
Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution

of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business

relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components

to meet their specific needs.

With the principle of “Quality Parts,Customers Priority,Honest Operation,and Considerate Service”,our business

mainly focus on the distribution of electronic components. Line cards we deal with include

Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise

IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial,

and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service

and solution. Let us make a better world for our industry!

Contact us
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

  

Pocket AVR Programmer Hookup Guide




CONTRIBUTORS: JIMB0

Introduction

Do you need more control over your AVRs? Whether it’s an ATmega328,

ATmega32U4, ATtiny85, ATmega128RFA1, if it’s an AVR there’s a good

chance the AVR Pocket Programmer can program it.

There are many reasons for programming your AVR via an in-system

programmer (ISP). If your AVR doesn’t have a bootloader on it, it’s probably

the only way to load code. Or maybe you want to overwrite the bootloader

to squeeze out some extra flash space. Or maybe you want to poke at the

fuse bits, to change the brown-out voltage. Or maybe you just want a faster

and more reliable code upload.

Covered In This Tutorial

In this tutorial we will introduce you to all of the important aspects of the

AVR Pocket Programmer. It’s split into a series of sections, which cover:

� Board Overview – A look at the hardware components that make up

the AVR Pocket Programmer.

� Installing Drivers – How to install the AVR Pocket Programmers on a

Windows machine (Mac and Linux users can skip this page).

� Programming via Arduino – How to use the ubiquitous “easy-mode”

AVR IDE to upload sketches via the AVR Pocket Programmer.

� Using AVRDUDE – A more advanced, command-line-based

approach to using the AVR Pocket Programmer.

Required Materials

Most importantly, to follow along with this tutorial, you will need an AVR

Pocket Programmer and an AVR to program. On top of that, a mini-B USB

cable is required to connect the Programmer to your computer.

Page 1 of 12

That microcontroller-to-be-programmed can be any AVR with 64K or less

of flash. The ATmega328 on an Arduino Uno or RedBoard works perfectly,

but the ATmega2560 of an Arduino Mega does not.

Beyond that, you may need something to interface the Programmer to your

AVR. Here are some useful accessories, which might make the job

easier:

� Straight Male Headers – If you have an AVR on a development

board – like an Arduino Pro – the 2x3 (or 2x5) ISP header may not

be populated. You can use straight male headers (also available in a

long-pinned version) to make a temporary contact between ISP cable

and your dev board. There is also a 2x3 pin version.

� ISP Pogo Adapter – Like the headers, this ISP adapter is designed to

provide a temporary electrical connection between adapter and AVR.

This is a great, more reliable alternative to the headers.

� AVR Programming Adapter – If you AVR is living on a breadboard,

you probably don’t have an interface to the standard 2x3 ISP pinout.

This simple breakout board makes interfacing the programmer with

your breadboarded circuit possible.

Suggested Reading

Whether you’re a beginner or experienced electronics enthusiast, the

Pocket Programmer should be easy to get up-and-running. If you’ve

programmed an Arduino before, you’ll be well-prepared for the next step.

Here are some tutorials we’d recommend reading before continuing on with

this one:

� What is an Arduino? – If you’re unfamiliar with AVRs, check out this

tutorial to learn about the most popular one of the lot.

� Installing Arduino – Arduino isn’t required to use the Programmer, but

it can make things easier, especially if you still want to program your

AVR using the Arduino libraries.

� Serial Peripheral Interface (SPI) – The Pocket Programmer uses an

SPI interface to send data to and from the AVR. Click this tutorial to

learn the meanings behind “MOSI”, “MISO”, and “SCK”.

Board Overview

Before we get to using the AVR Pocket Programmer, let’s quickly overview

what components fill the board out:

Page 2 of 12

� USB Connector – This is your data and power input to the

Programmer. A mini-B USB cable plugs in here and connects your

computer to the Programmer.

� 2x5 ISP Header – This shrouded header mates with the included

Programming Cable, and allows you to send the programming

signals out to your AVR. It’s polarized to make sure you can’t plug

anything in backwards.

� Power Target Switch – Unlike a lot of ISP’s out there, the AVR

Pocket Programmer can deliver power to the AVR-to-be-

programmed. Flick this switch to the “Power Target” side, to send 5V

to the AVR. More on this below.

� ATtiny2313 – This is the chip that works the programming magic. It

converts between USB and SPI to turn commands from your

computer into words and instructions to load into your AVR-to-be-

programmed. Unless you want to customize the Tiny ISP firmware,

you can leave this chip alone.

◦ The unpopulated ISP header, above the ATtiny2313, is broken

out in case that chip needs to be programmed. It’s mostly used

in production by those who program the programmers.

