

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

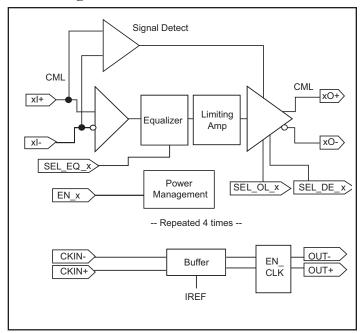
Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

3.2Gbps, 2-Port, SATA/SAS, Serial Re-Driver

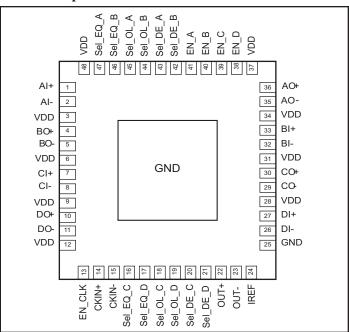
Features

- Supports data rates up to 3.2Gbps on each lane
- Adjustable Transmiter De-Emphasis & Amplitude
- Adjustable Receiver Equalization
- Spectrum Reference Clock Buffer Output
- Optimized for SATAx/SAS applications
- Input signal level detection & output squelch on all channels
- 100-Ohm Differential CML I/O's
- Low Power (100mW per Channel)
- Standby Mode Power Down State
- V_{DD} Operating Range: 1.8V +/-0.1V
- Packaging (Pb-free & Green):48-contact TQFN

Description


Pericom Semiconductor's PI2EQX3232A is a low power, signal Re-Driver. The device provides programmable equalization, amplification, and de-emphasis, to optimize performance over a variety of physical mediums by reducing Inter-Symbol Interference (ISI). PI2EQX3232A supports four 100-Ohm Differential CML data I/O's between the Protocol ASIC to a switch fabric, across a backplane, or to extend the signals across other distant data pathways on the user's platform.

The integrated equalization circuitry provides flexibility with signal integrity of the signal before the Re-Driver. Whereas the integrated de-emphasis circuitry provides flexibility with signal integrity of the signal after the Re-Driver.


A low-level input signal detection and output squelch function is provided for all four channels. Each channel operates fully independantly. When a channel is enabled (EN_x=1) and operating, that channels input signal level (on xI+/-) determines whether the output is enabled. If the input level of the channel falls below the active threshold level (Vth-) then the output driver switches off, and the pin is pulled to VDD via a high impedance resistor. If the input level of the channel falls below the active threshold level (Vth-) then the outputs are driven to the common mode voltage.

In addition to providing signal re-conditioning, Pericom's PI2EQX3232A also provides power management Stand-by mode operated by an Enable pin.

Block Diagram

Pin Description

Pin Description

Pin#	Pin Name	I/O	Description	
1	AI+	I	Positive CML Input Channel A with internal 50Ω pull down	
2	AI-	I	Negative CML Input Channel A with internal 50Ω pull down	
36	AO+	О	Positive CML Output Channel A internal 50Ω pull up to VDD during normal operation and $2k\Omega$ when EN_A=0. Drives to output common mode voltage when input is $<$ V _{TH}	
35	AO-	О	Negative CML Output Channel A with internal 50Ω pull up to VDD during normal operation and $2k\Omega$ when EN_A=0. Drives to output common mode voltage when input is $<$ V _{TH}	
33	BI+	I	Positive CML Input Channel B with internal 50Ω pull down	
32	BI-	I	Negative CML Input Channel B with internal 50Ω pull down	
4	BO+	О	Positive CML Output Channel B with internal 50Ω pull up to VDD during normal operation and $2k\Omega$ when EN_B=0. Drives to output common mode voltage when input is $<$ V _{TH}	
5	ВО-	О	Negative CMLOutput Channel B with internal 50Ω pull up to VDD during normal operation and $2k\Omega$ when EN_B=0. Drives to output common mode voltage when input is $<$ V _{TH} .	
7	CI+	I	Positive CML Input Channel C with internal 50Ω pull down	
8	CI-	I	Negative CML Input Channel C with internal 50Ω pull down	
14	CKIN+	I	Differential Input Reference Clock The clock buffer is provided for general use, and	
15	CKIN-	I	is not needed for data channel operation.	
30	CO+	0	Positive CMLOutput Channel C with internal 50Ω pull up to VDD during normal operation and $2k\Omega$ when EN_C=0. Drives to output common mode voltage when input is $<$ V _{TH} .	
29	CO-	О	Negative CMLOutput Channel C with internal 50Ω pull up to VDD during normal operation and $2k\Omega$ when EN_C=0. Drives to output common mode voltage when input is $<$ V _{TH} .	
27	DI+	I	Positive CML Input Channel D with internal 50Ω pull down	
26	DI-	I	Negative CML Input Channel D with internal 50Ω pull down	
10	DO+	0	Positive CMLOutput Channel D with internal 50Ω pull up during normal operation and $2k\Omega$ pull up when EN_C=0. Drives to output common mode voltage when input is $<$ V _{TH} .	
11	DO-	О	Negative CMLOutput Channel D with internal 50Ω pull up during normal operation and $2k\Omega$ pull up when EN_C=0. Drives to output common mode voltage when input is $<$ V _{TH}	
41, 40, 39, 38	EN_ [A,B,C,D]	I	Active HIGH LVCMOS signal input pins, when HIGH, it enables the CML output. When LOW, it disables the CML output (x0+, x0-) to HI-z state. Both x0+ & x0- outputs will be pulled up to V_{DD} by internal $2k\Omega$ resistor.	
13	EN_CLK	I	Active HIGH LVCMOS signal input pin. When HIGH, it enables the OUTx+/OUTx-outputs. When LOW, it disables these outputs, with 50Ω to ground termination.	
25, Center Pad	GND	PWR	Supply Ground	
24	IREF	О	External 475Ω resistor connection to set the differential output current	
22	OUT+	0	Differential Reference Clock Output	
23	OUT-	0		
47	SEL_EQ_A	I		
46	SEL_EQ_B	I	Selection plans for equalities (see Equalities selection functo)	
16	SEL_EQ_C			
17	SEL_EQ_D	I		

