# mail

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



# Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China





## **PI2EOX4432D**

### 2.5 Gbps x2 Lane PCI Express Repeater/Equalizer with Signal Detect and Flow-Through Pinout

### Features

- Two High Speed PCI Express lanes
- Supports PCI Express data rates (2.5 Gbps) on each lane
- Adjustable Receiver Equalization
- Input Signal Level Detect & Output Squelch on all Channels
- Output De-emphasis = -3.5dB
- 100–Ohm Differential CML I/O's
- Low Power (100mW per Channel)
- Standby Mode Power Down State
- V<sub>DD</sub> Operating Range: 1.8V +/-0.1V
- Packaging (Pb-free & Green): 48-contact TQFN

### Description

Pericom Semiconductor's PI2EQX4432D is a low power, PCI Express compliant signal Re-Driver. The device provides programmable equalization, to optimize performance by reducing Inter-Symbol Interference (ISI). PI2EQX4432D supports two 100–Ohm Differential CML data I/O's between the Protocol ASIC to a switch fabric, across a backplane, or extends the signals across other distant data pathways on the user's platform.

The integrated equalization circuitry provides flexibility with signal integrity of the PCI Express signal before the Re-Driver. Whereas the integrated de-emphasis circuitry provides flexibility with signal integrity of the PCI Express signal after the Re-Driver.

A low-level input signal detection and output squelch function is provided for all four channels. Each channel operates fully independantly. When a channel is enabled ( $EN_x=1$ ) and operating, that channels input signal level (on xl+/-) determines whether the output is enabled. If the input level of the channel falls below the active threshold level (Vth-) then the output driver switches off, and the pin is pulled to VDD via a high impedance resistor.

In addition to providing serial re-conditioning, Pericom's PIEQX4432D also provides a power management Stand-by mode operated by the enable pins.