� 74AC125 Buffer – This chip helps to add some protection to the

programmer by buffering the data-line outputs. Another IC to mostly

ignore.

The board also includes a variety of LEDs to indicate power, status, and

data transfers.

AVR ISP Pinouts

AVRs are programmed through an SPI interface. There are six unique

signals required for communication between ISP and AVR: VCC, GND,

Reset, MOSI, MISO, and SCK.

To route those signals between devices, there are two standardized

connectors – one 6-pin, 2x3 connector and another 10-pin, 2x5:

AVR ISP pinouts – top view.

The AVR Pocket Programmer includes an on-board 2x5 connector, and the

included AVR Programming Cable terminates with both 2x5 and 2x3

connectors.

Power Target Switch

If you’re working with an AVR on a breadboard or a prototype, power may

be hard to come by. The AVR Pocket Programmer allows you to route 5V

out to your AVR. It can deliver upwards of 500mA before tripping the

onboard PTC.

If the switch is in the Power Target position, it will route 5V out to your AVR.

Otherwise, if the switch is pointing towards No Power, no signal will be

connected to the 5V pin on the ISP connector.

Page 3 of 12

Be careful using this feature! It will output 5V and only 5V! If you’re working

with a 3.3V or 1.8V system, make sure this switch is in the No Power

position.

Installing Drivers

Driver installation is required on Windows machines only. If you’re using

Mac or Linux, feel free to click over to the next section. Otherwise, follow

along below as we overview the installation process.

There are two sets of instruction for driver installation on this page. The first

is the easiest, quickest method, and should work for most everyone. The

second installation process is only required if the first one fails – it takes a

more manual approach to the driver installation.

Install the Drivers Automatically with Zadig

To begin, plug the AVR Pocket Programmer into your computer. Upon

initially connecting the board, Windows will try to automatically install the

drivers. Some computers may be lucky, but most will turn up with a

message notifying you that the driver install failed.

Click the link below to download the drivers:

Download the Zadig USBtiny Drivers

Use your favorite unzipper to extract the ZIP file. Don’t forget where you put

the extracted folder!

After you’ve plugged the AVR Pocket Programmer into your computer and

your machine has run through the process of checking for and failing to

install drivers, proceed to the “zadig_v2.0.1.160” folder you just unzipped.

Then Run zadig.exe.

Zadig is a wonderful tool that can install the drivers on just about any

Windows platform out there. Upon opening the program, you should be

greeted with a window like this:

There are a few options to verify before installing the driver:

� Select the device – The top dropbox controls which device you want

to install the driver for. Hopefully you only have one option here,

something like “Unknown Device #1”. If you have more than one

option, check your device manager to see if you can make sense of

which is which (plugging and unplugging a device usually helps).

� Select the driver – Click the arrows in this box until you happen

upon libusb-win32 (vx.x.x.x), that’s the driver we want to install.

After verifying those two selections, click “Install Driver”. The installation

process can take a few minutes, but after you’ve watched the scroll bar

zoom by countless times, you should be greeted with a “The driver was

installed successfully” message.

If you were successful, close out of the Zadig program and proceed to the

next section!

If Zadig didn’t work for you, check out the instructions below for help

manually installing the drivers.

Page 4 of 12

Manually Installing the libUSB Drivers

If, for some reason, Zadig didn’t work for you. Read the instructions below

to manually install the drivers.

Note: If you are using a Windows 8 machine, before you can install the

drivers you’ll need to disable driver signature enforcement. Follow along

with our tutorial to turn that overzealous safety guard off for a minute.

Click the link below to download the drivers:

Download the USBtiny Drivers

Use your favorite unzipper to extract the ZIP file. Don’t forget where you put

the extracted folder!

After you’ve plugged in the Programmer, and Windows has failed to install

the driver. Follow these steps to install the driver:

1. Open the Device Manager – There are a few routes to open up the

device manager.

◦ You can go to the Control Panel, then click Hardware and

Sound, then click Device Manager.

◦ Or, simply open the run tool (press Windows Key + R), and

run devmgmt.msc .

2. In the Device Manager, you should see an “Unknown device” listed

under the “Other devices” tree. Right click “Unkown Device” and

select Update driver software….

3. Click Browse my computer for driver software in the “Update

Diver Software - Unknown Device” window that pops up.

Page 5 of 12

4. Click “Browse…” and navigate to the “../usbtinyisp_libusb-

win32_1.2.1.0” folder you just downloaded. Then click Next.

5. Windows will begin installing the driver, and then immediately notify

you that the driver isn’t signed. Click Install this driver software

anyway option, to proceed with the installation.

