

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

3.0Gbps 2 Differential Channel SATA i/m ReDriverTM with Equalization, De-emphasis and OOB

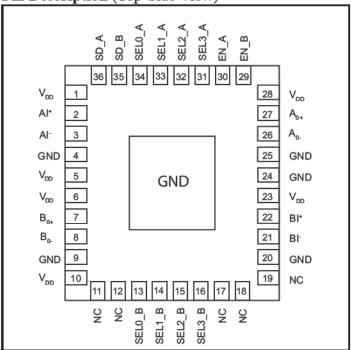
Features

- SATA2 i/m, extended SATA2
- · Two Pairs of 3.0Gbps differential signal
- · Adjustable Transmitter Emphasis & Amplitude
- · Adjustable Receiver Equalization
- · 100-Ohm Differential CML I/O's
- · Input signal level detect and squelch for each channel
- Low Power (100mW per Channel)
- Stand-by Mode Power Down State
- V_{DD} Operating Range: 1.5V to 1.8V
- Packaging (Pb-free & Green):
 - 36-pad TQFN (ZF36)

Description

Pericom Semiconductor's PI2EQX3201BL is a low power, signal ReDriver. The device provides programmable equalization, amplification, and de-emphasis by using 4 select bits, SEL[0:3], to optimize performance over a variety of physical mediums by reducing Inter-Symbol Interference. PI2EQX3201BL supports two 100-Ohm Differential CML data I/O's between the Protocol ASIC to a switch fabric, across a backplane, or to extend the signals across other distant data pathways on the user's platform.

The integrated equalization circuitry provides flexibility with signal integrity of the signal before the re-driver. Whereas the integrated de-emphasis circuitry provides flexibility with signal integrity of the signal after the re-driver.


A low-level input signal detection and output squelch function is provided for each channel. Each channel operates fully independantly. When a channel is enabled (EN_x=1) and operating, that channels input signal level (on xI+/-) determines whether the output is enabled. If the input level of the channel falls below the active threshold level (Vth-) then the outputs are driven to the common mode voltage.

In addition to providing signal re-conditioning, Pericom's PI2EQX3201BL also provides power management Stand-by mode operated by a Bus Enable pin.

Block Diagram

Pin Description (Top-Side View)

Pin Description

Pin #	Pin Name	I/O	Description	
2 3	AI+ AI-	I	CML Input Channel A with internal 50-Ohm pull down	
27 26	AO+ AO-	О	CML Output Channel A internal 50-Ohm pull up. Drives to output common mode voltage when input is $<$ V $_{TH-}$.	
22 21	BI+ BI-	I	CML Input Channel B with internal 50-Ohm pull down	
7 8	BO+ BO-	О	CML Output Channel B with internal 50-Ohm pull up. Drives to output common mode voltage when input is $<$ V $_{TH-}$.	
30 29	EN_A EN_B	I	EN_[A:B] is the enable pin. A LVCMOS high provides normal operation. A LVC-MOS low selects a low power down mode.	
4, 9, 20, 24, 25, Center Pad	GND	PWR	Supply Ground	
11, 12, 17, 18, 19	NC	-	No Connect	
36 35	SD_A SD_B	О	Signal Detect, output for channels A and B. Provides a LVCMOS high output when a valid input signal is detected. When low, SD_X indicates that the input signal level is below the signal detect threshold level.	
34 33	SEL0_A SEL1_A	I	Selection pins for equalizer (see Amplifier Configuration Table)	
13 14	SEL0_B SEL1_B	I	w/ 25K-Ohm internal pull up	
32	SEL2_A	I	Selection pins for amplifier (see Amplifier Configuration Table)	
15	SEL2_B	I	w/ 25K-Ohm internal pull up	
31	SEL3_A	I	Selection pins for De-Emphasis (See De-Emphasis Configuration Table)	
16	SEL3_B	I	w/ 25K-Ohm internal pull up	
1, 5, 6, 10, 23, 28	V_{DD}	PWR	1.5 to 1.8V Supply Voltage (±0.1V)	

Output Swing Control

SEL2_[A:B]	Swing
0	1x
1	1.2x

Output De-emphasis Adjustment

SEL3_[A:B]	De-emphasis
0	0dB
1	-3.5dB

Equalizer Selection

SEL0_[A:B]	SEL1_[A:B]	Compliance Channel @ 1.5GHz
0	0	no equalization
0	1	$1.5 dB \pm 1.0 dB$
1	0	$3.5 dB \pm 1.0 dB$
1	1	5.5dB ± 1.0dB

Maximum Ratings

(Above which useful life may be impaired. For user guidelines, not tested.)

Storage Temperature	65°C to +150°C
Supply Voltage to Ground Potential	0.5V to +2.5V
DC SIG Voltage	0.5V to V _{DD} +0.5V
Current Output	25mA to +25mA
Power Dissipation Continous	500mW
Operating Temperature	-40 to +85°C

Note:

Stresses greater than those listed under MAXIMUM RAT-INGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