### Pin Description (Top View)



# PERICOM<sup>®</sup>

### PI2EQX4432D 2.5Gbps x2 Lane PCI Express Repeater / Equalizer with Signal Detect and Flow-through Pinout

### Pin Description

| Pin #          | Pin Name           | I/O | Description                                                                                                                                                                                                                                       |
|----------------|--------------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1              | AI+                | Ι   | Positive CML Input Channel A with internal 50 Ohm pull down during normal opera-<br>tion (EN_A = 1). When EN_A = 0, this pin is a high-impedance.                                                                                                 |
| 2              | AI-                | Ι   | Negative CML Input Channel A with internal 50 Ohm pull down during normal operation (EN $A = 1$ ). When EN $A = 0$ , this pin is a high-impedance.                                                                                                |
| 36             | AO+                | 0   | Positive CML Output Channel A internal 50 Ohm pull up during normal operation and $2K\Omega$ pull up otherwise.                                                                                                                                   |
| 35             | AO-                | 0   | Negative CML Output Channel A with internal 50 Ohm pull up during normal opera-<br>tion and 2K-ohm pull up otherwise.                                                                                                                             |
| 33             | BI+                |     | Posite CML Input Channel B with internal 50 Ohm pull down during normal opera-<br>tion (EN_B = 1). When EN_B = 0, this pin is a high-impedance.                                                                                                   |
| 32             | BI-                | Ι   | Negative CML Input Channel B with internal 50 Ohm pull down during normal operation (EN_B = 1). When EN_B = 0, this pin is a high-impedance.                                                                                                      |
| 4              | BO+                | 0   | Positive CML Output Channel B with internal 50 Ohm pull up during normal opera-<br>tion and 2k–Ohm pull up otherwise.                                                                                                                             |
| 5              | BO-                | 0   | Negative CMLOutput Channel B with internal 50 Ohm pull up during normal opera-<br>tion and 2k–Ohm pull up otherwise.                                                                                                                              |
| 7              | CI+                | Ι   | Positive CML Input Channel C with internal 50 Ohm pull down during normal opera-<br>tion (EN_C = 1). When EN_C = 0, this pin is a high-impedance.                                                                                                 |
| 8              | CI-                | Ι   | Negative CML Input Channel C with internal 50 Ohm pull down during normal operation (EN_C = 1). When EN_C = 0, this pin is a high-impedance.                                                                                                      |
| 30             | CO+                | 0   | Positive CMLOutput Channel C with internal 50 Ohm pull up during normal opera-<br>tion and 2K-ohm pull up otherwise.                                                                                                                              |
| 29             | CO-                | 0   | Negative CMLOutput Channel C with internal 50 Ohm pull up during normal opera-<br>tion and 2k–Ohm pull up otherwise.                                                                                                                              |
| 27             | DI+                | Ι   | Positive CML Input Channel D with internal 50 Ohm pull down during normal operation ( $EN_D = 1$ ). When $EN_D = 0$ , this pin is a high-impedance.                                                                                               |
| 26             | DI-                | Ι   | Negative CML Input Channel D with internal 50 Ohm pull down during normal operation ( $EN_D = 1$ ). When $EN_D = 0$ , this pin is a high-impedance.                                                                                               |
| 10             | DO+                | 0   | Positive CML Output Channel D with internal 50 Ohm pull up during normal opera-<br>tion and 2k–Ohm pull up otherwise.                                                                                                                             |
| 11             | DO-                | 0   | Negative CML Output Channel D with internal 50 $\Omega$ pull up during normal operation and 2k–Ohm pull up otherwise.                                                                                                                             |
| 41, 40, 39, 38 | EN_[A, B,<br>C, D] | Ι   | EN_[A:D] is a channel enable pin with internal 50k–Ohm pull-up resistor. ALVCMOS high provides normal operation. ALVCMOS low selects a low power down mode.                                                                                       |
| 43, 42, 20, 21 | SEL-DE_<br>[A:D]   | Ι   | Output De–Emphasis configuration input for channels A, B, C and D, with internal 50k–Ohm pull up.Refer to table for modes.                                                                                                                        |
| 47, 46, 16, 17 | SEL-EQ_<br>[A:D]   | Ι   | Equalizer configuration input for channels A, B, C and D, with internal 50k–Ohm pull-up. Refer to table for modes.                                                                                                                                |
| 45, 44, 18, 19 | SEL-OL_<br>[A:D]   | Ι   | Output Level configuration input for channels A, B, C, and D, with internal 50k–Ohm pull–up. Refer to table for modes.                                                                                                                            |
| 14, 15         | CLK+,<br>CLK–      | Ι   | Differential input reference clock, typically 100MHz                                                                                                                                                                                              |
| 22, 23         | CLKO,<br>CLKO–     | 0   | Differential reference clock output                                                                                                                                                                                                               |
| 13             | EN_CLK             | Ι   | Enable Clock input with 50K–Ohm pull-up. When EN_CLK is LVCMOS high level, the clock output operates normally. When EN_CLK = low, the clock outputs are turned off for power savings. A clock is not required bt the data channels for operation. |



### PI2EQX4432D 2.5Gbps x2 Lane PCI Express Repeater / Equalizer with Signal Detect and Flow-through Pinout

| 24                                 | IREF | Ι   | Connect to 475-Ohm resistor to ground when the reference clock is used. Otherwise do not connect. |
|------------------------------------|------|-----|---------------------------------------------------------------------------------------------------|
| 3, 6, 9, 12, 28, 31,<br>34, 37, 48 | VDD  | PWR | 1.8V Supply Voltage                                                                               |
| 25, Center Pad                     | GND  | PWR | Supply Ground, Center pad must be connected                                                       |

### **Output Swing Control**

## **Output De-emphasis Adjustment** Equalizer Selection

| SEL-OL_[A:D] | Output Swing | SEL- |
|--------------|--------------|------|
| 0            | 1x           |      |
| 1            | 1.2x         |      |

DE [A:D] **De-emphasis** 0 0dB 1 -3.5dB

Note:

| SEL-EQ_[A:D] | <b>Compliance Channel</b> |
|--------------|---------------------------|
| 0            | [0:2.5dB] @ 1.25 GHz      |
| 1            | [0:6.5dB] @ 1.25 GHz      |