6. After a few moments, the driver should successfully install. You’ll be

prompted with a “Windows has susccessfully updated your driver

software” window. Close that, and you’ll see a “USBtiny” entry

populated in the Device Manager, under the “LibUSB-Win32

Devices” tree.

Page 6 of 12

Congratulations! Proceed over to the next section, and we’ll start using the

Programmer!

Breathe easy now! Once you’ve installed the USBTinyProgrammer drivers

on your computer, you shouldn’t ever have to do it again. Now it’s time to

program something!

Programming via Arduino

Arduino has a built-in tool that allows you to upload your sketch via a

programmer instead of the serial bootloader. If you’re just taking your first

steps toward ISP-ing your Arduino-compatible AVR, this is a good place to

start.

Connect the Programmer

First, let’s connect the programmer to our Arduino. Most Arduinos break out

the standardized 2x3 ISP header towards the edge of the board. Plug the

2x5-connector end of included programming cable into your AVR Pocket

Programmer, then connect the other, 2x3 end into your Arduino.

Note the notch on the connector facing the same direction as pin 1 (marked

Page 7 of 12

with a small white line here) on the 2x3 Arduino connector.

When connecting the programming cable to you Arduino, make sure you

match up the polarity! The cable has a “notch” on one side of the plastic

housing. This should point towards pin 1 of the Arduino’s ISP header. Pin

1 is usually indicated by a stripe next to the hole or pin.

If your Arduino doesn’t have the ISP pins populated, check out the bottom

section of this page for some tips and tricks we’ve used through the years.

Powering Target

While connecting your programmer, double-check to make sure the “Power

Target” switch is in the correct position. The programmer can power your

Arduino alone! If you want it to handle that task, slide it over to the Power

Target position.

The “Power Target” feature is especially useful if you only have one USB

slot/cable available.

Unplug your Arduino from USB if you’re going to power it via the

Programmer – you don’t want to create any ugly reverse current flows

through your power sources.

Programming via Arduino

Now that the programmer is connected to your Arduino, open up the IDE.

Then open an example sketch like Blink (File > Examples > 1.Basics >

Blink).

Before uploading, we need to tell Arduino which programmer we’re using.

Go up to Tools > Programmer and select USBtinyISP.

Also make sure you’ve set the “Board” option correctly! The serial port

selection isn’t required for uploading the sketch, but is still necessary if

you’re doing anything with the serial monitor.

To upload the sketch using the programmer you selected, go to File >

Upload Using Programmer. If you’ll be doing this a lot, get used to

pressing CTRL+SHIFT+U (COMMAND+SHIFT+U on Mac).

Page 8 of 12

The Arduino will run through its normal process of compiling. After the

sketch compiles, the Programmer will start lighting up blue everywhere –

the “D+” and “D-” LEDs will light up, and so will the “Stat2” LED. When the

“Stat2” LED turns off, the upload will be finished. Check the status area of

your Arduino IDE to verify that the sketch is “Done uploading.”

If you’ve uploaded a sketch via the programmer, you’ve also wiped off the

bootloader. If you ever want to put the serial bootloader back on your

Arduino, check out the next section.

Programming a Bootloader

The Arduino IDE also has a feature built-in to allow you to (re-)upload a

bootloader to the AVR. Here’s how:

Make sure you’ve set the Board option correctly – among other things, that

will set which bootloader you’ll be uploading. Then, simply navigate up to

Tools > Burn Bootloader at the very bottom of the menu.

This process may take a minute-or-so. Not only will the bootloader be

written into the flash of your AVR, the fuse bits (setting the clock speed,

bootloader space, etc), and lock bits (barring the bootloader from

overwriting itself) will also be (re)set.

The bootloader upload process is complete when the “Burning bootloader

to I/O board (this may take a minute)…” message turns to “Done burning

bootloader”. It really does take a while – it’s not lying when it says it “may

take a minute.”

Pogo Pins or the Angled Header Press

Most Arduino boards should have male pins populated on this 2x3

connector. If your board doesn’t have pins shooting out of those holes,

there are a few options.

You can solder a couple strips of 3 straight male headers in there, to get

the best, most reliable connection. But if you want to avoid soldering, you

can use those same headers (long headers work better for this), plugging

the long end into the programming cable and pushing the short end into the

empty holes, while angling them to make contact on all six pins.

Page 9 of 12

Another solder-less option is to use the ISP Pogo Adapter, which will afford

you a more reliable electrical connection.

Both of these methods can be tricky – you have to hold those pins steady

while the code uploads to your Arduino – but they’re a good solderless,

temporary option.

