

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

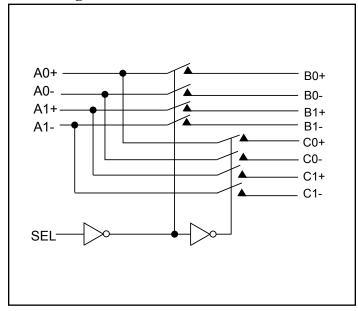
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

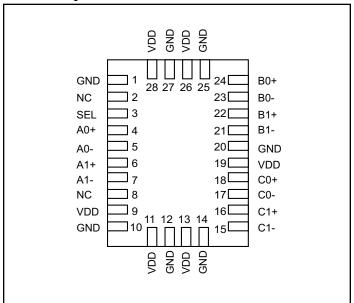
Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

2.0GHz, Differential Broadband Signal Switch, 2-Differential Channel, 2:1 Mux/DeMux Switch

Features


- · SAS, SATA2, XAUI Switch
- 2 Differential Channel, 2:1 Mux/DeMux
- Bandwidth of 2.0 GHz (-3dB)
- Low Bit-to-Bit Skew: <5 ps
- Low Crosstalk: -26dB @ 3.2 Gbps
- Low Off Isolation: –35dB @ 3.2 Gbps
- V_{DD} Voltage: 1.2V to 1.8V $\pm 10\%$
- ESD Tolerance: 8kV HBM I/O, 2kV HBM select pin
- Packaging (Pb-free & Green):
 - 28-Contact TQFN

Description


Pericom Semiconductor's PI2DBS212 is an 1:2 differential channel multiplexer/demultiplexer switch. Using a specialized design scheme, Pericom has been able to achieve a performance of 3Gbps data rate mux/de-mux function. Due to its bi-directional nature, the PI2DBS212 can be used to allocate bandwidth to two different locations as a demux, or connect two high-speed sources to a single receiver as a mux.

The PI2DBS212 will target the following standards: SAS, SATA I, SATA II, XAUI, INFINIBAND, HYPERTRANSPORT, and RAP ID I/O, for application in computers, consumer electronics, instrumentation, etc.

Block Diagram

Pin Description - 28-Contact TQFN

Truth Table

Function	SEL
Port A to Port B	L
Port A to Port C	Н

14-0029 1 www.pericom.com 03/25/14

Maximum Ratings

(Above which useful life may be impaired. For user guidelines, not tested.)

Note:

Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

DC Electrical Characteristics over 1.8V Operating Range (T_A= -40°C to +85°C, V_{DD} = 1.8V ±10%)

Parameter	Description	Test Conditions ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units
$ m V_{IH}$	Input HIGH Voltage	Guaranteed HIGH level	0.65 x V _{DD}			
$ m V_{IL}$	Input LOW Voltage	Guaranteed LOW level	-0.5		0.35 x V _{DD}	V
V_{IK}	Clamp Diode Voltage	$V_{DD} = Max., I_{IN} = -18mA$		-0.7	-1.2	
I_{IH}	Input HIGH Current	$V_{DD} = Max., V_{IN} = V_{DD}$			±5	
$I_{ m IL}$	Input LOW Current	$V_{DD} = Max., V_{IN} = GND$			±5	μΑ
R _{ON}	ON Resistance	$V_{DD} = Min., V_{IN} = 1.3V, I_{IN} = 40mA$			10	Ohm
C _{ON}	Capacitance ON (A/B)	$V_{IN} = 0, V_{DD} = 1.8V$		3.5		pF

Notes:

Power Supply Characteristics over 1.8V Operating Range ($T_A = -40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$, $V_{DD} = 1.8\text{V} \pm 10\%$)

Parameters	Description	Test Conditions ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units
		$V_{DD} = MAX$, V_{IN} and $V_{SEL} = GND$ or				
I_{DD}	Quiescent Power Supply Current	$V_{ m DD}$			400	μA

Notes:

- 1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device type.
- 2. Typical values are at $V_{DD} = 1.8V$, $T_A = 25$ °C ambient and maximum loading.

Switching Characteristics over 1.8V Operating Range (T_A= -40°C to +85°C, V_{DD} = 1.8V ±10%)

Parameter	Description ⁽¹⁾	Min.	Тур.	Max.	Units
t _{PZH} , t _{PZL}	Line Enable Time - SEL to A _N , B _N	0.5		8.0	
t _{PHZ} , t _{PLZ}	Line Disable Time - SEL to A _N , B _N	0.5		4.0	ns
t _{b-b}	Bit-to-bit skew, within same differential pair			5	
t _{ch-ch}	Channel-to-channel timing skew			12	ps
t_{PD}	Propagation Delay, A to B or C / B or C to A	50		150	

Notes:

1. For max. or min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device type.

^{1.} For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device type.