### **Maximum Ratings**

(Above which useful life may be impaired. For user guidelines, not tested.)

| - |
|---|
|   |
|   |
|   |
|   |
|   |
|   |
|   |

Stresses greater than those listed under MAXIMUM RAT-INGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

### AC/DC Electrical Characteristics ( $V_{DD} = 1.8 \pm 0.1 V$ )

| Symbol             | Parameter                 | Conditions               | Min. | Тур. | Max.     | Units |  |
|--------------------|---------------------------|--------------------------|------|------|----------|-------|--|
| Ps Supply Power    | All Enables = LVCMOS High |                          |      | 0.1  | <b>W</b> |       |  |
|                    | Supply Power              | All Enables = LVCMOS Low |      |      | 0.6      | W     |  |
|                    | Latency                   | From input to output     |      | 2.0  |          | ns    |  |
| CMI Dessiver Input |                           |                          |      |      |          |       |  |

### CMI Deceiver Input

| Civil Receiver input    |                                             |                      |       |     |       |       |
|-------------------------|---------------------------------------------|----------------------|-------|-----|-------|-------|
| RL <sub>RX</sub>        | Return Loss                                 | 50 MHz to 1.25 GHz   |       | 12  |       | dB    |
| V <sub>RX-DIFFP-P</sub> | Differential Input Peak-to-<br>peak Voltage |                      | 0.175 |     | 1.200 | V     |
| V <sub>RX-CM-ACP</sub>  | AC Peak Common Mode<br>Input Voltage        |                      |       |     | 150   | mV    |
| V <sub>TH</sub> -       | Signal Detect Threshold                     | $EN_x = High$        |       | 120 | 175   | mV    |
| Z <sub>RX-DIFF-DC</sub> | DC Differential Input<br>Impedance          |                      | 80    | 100 | 120   | Ω     |
| Z <sub>RX-DC</sub>      | DC Input Impedance                          |                      | 40    | 50  | 60    |       |
| Equalization            |                                             |                      |       |     |       |       |
| J <sub>RS</sub>         | Residual Jitter <sup>(1,2)</sup>            | Total Jitter         |       |     | 0.3   | Ulp-p |
|                         |                                             | Deterministic jitter |       |     | 0.2   |       |
| J <sub>RM</sub>         | Random Jitter <sup>(1,2)</sup>              |                      |       | 1.5 |       | psrms |

Notes

K28.7 pattern is applied differentially at point A as shown in Figure 1. 1.

2. Total jitter does not include the signal source jitter. Total jitter  $(TJ) = (14.1 \times RJ + DJ)$  where RJ is random RMS jitter and DJ is maximum deterministic jitter. Signal source is a K28.5 ± pattern (00 1111 1010 11 0000 0101) for the deterministic jitter test and K28.7 (0011111000) or equivalent for random jitter test. Residual jitter is that which remains after equalizing media-induced losses of the environment of Figure 1 or its equivalent. The deterministic jitter at point B must be from media-induced loss, and not from clock source modulation. Jitter is measured at 0V at point C of Figure 1.





