

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Important notice

Dear Customer,

On 7 February 2017 the former NXP Standard Product business became a new company with the tradename **Nexperia**. Nexperia is an industry leading supplier of Discrete, Logic and PowerMOS semiconductors with its focus on the automotive, industrial, computing, consumer and wearable application markets

In data sheets and application notes which still contain NXP or Philips Semiconductors references, use the references to Nexperia, as shown below.

Instead of http://www.nxp.com, http://www.nxp.com, http://www.nexperia.com, http://www.nexperia.com)

Instead of sales.addresses@www.nxp.com or sales.addresses@www.semiconductors.philips.com, use salesaddresses@nexperia.com (email)

Replace the copyright notice at the bottom of each page or elsewhere in the document, depending on the version, as shown below:

- © NXP N.V. (year). All rights reserved or © Koninklijke Philips Electronics N.V. (year). All rights reserved

Should be replaced with:

- © Nexperia B.V. (year). All rights reserved.

If you have any questions related to the data sheet, please contact our nearest sales office via e-mail or telephone (details via **salesaddresses@nexperia.com**). Thank you for your cooperation and understanding,

Kind regards,

Team Nexperia

PHN203

Dual N-channel TrenchMOS logic level FET

Rev. 05 — 27 April 2010

Product data sheet

1. Product profile

1.1 General description

Dual logic level N-channel enhancement mode Field-Effect Transistor (FET) in a plastic package using TrenchMOS technology. This product is designed and qualified for use in computing, communications, consumer and industrial applications only.

1.2 Features and benefits

- Suitable for high frequency applications due to fast switching characteristics
- Suitable for logic level gate drive sources

1.3 Applications

DC-to-DC converters

■ Lithium-ion battery applications

1.4 Quick reference data

Table 1. Quick reference data

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
V_{DS}	drain-source voltage	$T_j \ge 25 \text{ °C}; T_j \le 150 \text{ °C}$		-	-	30	V
I _D	drain current	T _{amb} = 25 °C; pulsed; see <u>Figure 1</u> ; see <u>Figure 3</u>	[1]	-	-	6.3	Α
P _{tot}	total power dissipation	T _{amb} = 25 °C; pulsed; see <u>Figure 2</u>	[1]	-	-	2	W
Static char	acteristics						
R _{DSon}	drain-source on-state resistance	$V_{GS} = 10 \text{ V}; I_D = 7 \text{ A}; T_j = 25 \text{ °C};$ see <u>Figure 9</u> ; see <u>Figure 10</u>		-	24	30	mΩ
Dynamic c	haracteristics						
Q_{GD}	gate-drain charge	V_{GS} = 10 V; I_D = 7 A; V_{DS} = 15 V; T_j = 25 °C; see Figure 11		-	3	-	nC

^[1] Single device conducting.

Dual N-channel TrenchMOS logic level FET

2. Pinning information

Table 2. Pinning information

Pin	Symbol	Description	Simplified outline	Graphic symbol
1	S1	source1		D. D. D. D. D.
2	G1	gate1	8 <u> </u>	D1 D1 D2 D2
3	S2	source2		
4	G2	gate2		
5	D2	drain2	1	
6	D2	drain2	SOT96-1 (SO8)	S1 G1 S2 G2
7	D1	drain1		mbk725
8	D1	drain1		

3. Ordering information

Table 3. Ordering information

Type number	Package		
	Name	Description	Version
PHN203	SO8	plastic small outline package; 8 leads; body width 3.9 mm	SOT96-1

4. Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
V_{DS}	drain-source voltage	T _j ≥ 25 °C; T _j ≤ 150 °C		-	-	30	V
V_{DGR}	drain-gate voltage	$T_j \le 150 \text{ °C}; T_j \ge 25 \text{ °C}; R_{GS} = 20 \text{ k}\Omega$		-	-	30	V
V_{GS}	gate-source voltage			-20	-	20	V
I_D	drain current	T _{amb} = 70 °C; pulsed; see Figure 1	[1]	-	-	5	Α
		T _{amb} = 25 °C; pulsed; see <u>Figure 1</u> ; see <u>Figure 3</u>	[1]	-	-	6.3	Α
I _{DM}	peak drain current	$t_p \le 10 \ \mu s$; pulsed; $T_{amb} = 25 \ ^{\circ}C$; see Figure 3	[1]	-	-	18	Α
P _{tot}	total power dissipation	T _{amb} = 25 °C; pulsed; see Figure 2	<u>[1]</u>	-	-	2	W
T _{stg}	storage temperature			-55	-	150	°C
Tj	junction temperature			-55	-	150	°C
Source-drain	n diode						
Is	source current	T _{amb} = 25 °C; pulsed	<u>[1]</u>	-	-	2	Α
I _{SM}	peak source current	$t_p \le 10 \ \mu s$; pulsed; $T_{amb} = 25 \ ^{\circ}C$	<u>[1]</u>	-	-	4.1	Α
Avalanche ru	uggedness						
E _{DS(AL)S}	non-repetitive drain-source avalanche energy	V_{GS} = 10 V; $T_{j(init)}$ = 25 °C; I_D = 8.7 A; $V_{sup} \le$ 30 V; unclamped; t_p = 0.2 ms; R_{GS} = 50 Ω		-	-	37.8	mJ

^[1] Single device conducting.

N203 All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

Dual N-channel TrenchMOS logic level FET

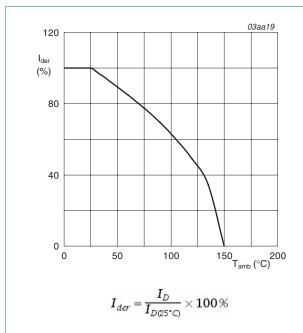


Fig 1. Normalized continuous drain current as a function of ambient temperature

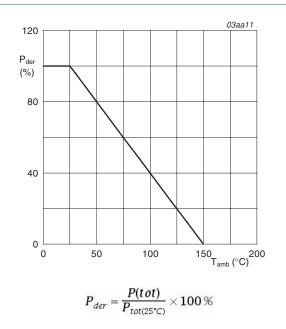
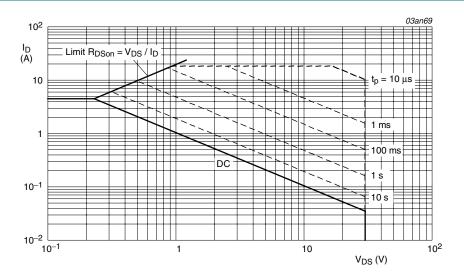



Fig 2. Normalized total power dissipation as a function of ambient temperature

 $T_{amb} = 25$ °C; I_{DM} is single pulse; $V_{GS} = 10V$

Fig 3. Safe operating area; continuous and peak drain currents as a function of drain-source voltage

Dual N-channel TrenchMOS logic level FET

5. Thermal characteristics

Table 5. Thermal characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
$R_{th(j-sp)}$	thermal resistance from junction to solder point		-	-	-	K/W
$R_{th(j-a)}$	thermal resistance from junction to ambient	mounted on a printed-circuit board; minimum footprint; see Figure 4	-	-	62.5	K/W

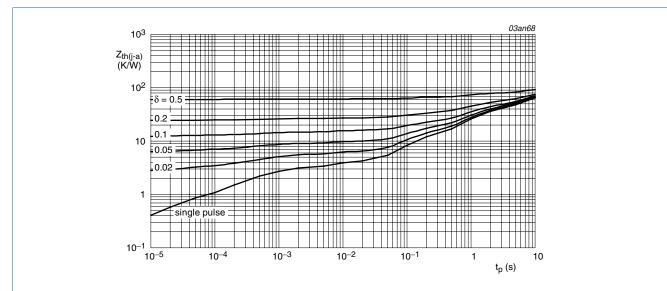


Fig 4. Transient thermal impedance from junction to ambient as a function of pulse duration

