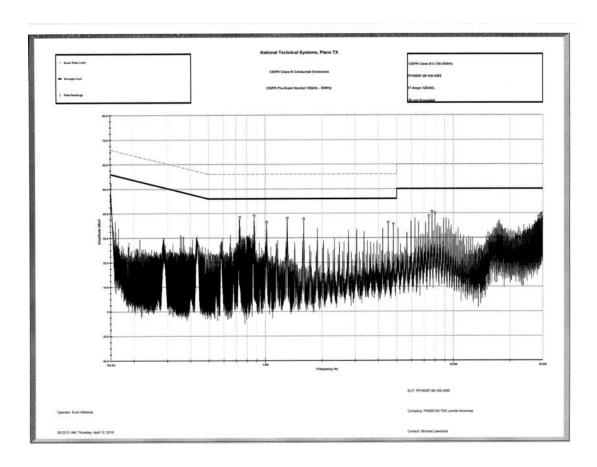



Figure 1
NTS (Richardson, TX) Conducted Emissions CISPR22 Class B Setup

Basic Standard:CISPR22, Class BTest Voltage:120Vac / 60Hz - LINEHeat Sink:Not Connect to EGND

National Technical Systems, Plano TX CISPR Class B Conducted Emissions CISPR Final Line 150kHz-30MHz

09:25:21 AM, Thursday, April 12, 2018


PR065743 TDK Lamda Americas Michael Lawrence

	1	2	3	4	5	6	
Frequency	QP Limit	AVE Lim	itAVE Reading	gAVE Mar	giQP Readi	ng:QP Margi	n
MHz	dBuV	dBuV	dBuV	dB	dBuV	dB	
28.455 MHz	60.000	50.000	36.959	-13.041	44.977	-15.023	
29.036 MHz	60.000	50.000	34.331	-15.669	41.697	-18.303	
29.317 MHz	60.000	50.000	36.429	-13.571	46.786	-13.214	
29.619 MHz	60.000	50.000	33.334	-16.666	41.819	-18.181	
29.751 MHz	60.000	50.000	28.756	-21.244	36.344	-23.656	
29.914 MHz	60.000	50.000	32.235	-17.765	40.028	-19.972	
CISPR Class	B 0.150-3	BOMHz					
PFH500F-28-	100-AM5						
17 Amps 120	VAC.						
HS not Grour	nded						

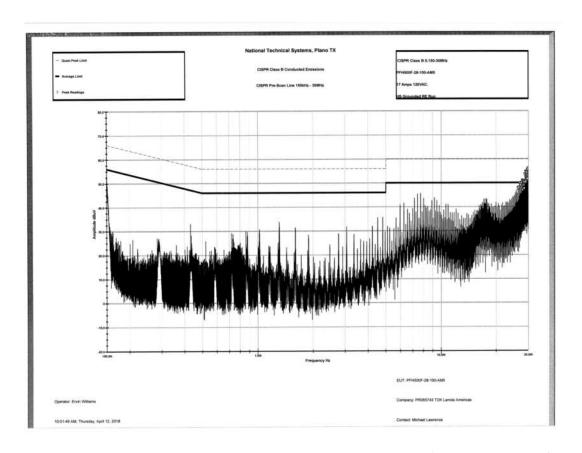
CONCLUSION: PASSED

Basic Standard: CISPR22, Class B

Test Voltage: 120Vac / 60Hz - NEUTRAL Heat Sink: Not Connect to EGND

National Technical Systems, Plano TX CISPR Class B Conducted Emissions CISPR Final Neutral 150kHz-30MHz

Operator: Ervin Williams


09:25:21 AM, Thursday, April 12, 2018

EUT: PFH500F-28-100-AM5 Company: PR065743 TDK Lamda Americas Contact: Michael Lawrence