Figure 1. Test Condition Referenced in the Electrical Characteristic Table

### AC/DC Electrical Characteristics (TA = 0 to $70^{\circ}$ C)

| Symbol                          | Parameter                                  | Conditions                                                      | Min.                 | Тур.                     | Max.                                                 | Units |
|---------------------------------|--------------------------------------------|-----------------------------------------------------------------|----------------------|--------------------------|------------------------------------------------------|-------|
| CML Transmitter                 | Output (100 $\Omega$ differential)         |                                                                 |                      |                          |                                                      |       |
| V <sub>DIFFP</sub>              | Output Voltage Swing                       | Differential Swing<br>  V <sub>TX-D+</sub> - V <sub>TX-D-</sub> | 400                  |                          | 900                                                  | mVp-p |
| V <sub>TX-C</sub>               | Common-Mode Voltage                        | $ V_{TX-D+} + V_{TX-D-}  / 2$                                   |                      | V <sub>DD</sub> -<br>0.3 |                                                      |       |
| t <sub>F</sub> , t <sub>R</sub> | Transition Time                            | 20% to 80% <sup>(1)</sup>                                       |                      |                          | 150                                                  | ps    |
| Z <sub>OUT</sub>                | Output resistance                          | Single ended                                                    | 40                   | 50                       | 60                                                   | Ω     |
| Z <sub>TX-DIFF-DC</sub>         | DC Differential TX Impedance               |                                                                 | 80                   | 100                      | 120                                                  | Ω     |
| C <sub>TX</sub>                 | AC Coupling Capacitor                      |                                                                 | 75                   |                          | 200                                                  | nF    |
| V <sub>TX</sub> -DIFFP-P        | Differential Peak-to-peak Ouput<br>Voltage | $V_{TX-DIFFP-P} = 2 *  V_{TX-D+} - V_{TX-D-} $                  | 0.8                  |                          | 1.8                                                  | V     |
| LVCMOS Control                  | Pins                                       |                                                                 |                      |                          |                                                      |       |
| V <sub>IH</sub>                 | Input High Voltage                         |                                                                 | $0.65 \times V_{DD}$ |                          | V <sub>DD</sub>                                      | V     |
| V <sub>IL</sub>                 | Input Low Voltage                          |                                                                 |                      |                          | $\begin{array}{c} 0.35 \times \\ V_{DD} \end{array}$ | v     |
| I <sub>IH</sub>                 | Input High Current                         |                                                                 |                      |                          | 250                                                  |       |
| I <sub>IL</sub>                 | Input Low Current                          |                                                                 |                      |                          | 500                                                  | μΑ    |



### AC Switching Characteristics for Clock Buffer ( $V_{DD} = 1.8 \pm 0.1 V$ , $AV_{DD} = 1.8 \pm 0.1 V$ ) <sup>(3)</sup>

| Symbol                                | Parameters                                                                 | Min  | Max. | Units | Notes |
|---------------------------------------|----------------------------------------------------------------------------|------|------|-------|-------|
| T <sub>rise</sub> / T <sub>fall</sub> | Rise and Fall Time (measured between $0.175V$ to $0.525V$ ) <sup>(1)</sup> | 125  | 525  |       | 1     |
| $\Delta T_{rise} / \Delta T_{fall}$   | Rise and Fall Time Variation                                               |      | 75   | ps    | 1     |
| V <sub>HIGH</sub>                     | Voltage High including overshoot                                           | 660  | 900  |       | 1     |
| V <sub>LOW</sub>                      | Voltage Low including undershoot                                           | -200 |      | N     | 1     |
| V <sub>CROSS</sub>                    | Absolute crossing point voltages                                           | 200  | 550  | mv    | 1     |
| $\Delta V_{CROSS}$                    | Total Variation of Vcross over all edges                                   |      | 250  |       | 1     |
| T <sub>DC</sub>                       | Duty Cycle (input duty cycle = $50\%$ ) <sup>(2)</sup>                     | 45   | 55   | %     | 2     |

### Notes:

- 1. Measurement taken from Single Ended waveform.
- 2. Measurement taken from Differential waveform.
- 3. Test configuration is  $R_S = 33.2\Omega$ ,  $Rp = 49.9\Omega$ , and 2pF.

### **Configuration Test Load Board Termination**



Figure 2. Configuration test load board termination

### Note:

• TLA and TLB are 3" transmission lines.



### Packaging Mechanical: 48-contact TQFN (ZD48)



### **Ordering Information**

| Ordering Number | Package Code | Package Description             |  |  |
|-----------------|--------------|---------------------------------|--|--|
| PI2EQX4432DZDE  | ZD           | Pb-free & Green 48-contact TQFN |  |  |

Notes:

- Thermal characteristics can be found on the company web site at www.pericom.com/packaging/
- E = Pb-free & Green
- X suffix = Tape/Reel