Dual N-channel TrenchMOS logic level FET

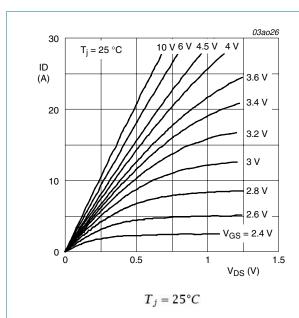
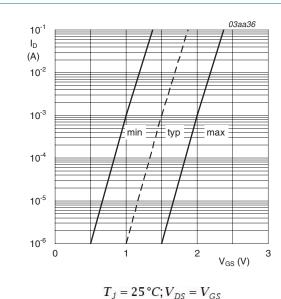
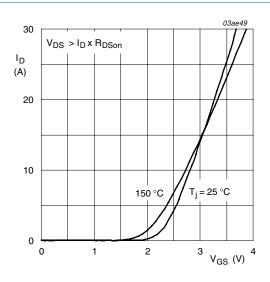

6. Characteristics

Table 6. Characteristics

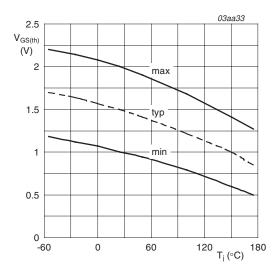

Table 6.	Characteristics					
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Static cha	racteristics					
$V_{(BR)DSS}$	drain-source	$I_D = 250 \mu A; V_{GS} = 0 V; T_j = -55 °C$	27	-	-	V
	breakdown voltage	$I_D = 250 \ \mu A; \ V_{GS} = 0 \ V; \ T_j = 25 \ ^{\circ}C$	30	-	-	V
$V_{GS(th)}$	gate-source threshold voltage	$I_D = 1 \text{ mA}$; $V_{DS} = V_{GS}$; $T_j = -55 \text{ °C}$; see Figure 8	-	-	2.2	V
		$I_D = 1$ mA; $V_{DS} = V_{GS}$; $T_j = 150$ °C; see Figure 8	0.6	-	-	V
		$I_D = 1$ mA; $V_{DS} = V_{GS}$; $T_j = 25$ °C; see Figure 8	1	1.5	2	V
I _{DSS}	drain leakage current	$V_{DS} = 24 \text{ V}; V_{GS} = 0 \text{ V}; T_j = 25 \text{ °C}$	-	-	1	μΑ
		$V_{DS} = 24 \text{ V}; V_{GS} = 0 \text{ V}; T_j = 150 \text{ °C}$	-	-	10	μΑ
I _{GSS}	gate leakage current	$V_{GS} = 20 \text{ V}; V_{DS} = 0 \text{ V}; T_j = 25 \text{ °C}$	-	10	100	nA
		$V_{GS} = -20 \text{ V}; V_{DS} = 0 \text{ V}; T_j = 25 \text{ °C}$	-	10	100	nA
R _{DSon} drain-source on-state resistance	$V_{GS} = 10 \text{ V}; I_D = 7 \text{ A}; T_j = 25 \text{ °C};$ see <u>Figure 9</u> ; see <u>Figure 10</u>	-	24	30	mΩ	
		$V_{GS} = 4.5 \text{ V}; I_D = 3.5 \text{ A}; T_j = 25 \text{ °C};$ see Figure 9; see Figure 10	-	30	55	mΩ
		$V_{GS} = 10 \text{ V}; I_D = 7 \text{ A}; T_j = 150 \text{ °C};$ see <u>Figure 9</u> ; see <u>Figure 10</u>	-	40.8	51	mΩ
Dynamic	characteristics					
Q _{G(tot)}	total gate charge	$I_D = 7 \text{ A}; V_{DS} = 15 \text{ V}; V_{GS} = 10 \text{ V};$	-	14.6	-	nC
Q _{GS}	gate-source charge	T _j = 25 °C; see <u>Figure 11</u>	-	2	-	nC
Q_{GD}	gate-drain charge		-	3	-	nC
C _{iss}	input capacitance	$V_{DS} = 20 \text{ V}; V_{GS} = 0 \text{ V}; f = 1 \text{ MHz};$	-	560	-	рF
C _{oss}	output capacitance	T _j = 25 °C; see <u>Figure 12</u>	-	125	-	рF
C_{rss}	reverse transfer capacitance	V_{DS} 20 V; V_{GS} = 0 V; f = 1 MHz; T_j = 25 °C; see Figure 12	-	85	-	pF
t _{d(on)}	turn-on delay time	$V_{DS} = 25 \text{ V}; R_L = 25 \Omega; V_{GS} = 10 \text{ V};$	-	5	-	ns
t _r	rise time	$R_{G(ext)} = 6 \Omega; T_j = 25 °C$	-	6	-	ns
t _{d(off)}	turn-off delay time		-	21	-	ns
t _f	fall time		-	11	-	ns
Source-d	rain diode					
V_{SD}	source-drain voltage	$I_S = 1.25 \text{ A}$; $V_{GS} = 0 \text{ V}$; $T_j = 25 \text{ °C}$; see <u>Figure 13</u>	-	0.75	1	V
t _{rr}	reverse recovery time	$I_S = 2 \text{ A}; dI_S/dt = -100 \text{ A}/\mu\text{s}; V_{GS} = 0 \text{ V}; V_{DS} = 25 \text{ V}; T_j = 25 \text{ °C}$	-	30	-	ns