^{2.} Typical values are at $V_{DD} = 1.8V$, $T_A = 25$ °C ambient and maximum loading.

DC Electrical Characteristics over 1.5V Operating Range ($T_A = -40^{\circ}\text{C to} + 85^{\circ}\text{C}$, $V_{DD} = 1.5\text{V} \pm 0.1\text{V}$)

Parameter	Description	Description Test Conditions ⁽¹⁾ Min.		Typ. ⁽²⁾	Max.	Units
$V_{ m IH}$	Input HIGH Voltage	Guaranteed HIGH level	0.65 x V _{DD}			
$ m V_{IL}$	Input LOW Voltage	Guaranteed LOW level	-0.5		0.35 x V _{DD}	V
V_{IK}	Clamp Diode Voltage	$V_{DD} = Max., I_{IN} = -18mA$		-0.7	-1.2	
${ m I}_{ m IH}$	Input HIGH Current	$V_{DD} = Max., V_{IN} = V_{DD}$			±5	
${ m I}_{ m IL}$	Input LOW Current	$V_{DD} = Max., V_{IN} = GND$			±5	μΑ
R _{ON}	ON Resistance	$V_{DD} = Min., V_{IN} = 1.3V, I_{IN} = 40mA$			25	Ohm
C _{ON}	Capacitance ON (A/B)	$V_{IN} = 0, V_{DD} = 1.5V$		3.5		pF

Notes:

- 1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device type.
- 2. Typical values are at $V_{DD} = 1.5V$, $T_A = 25$ °C ambient and maximum loading.

Power Supply Characteristics over 1.5V Operating Range ($T_A = -40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$, $V_{DD} = 1.5\text{V} \pm 0.1\text{V}$)

Parameters	Description	Test Conditions ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units
		$V_{DD} = 1.6V$, V_{IN} and $V_{SEL} = GND$ or				
I_{DD}	Quiescent Power Supply Current				3.0	mA

Notes:

- 1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device type.
- 2. Typical values are at $V_{DD} = 1.5V$, $T_A = 25$ °C ambient and maximum loading.

Switching Characteristics over 1.5V Operating Range (T_A= -40°C to +85°C, V_{DD} = 1.5V ±0.1V)

Parameter	Description ⁽¹⁾	Min.	Тур.	Max.	Units
t _{PZH} , t _{PZL}	Line Enable Time - SEL to A _N , B _N	0.5		8.0	***
t _{PHZ} , t _{PLZ}	Line Disable Time - SEL to A _N , B _N	0.5		8.0	ns
t _{b-b}	Bit-to-bit skew, within same differential pair			5	
t _{ch-ch}	Channel-to-channel timing skew			12	ps
t_{PD}	Propagation Delay, A to B or C / B or C to A	50		150	

Notes:

1. For max. or min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device type.

14-0029 3 www.pericom.com 03/25/14

DC Electrical Characteristics over 1.2V Operating Range (T_A = -40°C to +85°C, V_{DD} = 1.2V ±0.05V)

Parameter	Description	Test Conditions ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units
$V_{ m IH}$	Input HIGH Voltage	Guaranteed HIGH level	0.65 x V _{DD}			
$ m V_{IL}$	Input LOW Voltage	Guaranteed LOW level	-0.5		0.35 x V _{DD}	V
V_{IK}	Clamp Diode Voltage	$V_{DD} = Max., I_{IN} = -18mA$		-0.7	-1.2	
$ m I_{IH}$	Input HIGH Current	$V_{DD} = Max., V_{IN} = V_{DD}$			±5	
${ m I}_{ m IL}$	Input LOW Current	$V_{DD} = Max., V_{IN} = GND$			±5	μΑ
R _{ON}	ON Resistance	$V_{DD} = Min., V_{IN} = 1.1V, I_{IN} = 40mA$			26	Ohm
C _{ON}	Capacitance ON (A/B)	$V_{IN} = 0, V_{DD} = 1.2V$		3.5		pF

Notes:

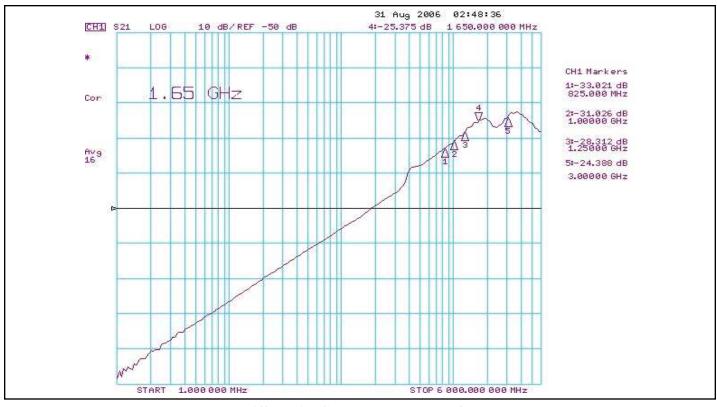
- 1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device type.
- 2. Typical values are at $V_{DD} = 1.2V$, $T_A = 25$ °C ambient and maximum loading.