Pin Description (Continued)

Pin #	Pin Name	I/O	Description	
45	SEL_OL_A	I		
44	SEL_OL_B	I	Selection pins for amplifier (see Output Swing Control Table)	
18	SEL_OL_C	I	$w/50k\Omega$ internal pull up	
19	SEL_OL_D	I		
43	SEL_DE_A	I		
42	SEL_DE_B	I	Selection pins for De-Emphasis (See De-Emphasis Configuration Table)	
20	SEL_DE_C	I	$w/50k\Omega$ internal pull up	
21	SEL_DE_D	I		
3,6,9,12,28, 31,34,37,38	V _{DD}	PWR	1.8V Supply Voltage	

Output Swing Control

SEL3_[A:D]	Swing
0	1x
1	1.2x

Output De-emphasis Adjustment

SEL5_[A:D]	De-emphasis
0	0dB
1	-3.5dB

Equalizer Selection

SEL0_[A:D]	Compliance Channel
0	[0:3.5dB] @ 1.6 GHz
1	[0:7.5dB] @ 1.6 GHz

Maximum Ratings

(Above which useful life may be impaired. For user guidelines, not tested.)

Storage Temperature	65°C to +150°C
Supply Voltage to Ground Potential	-0.5V to +2.5V
DC SIG Voltage	0.5V to V _{DD} +0.5V
Current Output	25mA to +25mA
Power Dissipation Continous	800mW
Operating Temperature	0 to +70°C

Note:

Stresses greater than those listed under MAXIMUM RAT-INGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

AC/DC Electrical Characteristics ($V_{DD} = 1.8 \pm 0.1 V$)

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Units
Da	Supply Power	EN = LVCMOS Low			0.1	W
Ps		EN = LVCMOS High			0.6	
	Latency	From input to output		2.0		ns
CML Receive	· Input					
RL_{RX}	Return Loss	50 MHz to 1.25 GHz		12		dB
V _{RX-DIFFP-P}	Differential Input Peak-to- peak Voltage		0.200			V
V _{RX-CM-ACP}	AC Peak Common Mode Input Voltage				150	mV
V _{TH} - ⁽³⁾	Signal Detect Threshold	$E_{N_X} = High$	50		200	mVp-p
Z _{RX-DIFF-DC}	DC Differential Input Impedance		80	100	120	Ω
Z _{RX-DC}	DC Input Impedance		40	50	60	
Equalization						
Inc	Residual Jitter ^(1,2)	Total Jitter			0.3	I IIn n
J_{RS}	Residual Jillel	Deterministic jitter			0.2	- Ulp-p
J_{RM}	Random Jitter ^(1,2)			1.5		psrms

Notes

- 1. K28.7 pattern is applied differentially at point A as shown in Figure 1.
- 2. Total jitter does not include the signal source jitter. Total jitter (TJ) = (14.1 × RJ + DJ) where RJ is random RMS jitter and DJ is maximum deterministic jitter. Signal source is a K28.5 ± pattern (00 1111 1010 11 0000 0101) for the deterministic jitter test and K28.7 (0011111000) or equivalent for random jitter test. Residual jitter is that which remains after equalizing media-induced losses of the environment of Figure 1 or its equivalent. The deterministic jitter at point B must be from media-induced loss, and not from clock source modulation. Jitter is measured at 0V at point C of Figure 1.
- 3. This parameter refers to OOB detection, and does not reflect data eye sensitivity. Pericom ReDriver can recover data from a closed eye.

