## : ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!


## Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

### 1.8V, LVDS Compliant, 4 Differential Channel, 2:1 Mux/DeMux Switch w/Single Enable

## Features

- 4 Differential Channel, 2:1 Mux/DeMux
- LVDS singal switching beyond 3.6 Gbps
- Low insertion loss, -2.88dB @ 2.9 Gbps
- Low bit-to-bit skew, 10ps max
- Low Off Isolation: -77dB@10 MHz
- Low crosstalk: -68dB@10 MHz
- $\mathrm{V}_{\mathrm{CC}}$ Operating Range: +1.5 V to +2.0 V
- ESD Tolerance: 8kV HBM I/O; 2kV HBM select pin
- Packaging (Pb-free \& Green):
- 42-contact TQFN (ZH)


## Description

Pericom Semiconductor's PI2LVD412 is an 8-to-4 differential channel multiplexer/demultiplexer switch. The device is bidirectional and designed specifically for Low Voltage Differential Signals. Users can take advantage of low bit-to-bit skew and high channel-to-channel noise isolation.

## Application

Routes multiple Low Voltage Differential Signals at high-speed data rates with little or no attentuation.

## Block Diagram



## Truth Table

| Function | SEL |
| :---: | :---: |
| $\mathrm{A}_{\mathrm{N}}$ to ${ }_{\mathrm{N}} \mathrm{B}_{1}$ | L |
| $\mathrm{~A}_{\mathrm{N}}$ to ${ }_{\mathrm{N}} \mathrm{B}_{2}$ | H |

## Pin Configuration



## Maximum Ratings

(Above which useful life may be impaired. For user guidelines, not tested.)

```
Storage Temperature
``` \(\qquad\)
``` \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
Supply Voltage to Ground Potential............... -0.5 V to +2.5 V
DC Input Voltage
``` \(\qquad\)
```

DC Output Current

``` \(\qquad\)
```

Power Dissipation.

``` \(\qquad\)
```.0 .5 W
```


## Note:

Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

DC Electrical Characteristics for Switching over Operating Range ( $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=1.5 \mathrm{~V}$ to 2.0 V )

| Paramenter | Description | Test Conditions ${ }^{(\mathbf{1 )}}$ | Min. | Typ. ${ }^{(\mathbf{2})}$ | Max. | Units |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage | Guaranteed HIGH level | $0.65 \times \mathrm{V}_{\mathrm{DD}}$ |  |  |  |
| $\mathrm{V}_{\mathrm{IL}}$ | Input LOW Voltage | Guaranteed LOW level | -0.5 |  | $0.35 \times \mathrm{V}_{\mathrm{DD}}$ |  |
| $\mathrm{V}_{\mathrm{IK}}$ | Clamp Diode Voltage | $\mathrm{V}_{\mathrm{DD}}=$ Max., $\mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$ |  | -0.7 | -1.2 |  |
| $\mathrm{I}_{\mathrm{IH}}$ | Input HIGH Current | $\mathrm{V}_{\mathrm{DD}}=$ Max., $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}}$ |  |  | $\pm 5$ |  |
| $\mathrm{I}_{\mathrm{IL}}$ | Input LOW Current | $\mathrm{V}_{\mathrm{DD}}=$ Max., $\mathrm{V}_{\mathrm{IN}}=\mathrm{GND}$ |  |  | $\pm 5$ |  |
| $\mathrm{R}_{\mathrm{FLAT}(\mathrm{ON})}$ | On-Resistance Flatness $(4)$ | $\mathrm{V}_{\mathrm{DD}}=$ Min., $0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq 1.5 \mathrm{~V}$ <br> and $\mathrm{V}_{\mathrm{DD}}, \mathrm{I}_{\mathrm{IN}}=-40 \mathrm{~mA}$ |  | 1 |  |  |
| $\Delta \mathrm{R}_{\mathrm{ON}}$ | On-Resistance match from cen- <br> ter ports to any other port 5$)$ | $\mathrm{V}_{\mathrm{DD}}=\mathrm{Min} ., 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq 1.5 \mathrm{~V}$, <br> $\mathrm{I}_{\mathrm{IN}}=-40 \mathrm{~mA}$ |  | 0.9 |  |  |

## Power Supply Characteristics

| Parameters | Description | Test Conditions $^{(\mathbf{1 1 )}}$ | Min. | Typ. ${ }^{(\mathbf{2})}$ | Max. | Units |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{I}_{\mathrm{CC}}$ | Quiescent Power Supply Current | $\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\mathrm{IN}}=$ GND or $\mathrm{V}_{\mathrm{DD}}$ |  | 200 |  | $\mu \mathrm{~A}$ |