Power Supply Characteristics over 1.2V Operating Range ($T_A = -40$ °C to +85°C, $V_{DD} = 1.2V \pm 0.05V$)

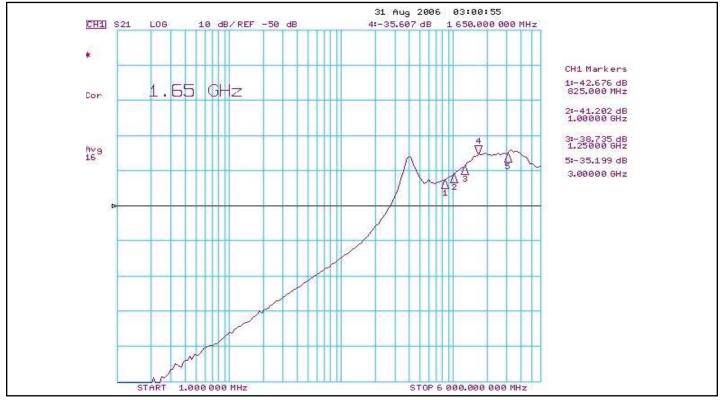
Parameters	Description	Test Conditions ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units
		$V_{DD} = 1.25V$, V_{IN} and $V_{SEL} = GND$ or				
I_{DD}	Quiescent Power Supply Current	$V_{ m DD}$			1.6	mA

Notes:

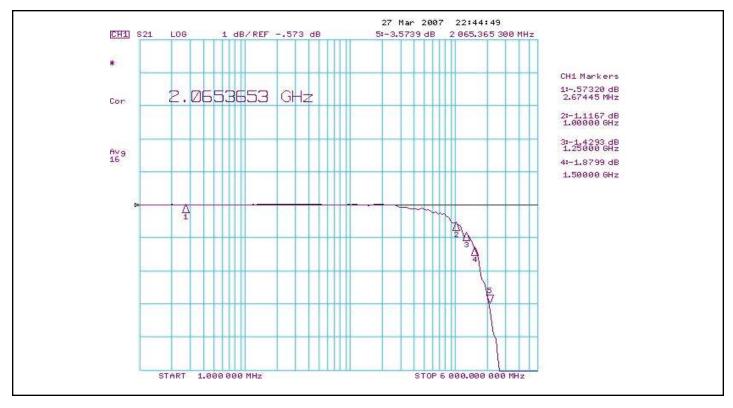
- 1. For Max, or Min, conditions, use appropriate value specified under Electrical Characteristics for the applicable device type.
- 2. Typical values are at $V_{DD} = 1.2V$, $T_A = 25^{\circ}C$ ambient and maximum loading.


Switching Characteristics over 1.2V Operating Range (T_A = -40°C to +85°C, V_{DD} = 1.2V ±0.05V)

Parameter	Description ⁽¹⁾	Min.	Тур.	Max.	Units
t _{PZH} , t _{PZL}	Line Enable Time - SEL to A _N , B _N	0.5		10.0	10 G
t _{PHZ} , t _{PLZ}	Line Disable Time - SEL to A _N , B _N	0.5		10.0	ns
t _{b-b}	Bit-to-bit skew, within same differential pair			5	
t _{ch-ch}	Channel-to-channel timing skew			12	ps
t_{PD}	Propagation Delay, A to B or C / B or C to A	50		150	


Notes:

1. For max. or min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device type.



Differential Crosstalk (at $V_{DD} = 1.8V$)

Off Isolation (at $V_{DD} = 1.8V$)

Bandwidth (at $V_{DD} = 1.8V$)

$\textbf{Dynamic Electrical Characteristics Over the Operating Range} \ (T_A = -40^{\circ} \ \text{to } +85^{\circ}\text{C}, \ V_{DD} = 1.8 \text{V} \pm 10\%)$