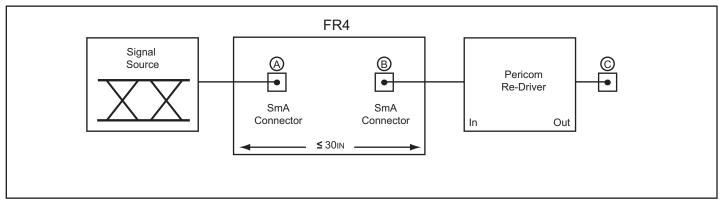


Figure 1. Test Condition Referenced in the Electrical Characteristic Table

AC/DC Electrical Characteristics (TA = 0 to 70°C)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
CML Transmitte	r Output (100 Ω differential)					
V	Output Voltage Swing	Swing = $1.0x$	400		650	m Vn n
$V_{ m DIFFP}$	V _{TX-D+} - V _{TX-D-}	Swing = $1.2x$	500		800	mVp-p
37	Output Voltage Swing	Swing = $1.0x$	800		1300	mV
V_{DIFFP}	V _{TX-D+} - V _{TX-D-}	Swing = $1.2x$	1000		1600	
V _{TX-C}	Common-Mode Voltage	V _{TX-D+} + V _{TX-D-} / 2		V _{DD} - 0.3		
t_F , t_R	Transition Time	20% to 80% ⁽¹⁾			150	ps
Z _{OUT}	Output resistance	Single ended	40	50	60	Ω
Z _{TX-DIFF-DC}	DC Differential TX Impedance		80	100	120	Ω
C_{TX}	AC Coupling Capacitor		75		200	nF
LVCMOS Contro	ol Pins					
V _{IH}	Input High Voltage		0.65 × V _{DD}		V_{DD}	V
V _{IL}	Input Low Voltage				$0.35 \times V_{DD}$	V
I _{IH}	Input High Current				250	
I _{IL}	Input Low Current				500	μΑ

Note:

- 1. Using K28.7 (0011111000) pattern)
- 2. When 1.0x swing selected
- 3. When 1.2x swing selected

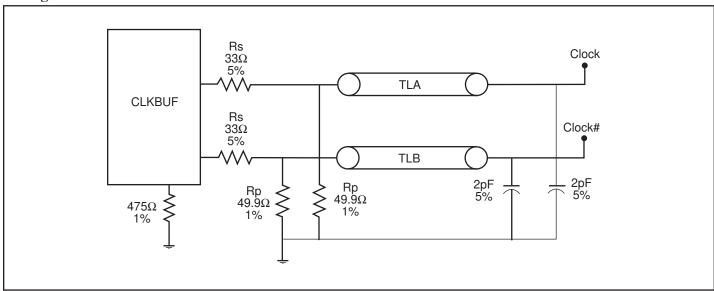
AC Switching Characteristics for Clock Buffer $(V_{DD} = 1.8 \pm 0.1 \text{V})^{(3)}$

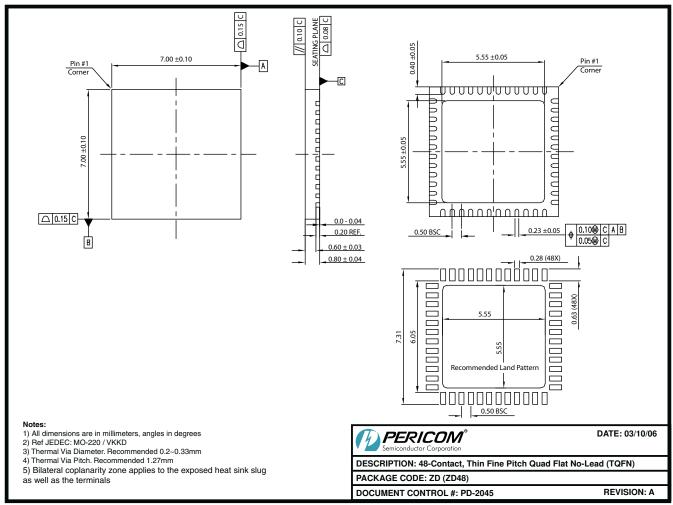
Symbol	Parameters	Min	Max.	Units	Notes
T _{rise} / T _{fall}	Rise and Fall Time (measured between 0.175V to 0.525V) (1)	125	525		1
ΔT_{rise} / ΔT_{fall}	Rise and Fall Time Variation		75	ps	1
V_{HIGH}	Voltage High including overshoot	660	900		1
$V_{ m LOW}$	Voltage Low including undershoot	-150		V	1
V _{CROSS}	Absolute crossing point voltages	-200	550	mV	1
ΔV_{CROSS}	Total Variation of Vcross over all edges	200	250		1
T_{DC}	Duty Cycle (input duty cycle = 50%) (2)	45	55	%	2

Notes:

- 1. Measurement taken from Single Ended waveform.
- 2. Measurement taken from Differential waveform.
- 3. Test configuration is $R_S = 33.2\Omega$, $Rp = 49.9\Omega$, and 2pF.

Configuration Test Load Board Termination




Figure 2. Configuration test load board termination

Note:

• TLA and TLB are 3" transmission lines.

Packaging Mechanical: 48-Contact TQFN (ZD48)

06-0252

Ordering Information

Ordering Number	Package Code	Package Description		
PI2EQX3232AZDE	ZD	Pb-free & Green 48-Contact TQFN		

Notes:

- Thermal characteristics can be found on the company web site at www.pericom.com/packaging/
- E = Pb-free and Green
- X suffix = Tape/Reel

Pericom Semiconductor Corporation • 1-800-435-2336 • www.pericom.com