PHN203 NXP Semiconductors

Dual N-channel TrenchMOS logic level FET



Output characteristics: drain current as a Fig 5. function of drain-source voltage; typical value


Sub-threshold drain current as a function of

gate-source voltage

 $T_j = 25^{\circ}C$ and $150^{\circ}C$; $V_{DS} > I_D \times R_{DSon}$

Fig 6. Transfer characteristics: drain current as a function of gate-source voltage; typical values

 $I_D = 1mA; V_{DS} = V_{GS}$

Fig 8. Gate-source threshold voltage as a function of junction temperature

Fig 7.

Dual N-channel TrenchMOS logic level FET

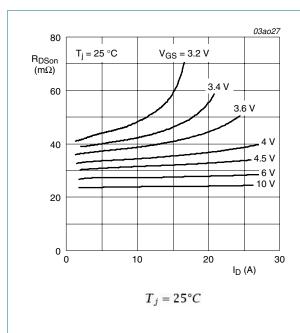


Fig 9. Drain-source on-state resistance as a function of drain current; typical values

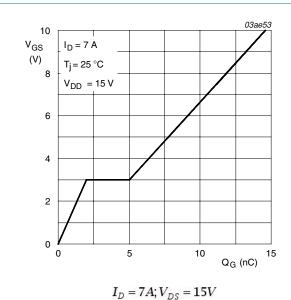


Fig 11. Gate-source voltage as a function of gate charge; typical values

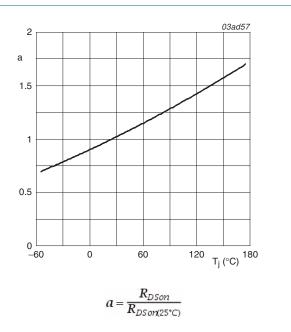
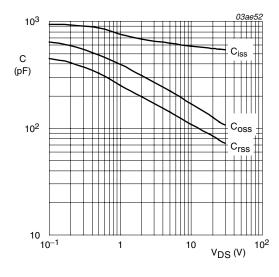
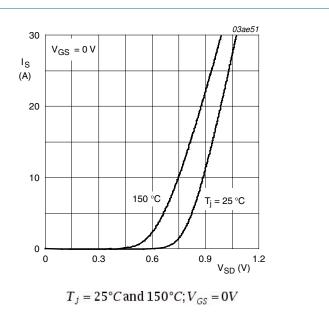



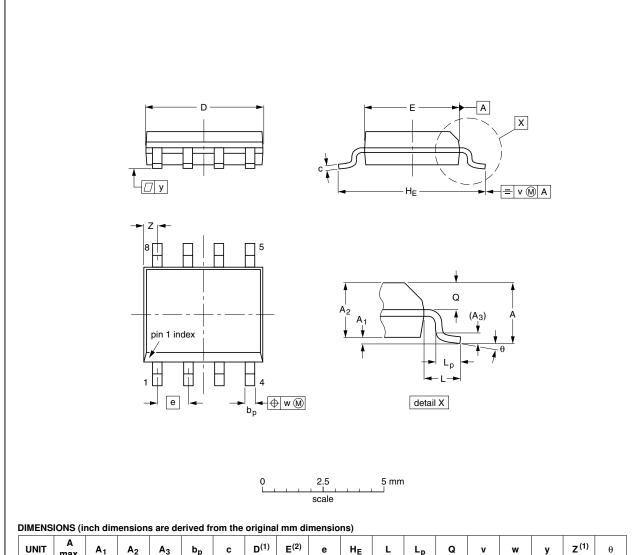
Fig 10. Normalized drain-source on-state resistance factor as a function of junction temperature