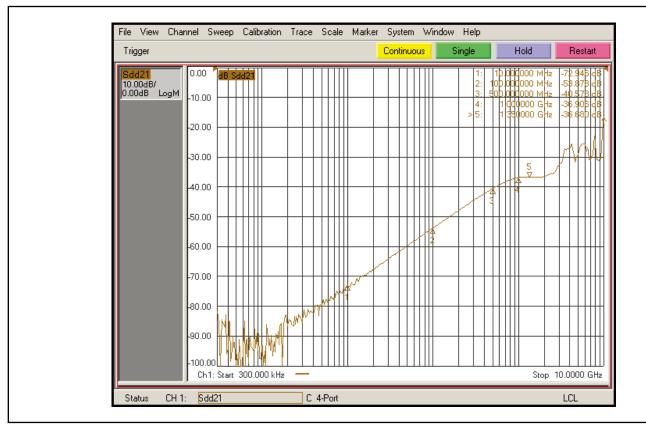
Parameter	Description	Test Conditions	Min.	Typ. ⁽¹⁾	Max.	Units
X _{TALK}	Crosstalk	See Fig. 1 for Measurement Setup, f = 1.65 GHz		-26		
O _{IRR}	OFF Isolation	See Fig. 2 for Measurement Setup, f = 1.65 GHz		-35		dB
I_{LOSS}	Differential Insertion Loss	f = 1.65 GHz		-1.8		
BW	Bandwidth	@ -3 dB		2.0		GHz

Notes:

1. Guaranteed by design. Typical values are at $V_{DD} = 1.8V$, $T_A = 25$ °C ambient, and maximum loading.

Dynamic Electrical Characteristics Over the Operating Range ($T_A = -40^{\circ}$ to $+85^{\circ}$ C, $V_{DD} = 1.5$ V±0.1V)

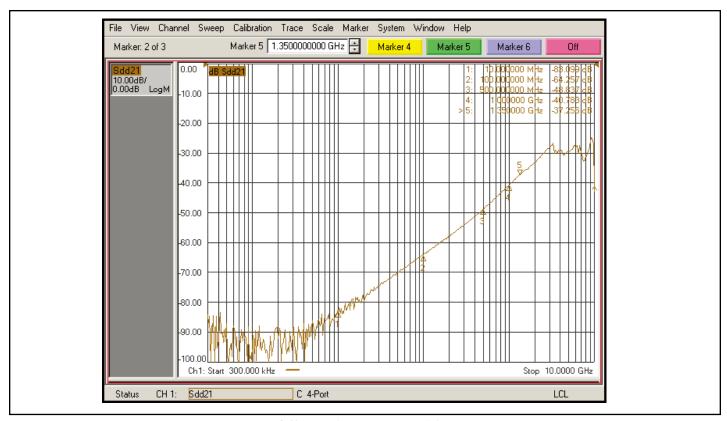
Parameter	Description	Test Conditions	Min.	Typ. ⁽¹⁾	Max.	Units
X _{TALK}	Crosstalk	See Fig. 1 for Measurement Setup, f = 1.65 GHz				
O _{IRR}	OFF Isolation See Fig. 2 for Measurement Setup, f = 1.65 GHz			-35		dB
I_{LOSS}	Differential Insertion Loss	f = 1.65 GHz -2.5				
BW	Bandwidth	@ -3 dB		2.8		GHz

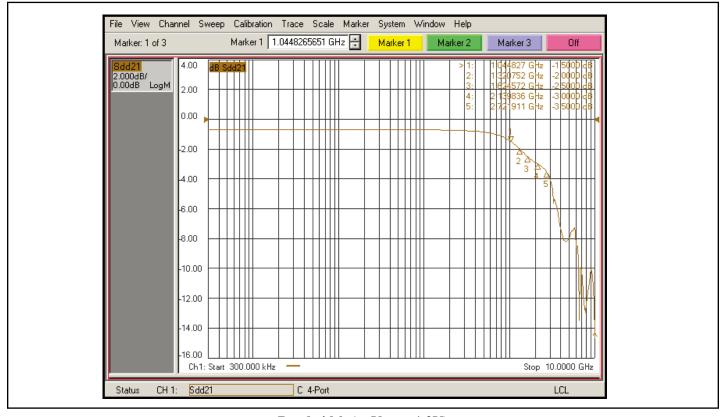

Notes:

Dynamic Electrical Characteristics Over the Operating Range ($T_A = -40^{\circ}$ to $+85^{\circ}$ C, $V_{DD} = 1.2$ V ± 0.05 V)