## Dynamic Electrical Characteristics Over the Operating Range ( $\mathrm{T}_{\mathrm{A}}=-40^{\circ}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}$ )

| Parameter $^{(3)}$ | Description | Test Conditions ${ }^{(\mathbf{1 )}}$ | Min. | Typ. $^{(2)}$ | Max. | Units |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| $X_{\text {TALK }}$ | Crosstalk | See Fig. 1 for Measurement Setup, <br> $\mathrm{f}=10 \mathrm{MHz}$ |  | -68 |  |  |
| OIRR | OFF Isolation | See Fig. 2 for Measurement Setup, <br> $\mathrm{f}=10 \mathrm{MHz}$ |  | -77 | dB |  |
| -3dB BW | Bandwidth | See Fig. 3 for measurement Setup |  | 1.8 |  | GHz |

## Notes:

1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical values are at $\mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ ambient and maximum loading.
3. Guaranteed by design.
4. Flatness is defined as the difference between the max and min value of On-Resistance.
5. $\Delta \mathrm{R}_{\mathrm{ON}}=\mathrm{R}_{\mathrm{ON}} \max -\mathrm{R}_{\mathrm{ON}} \min$

Switching Characteristics ( $\mathrm{T}_{\mathrm{A}}=-40^{\circ}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V} \pm 10 \%$ )

| Paramenter | Description | Min. $^{(\mathbf{1})}$ | Max. $^{(\mathbf{1})}$ | Units |
| :--- | :--- | :---: | :---: | :---: |
| tpZH, tPZL | Line Enable Time - SEL to AN, BN | 0.5 | 8.0 | $\mathbf{n c}$ |
| tpHZ, tPLZ | Line Disable Time - SEL to AN, BN | 0.5 | 4.0 |  |
| tb-b | Bit-to-bit skew |  | 10 | ps |
| tch-ch | Channel-to-channel skew |  | 35 | ps |

## Note:

1. For max. or min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device type.


Fig 1. Crosstalk Setup


Fig 2. Off-isolation setup


Fig 3. Bandwidth Setup


Fig 4. S21 (Insertion Loss) and S11 (Reflection Signal) Setup


Fig 5. Crosstalk, $\mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V}, \mathbf{2 5}^{\circ} \mathrm{C}$


Fig 6. Off Isolation, $\mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V}, 25^{\circ} \mathrm{C}$

|  |  |
| :---: | :---: |
|  | 1.8:GHz SELECT |
|  |  |
|  | $\begin{aligned} & \text { BACK } \\ & \text { SPACE } \end{aligned}$ |
|  | HId 0 ¢ 0 : |
|  | DONE |
|  | STOR DEV [DISK] |
|  |  |

Fig 7. - $\mathbf{3}$ dB Bandwidth, $\mathrm{V}_{\mathrm{DD}}=\mathbf{1 . 8 V}, \mathbf{2 5}^{\circ} \mathrm{C}$


Fig 8. Return and Insertion Loss Log Diagram from 30 kHz to 6.0 GHz using Matching Cables, $\mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V}, 25 \mathrm{C}$

## Test Circuit for Electrical Characteristics



Notes:

- $\mathrm{C}_{\mathrm{L}}=$ Load capacitance: includes jig and probe capacitance.
- $\mathrm{R}_{\mathrm{T}}=$ Termination resistance: should be equal to $\mathrm{Z}_{\mathrm{OUT}}$ of the Pulse Generator.
- Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- All input impulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{R}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{F}} \leq 2.5 \mathrm{~ns}$.
- The outputs are measured one at a time with one transition per measurement.


## Switch Positions

| Test | Switch |
| :--- | :--- |
| tplZ, $^{\text {tPZL (output on B-side) }}$ | $2 \times \mathrm{V}_{\mathrm{CC}}$ |
| tpHZ, $^{\text {t }}$ PZH (output on B-side) | GND |
| Prop Delay | Open |

## Test Circuit for Dynamic Electrical Characteristics



## Switching Waveforms



Voltage Waveforms Enable and Disable Times

## Packaging Mechanical: 42-Contact TQFN (ZH)



08-0098

## Ordering Information

| Ordering Code | Package Code | Package Description |
| :---: | :---: | :---: |
| PI2LVD412ZHE | ZH | Pb-free \& Green, 42-Contact TQFN |

## Notes:

- Thermal characteristics can be found on the company web site at www.pericom.com/packaging/
- $\mathrm{E}=\mathrm{Pb}$-free and Green
- X Suffix = Tape/Reel