AC/DC Electrical Characteristics ($V_{DD} = 1.4 \text{ to } 1.9 \text{V}$)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
I_{DD}	Power Supply Current				90	mA
P _{standby}	Power, standby	EN_[A:B] = 0			1	mW
Pactive18	Power, active @ 1.8V	V_{DD} =1.8V, EN_[A:B] = 1, $V_{rx-diff-p} \ge V_{th-sd}$		125	160	mW
P _{idle18}	Power, idle @ 1.8V	V_{DD} =1.8V, EN_[A:B] = 1, $V_{rx-diff-p} < V_{th-sd}$		100		mW
Pactive15	Power, active @ 1.5V	V_{DD} =1.5V, EN_[A:B] = 1, $V_{rx-diff-p} \ge V_{th-sd}$		100	130	mW
P _{idle15}	Power, idle @ 1.5V	V_{DD} =1.5V, EN_[A:B] = 1, $V_{rx-diff-p} < V_{th-sd}$		80		mW
t _{pd}	Latency	From differential input to differential output		2.0		ns
CML Receive	, 					
RL_{RX}	Return Loss	50 MHz to 1.25 GHz		12		dΒ
V _{RX-DIFFP-P}	Differential Input Peak-to- peak Voltage		0.200			V
V _{RX-CM-ACP}	AC Peak Common Mode Input Voltage				150	mV
V _{TH-SD}	Signal Detect Threshold	EN_X = High	50		200	
Z _{RX-DIFF-DC}	DC Differential Input Impedance		80	100	120	Ohm
Z _{RX-DC}	DC Input Impedance		40	50	60	
Equalization						
J _{RS}	D = 11 = 1 F(4 = (12)	Total Jitter			0.3	T T1
	Residual Jitter ^(1,2)	Deterministic jitter			0.2	Ulp-p
J_{RM}	Random Jitter ^(1,2)			1.5		

Notes

- 1. K28.7 pattern is applied differentially at point A as shown in Figure 1.
- 2. Total jitter does not include the signal source jitter. Total jitter (TJ) = (14.1 × RJ + DJ) where RJ is random RMS jitter and DJ is maximum deterministic jitter. Signal source is a K28.5 ± pattern (00 1111 1010 11 0000 0101) for the deterministic jitter test and K28.7 (0011111000) or equivalent for random jitter test. Residual jitter is that which remains after equalizing media-induced losses of the environment of Figure 1 or its equivalent. The deterministic jitter at point B must be from media-induced loss, and not from clock source modulation. Jitter is measured at 0V at point C of Figure 1.

10-0220 3 PS9003A 09/07/10

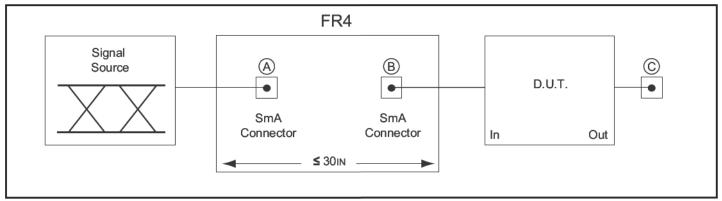
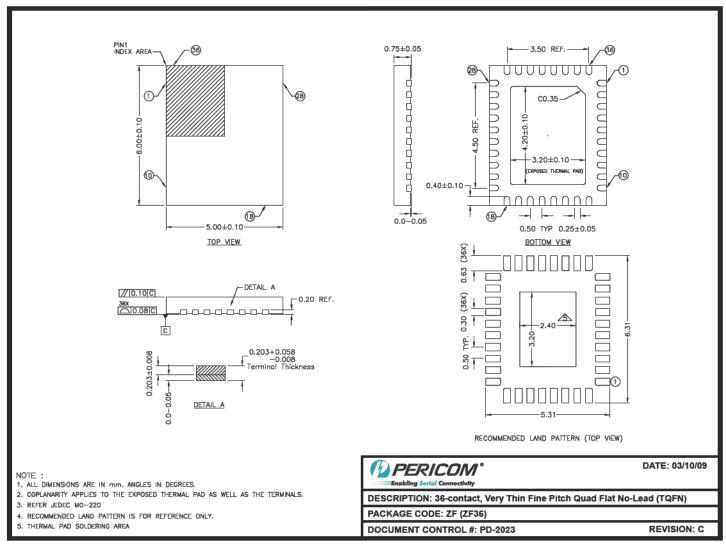


Figure 1. Test Condition Referenced in the Electrical Characteristic Table

AC/DC Electrical Characteristics ($V_{DD} = 1.4V$ to 1.9V)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units	
CML Transm	CML Transmitter Output (100Ohm differential)						
**	Differential Peak-to-peak Ouput Voltage V _{TX-DIFFP-P} = 2 * V _{TX-D+} - V _{TX-D-}	$SEL2_x = 0$	400		600	р-р	
V _{TX-DIFFP-P}		$SEL2_x = 1$	480		720		
V _{TX-C}	Common-Mode Voltage V _{TX-D+} + V _{TX-D-} / 2			V _{DD} - 0.3			
t _F , t _R	Transition Time	20% to 80% ⁽¹⁾			150	ps	
Z _{TX-DIFF-DC}	DC Differential TX Impedance		80	100	120	Ohm	
LVCMOS Co	LVCMOS Control Pins						
V_{IH}	Input High Voltage		0.65 ×				
VIH	input riigii voitage		V_{DD}			v	
$ m V_{IL}$	Input Low Voltage				0.35 ×	ı '	
			-		V_{DD}		
I_{IH}	Input High Current				5] [
I_{IL}	Input Low Current				100	μA	
V _{OH}	DC Voltage Output High	$I_{OH} = 4mA$	V _{DD} - 0.4			V	
V _{OL}	DC Voltage Output Low	$I_{OL} = -4mA$			0.4	V	


Note:

- 1. Using K28.7 (0011111000) pattern)
- 2. The parameter is determined by device characterization, and is not production tested

10-0220 4 PS9003A 09/07/10

Packaging Mechanical: 36-pad TQFN (ZF36)

09-0143

Ordering Information

Ordering Number	Package Code	Package Description
PI2EQX3201BLZFE	ZF	Pb-Free and Green 36-pad TQFN

Notes:

- . Thermal characteristics can be found on the company web site at www.pericom.com/packaging/
- \bullet E = Pb-free and Green
- X suffix = Tape/Reel

Pericom Semiconductor Corporation • 1-800-435-2336 • www.pericom.com