1	2	3	4	5	6	
QP Limit	AVE Lin	nitAVE Read	ding:AVE Mar	giQP Read	ingsQP Margin	
dBuV	dBuV	dBuV	dB	dBuV	dB	
66.000	56.000	41.717	-14.283	46.326	-19.674	
65.984	55.984	39.335	-16.648	43.864	-22.119	
56.000	46.000	7.256	-38.744	24.758	-31.242	
56.000	46.000	12.106	-33.894	31.546	-24.454	
56.000	46.000	25.175	-20.825	33.194	-22.806	
56.000	46.000	21.673	-24.327	29.630	-26.370	
s B 0.150-3	BOMHz					
-100-AM5						
VAC.						
nded						
	dBuV 66.000 65.984 56.000 56.000 56.000 56.000 56.000	dBuV dBuV 66.000 56.000 65.984 55.984 56.000 46.000 56.000 46.000 56.000 46.000 56.000 46.000 56.000 46.000 56.000 46.000 56.000 46.000	QP Limit AVE LimitAVE Read dBuV dBuV dBuV dBuV 66.000 56.000 41.717 65.984 55.984 39.335 56.000 46.000 7.256 56.000 46.000 12.106 56.000 46.000 25.175 56.000 46.000 21.673 as B 0.150-30MHz 100-AM5 VAC.	QP Limit AVE LimitAVE Reading/AVE Mar dBuV dBuV dBuV dB 66.000 56.000 41.717 -14.283 65.984 55.984 39.335 -16.648 56.000 46.000 7.256 -38.744 56.000 46.000 12.106 -33.894 56.000 46.000 25.175 -20.825 56.000 46.000 21.673 -24.327 B B 0.150-30MHz	QP Limit AVE LimitAVE Reading:AVE MargiQP ReadidBuV dBuV dBuV dB dBuV 66.000 56.000 41.717 -14.283 46.326 65.984 55.984 93.335 -16.648 43.864 56.000 46.000 7.256 -38.744 24.758 56.000 46.000 12.106 -33.894 31.546 56.000 46.000 25.175 -20.825 33.194 56.000 46.000 21.673 -24.327 29.630 as B 0.150-30MHz	QP Limit AVE LimitAVE Reading:AVE Margi QP Reading:QP Margin dBuV dBuV dBuV dB dBuV dB dBuV dB 66.000 56.000 41.717 -14.283 46.326 -19.674 65.984 55.984 39.335 -16.648 43.864 -22.119 56.000 46.000 7.256 -38.744 24.758 -31.242 56.000 46.000 12.106 -33.894 31.546 -24.454 56.000 46.000 25.175 -20.825 33.194 -22.806 56.000 46.000 21.673 -24.327 29.630 -26.370 as B 0.150-30MHz

CONCLUSION: PASSED

Basic Standard:CISPR22, Class BTest Voltage:120Vac / 60Hz - LINEHeat Sink:Connected to EGND

National Technical Systems, Plano TX CISPR Class B Conducted Emissions CISPR Final Line 150kHz-30MHz

10:01:49 AM, Thursday, April 12, 2018

PR065743 TDK Lamda Americas Michael Lawrence

	1	2	3	4	5	6
Frequency	QP Limit	AVE Lin	nitAVE Read	ling:AVE Mar	giQP Readi	ng:QP Margi
MHz	dBuV	dBuV	dBuV	dB	dBuV	dB
28.716 MHz	60.000	50.000	46.957	-3.043	52.427	-7.573
29.001 MHz	60.000	50.000	46.444	-3.556	53.279	-6.721
29.312 MHz	60.000	50.000	38.692	-11.308	44.912	-15.088
29.593 MHz	60.000	50.000	37.706	-12.294	48.773	-11.227
29.745 MHz	60.000	50.000	30.733	-19.267	39.520	-20.480
29.882 MHz	60.000	50.000	38.952	-11.048	50.748	-9.252
CISPR Class	B 0.150-3	OMHz				
PFH500F-28-1	100-AM5					
17 Amps 120\	AC.					
HS Grounded	RE Run					

CONCLUSION: PASSED