 $V_{GS} = 0V; f = 1MHz$

Fig 12. Input, output and reverse transfer capacitances as a function of drain-source voltage; typical values

Dual N-channel TrenchMOS logic level FET




Fig 13. Source current as a function of source-drain voltage; typical values

Dual N-channel TrenchMOS logic level FET

7. Package outline

SO8: plastic small outline package; 8 leads; body width 3.9 mm

SOT96-1

UNIT	A max.	A ₁	A ₂	A ₃	bp	С	D ⁽¹⁾	E ⁽²⁾	е	HE	L	Lp	ø	v	w	у	Z ⁽¹⁾	θ
mm	1.75	0.25 0.10	1.45 1.25	0.25	0.49 0.36	0.25 0.19	5.0 4.8	4.0 3.8	1.27	6.2 5.8	1.05	1.0 0.4	0.7 0.6	0.25	0.25	0.1	0.7 0.3	8°
inches	0.069	0.010 0.004	0.057 0.049	0.01		0.0100 0.0075	0.20 0.19	0.16 0.15	0.05	0.244 0.228	0.041	0.039 0.016	0.028 0.024	0.01	0.01	0.004	0.028 0.012	0°

Notes

- 1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.
- 2. Plastic or metal protrusions of 0.25 mm (0.01 inch) maximum per side are not included.

OUTLINE		REFER	EUROPEAN	ISSUE DATE		
VERSION	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE
SOT96-1	076E03	MS-012				99-12-27 03-02-18

Fig 14. Package outline SOT96-1 (SO8)

PHN203

Dual N-channel TrenchMOS logic level FET

8. Revision history

Table 7. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
PHN203 _5	20100427	Product data sheet	-	PHN203 _4
Modifications:	 Various cha 	anges to content.		
PHN203 _4	20091208	Product data sheet	-	PHN203-03
PHN203 -03	20040126	Product data	-	PHN203 _2
PHN203_2	19990101	Product specification	-	PHN203 _1
PHN203 _1	19980204	Objective specification	-	-

Dual N-channel TrenchMOS logic level FET

9. Legal information

9.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

9.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

9.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on a weakness or default in the customer application/use or the application/use of customer's third party customer(s) (hereinafter both referred to as "Application"). It is customer's sole responsibility to check whether the NXP Semiconductors product is suitable and fit for the Application planned. Customer has to do all necessary testing for the Application in order to avoid a default of the Application and the product. NXP Semiconductors does not accept any liability in this respect.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding. Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

PHN203

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

Dual N-channel TrenchMOS logic level FET

Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

9.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

Adelante, Bitport, Bitsound, CoolFlux, CoReUse, DESFire, EZ-HV, FabKey, GreenChip, HiPerSmart, HITAG, I²C-bus logo, ICODE, I-CODE, ITEC, Labelution, MIFARE, MIFARE Plus, MIFARE Ultralight, MoReUse, QLPAK, Silicon Tuner, SiliconMAX, SmartXA, STARplug, TOPFET, TrenchMOS, TriMedia and UCODE — are trademarks of NXP B.V.

HD Radio and **HD Radio** logo — are trademarks of iBiquity Digital Corporation.

10. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

PHN203 NXP Semiconductors

Dual N-channel TrenchMOS logic level FET

11. Contents

1	Product profile	1
1.1	General description	1
1.2	Features and benefits	1
1.3	Applications	1
1.4	Quick reference data	1
2	Pinning information	2
3	Ordering information	2
4	Limiting values	
5	Thermal characteristics	
6	Characteristics	5
7	Package outline	9
8	Revision history	10
9	Legal information	11
9.1	Data sheet status	11
9.2	Definitions	11
9.3	Disclaimers	
9.4	Trademarks	12
10	Contact information	12

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2010.

All rights reserved.