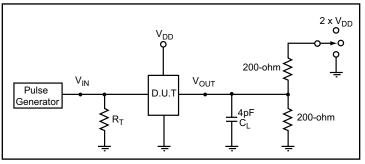
Parameter	Description	Test Conditions	Min.	Typ. ⁽¹⁾	Max.	Units
X _{TALK}	Crosstalk	See Fig. 1 for Measurement Setup, f = 1.65 GHz				
O _{IRR}	OFF Isolation	See Fig. 2 for Measurement Setup, f = 1.65 GHz		-35		dB
I_{LOSS}	Differential Insertion Loss	f = 1.65 GHz	f = 1.65 GHz -2.5			
BW	Bandwidth	@ -3 dB		2.8		GHz

Notes:


1. Guaranteed by design. Typical values are at V_{DD} = 1.2V, T_A = 25°C ambient, and maximum loading.

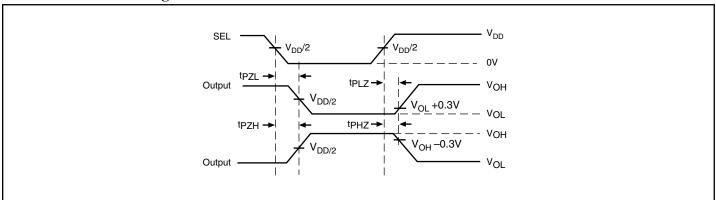

Differential Crosstalk (at $V_{DD} = 1.2V$)

^{1.} Guaranteed by design. Typical values are at $V_{DD} = 1.5V$, $T_A = 25$ °C ambient, and maximum loading.

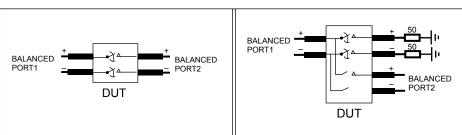

Off Isolation (at $V_{DD} = 1.2V$)

Bandwidth (at $V_{DD} = 1.2V$)

Test Circuit for Electrical Characteristics(1-5)

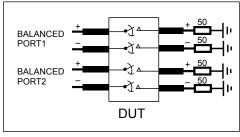

Switch Positions

Test	Switch
t _{PLZ} , t _{PZL}	2 x V _{DD}
t _{PHZ} , t _{PZH}	GND
Prop Delay	Open


Notes:

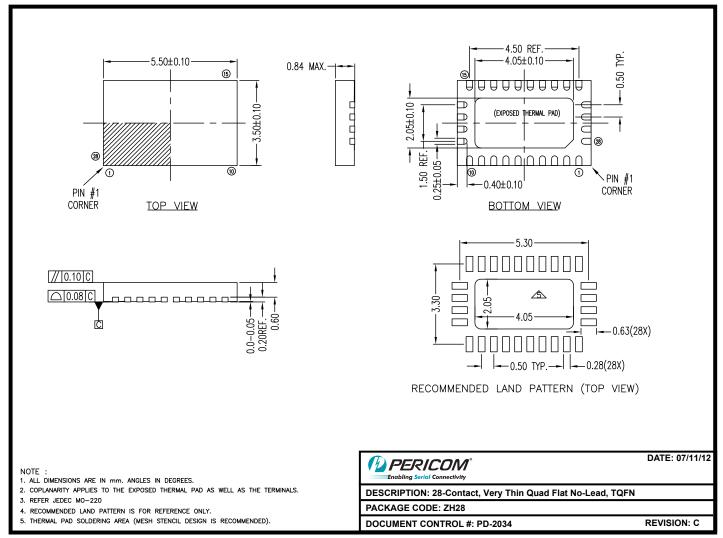
- 1. C_L = Load capacitance: includes jig and probe capacitance.
- 2. R_T = Termination resistance: should be equal to Z_{OUT} of the Pulse Generator
- 3. Output 1 is for an output with internal conditions such that the output is low except when disabled by the output control. output 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- 4. All input impulses are supplied by generators having the following characteristics: $PRR \le MHz$, $Z_O = 50\Omega$, $t_R \le 2.5$ ns, $t_F \le 2.5$ ns.
- 5. The outputs are measured one at a time with one transition per measurement.

Switching Waveforms



Voltage Waveforms Enable and Disable Times

Diff. Insertion Loss and Return Test Circuit


Diff. Off Isolation Test Circuit

Diff. Near End Xtalk Test Circuit

Packaging Mechanical: 28-Contact TQFN (ZH)

12-0419

Ordering Information

Ordering Code	Package Code	Package Description
PI2DBS212ZHEX	ZH	28-contact, Very Thin Quad Flat No-Lead (TQFN)

Notes:

- Thermal characteristics can be found on the company web site at www.pericom.com/packaging/
- E = Pb-free & Green
- Adding an X suffix = Tape/Reel

Pericom Semiconductor Corporation • 1-800-435-2336 • www.pericom.com