Using AVRDUDE

If you’re looking for more control over your AVR Pocket Programmer – and

the AVR it’s connected to – follow along below. We’ll demonstrate how to

use AVRDUDE, an open-source command line wonder-utility for reading,

writing and manipulating AVRs.

If you have Arduino, then you already have AVRDUDE installed – it’s the

tool Arduino uses under the hood to upload sketches. If you need to install

AVRDUDE separately, check out the download documentation.

Sanity Check – Device Signature Verification

AVRDUDE is a command-line tool, so, in order to use it, you’ll need to

open up the “Command Prompt” (Windows) or “Terminal” (Mac/Linux).

To make sure AVRDUDE is working, and your AVR Pocket Programmer is

connected correctly, it’s good to do a little sanity check first. Type this into

your command prompt:

avrdude -c usbtiny -p atmega328p

(Note: This is all assuming you have an ATmega328P connected at the

other end of your programmer. If you have a different type of

microcontroller, you’ll need to formulate a slightly different command, check

the Specify AVR Device section below.)

If everything is connected correctly, you should get a response like this:

Page 10 of 12

This basic command defines the programmer type you’re using and the

AVR it’s talking to. AVRDUDE will attempt to read the Device Signature

from your AVR, which is different for each AVR type out there. Every

ATmega328P should have a device signature of 0x1E950F .

Flash Programming

Now that you’ve verified that everything is in working order, you can do all

sorts of memory reading and writing with AVRDUDE. The main piece of

memory you probably want to write is flash – the non-volatile memory

where the programs are stored.

This command will perform a basic write to flash (using this HEX file as an

example):

avrdude ­c usbtiny ­p atmega328p ­U flash:w:blink.hex

Writing to flash will take a little longer than reading the signature bits. You’ll

see a text status bar scroll by as the device is read, written to, and verified.

The -U option command handles all of the memory reads and writes. We

tell it we want to work with flash memory, do a write with w , and then tell

it the location of the hex file we want to write.

Flash Reading

The -U command can also be used to read the memory contents of an

AVR. A command like below, for example, will read the contents of your

AVR and store them into a file called “mystery.hex”.

avrdude ­c usbtiny ­p atmega328p ­U flash:r:mystery.hex:r

This is incredibly useful if you want to copy the contents of one Arduino to

another. Or maybe you’re a masochist, and you want to try reverse-

engineering the mystery code in an AVR.

Useful Options

Here are just a few last AVRDUDE tips and tricks before we turn you loose

on the AVR world.

Specify AVR Device

Two options required for using AVRDUDE are the programmer type and

AVR device specification. The programmer definition, assuming you’re

using the AVR Pocket Programmer, will be -c usbtiny . If you need to use

a different programmer check out this page and CTRL+F to “-c

programmer-id”.

The AVR device type is defined with the -p option. We’ve shown a few

examples with the ATmega328P, but what if you’re using an ATtiny85? In

that case, you’ll want to put -p t85 instead. Check out the top of this page

for an exhaustive list of compatible AVR device types.

Verbose Output

Page 11 of 12

Adding one, or more -v ’s to your AVRDUDE command will enable various

levels of verbosity to the action. This is handy if you need a summary of

your configuration options, or an in-depth view into what data is being sent

to your AVR.

There’s plenty more where that came from. Check out the AVRDUDE

Option Documentation for the entire list of commands.

Resources & Going Further

Here are some more AVR Pocket Programmer related resources, should

you need them:

� AVR Pocket Programmer GitHub Repository – Here you’ll find

everything from PCB design files, and firmware to custom enclosure

designs.

� AVR Pocket Programmer Schematic

� AVR Pocket Programmer Firmware

� AVRDUDE Manual

Going Further

We’ve got plenty more tutorials where that came from. If you’re looking for

more stuff to learn, or are looking for some project inspiration, check out

these tutorials!

� Wireless Arduino Programming with Electric Imp – If you’re feeling

constrained by the USB cables, check out this tutorial where we

upload code to an Arduino wirelessly!

� Tiny AVR Programmer Hookup Guide – If you’re looking to program

ATtiny85’s specifically, check out the Tiny AVR Programmer.

� Using the Arduino Pro Mini 3.3V – If you’re already directly

programming your Arduino, take it a step further with the Arduino Pro

Mini.

� Wireless XBee/AVR Bootloading – Use your AVR Pocket

Programmer to upload a custom bootloader, then wirelessly program

your Arduino.

Page 12 of 12

4/16/2015https://learn.sparkfun.com/tutorials/pocket-avr-programmer-hookup-guide?_ga=1.2029977...

	Contact us

