imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

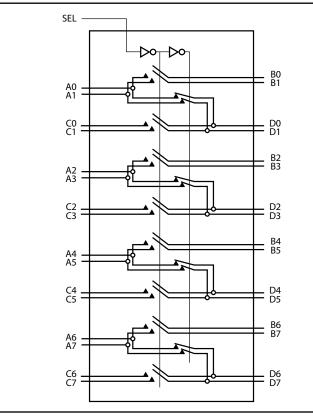
PI2PCIE2422

PCI Express Gen II Compliant, 8-Differential Channel Switch with 8:4 Mux/DeMux Option

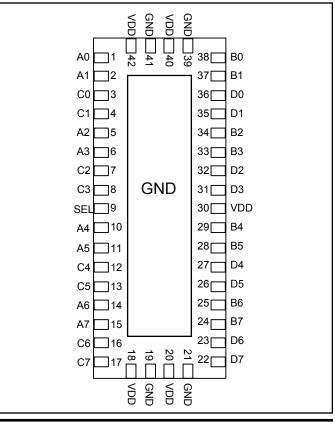
Features

- 8 Differential Channel SPST switch with Mux/DeMux option
- PCI Express Gen II performance
- Low Bit-to-Bit Skew: 10ps (between +/- signals)
- Low Crosstalk: -15dB @ 3.0 GHz
- Low Off Isolation: -26db @ 3.0 GHz
- V_{DD} Operating Range: +1.4V to +1.8V $\pm 10\%$
- ESD Tolerance >2kV HBM
- Packaging (Pb-free & Green): 42-contact TQFN (ZH42)

Description


Pericom semiconductor's PI2PCIE2422 is an 8 to 4 channel differential multiplexer/demultiplexer featuring 8-channel pass-through. It supports two full PCI Express lanes at 5.0Gbps Gen II performance.

With the select control input low Port A connects to Port B, and Port C connects to port D for an 8-channel differential pass-though. When the select control input is high Port A connects to Port D, and Port B and Port C are in a high-impedance state. The mux/demux function is between Port A and Ports B or D as determined by the select input control.


Truth Table

Function	SEL
Ax = Bx $Cx = Dx$	L
Ax = Dx $B = C = Hi-Z$	Н

Block Diagram

Pin Diagram

Pin Description

Pin #	Pin Name	I/O	Description	
1, 2	A0, A1	I/O	Signal I/O (typically a differential pair)	
3, 4	C0, C1	I/O	Signal I/O (typically a differential pair)	
5, 6	A2, A3	I/O	Signal I/O (typically a differential pair)	
7, 8	C2, C3	I/O	Signal I/O (typically a differential pair)	
10, 11	A4, A5	I/O	Signal I/O (typically a differential pair)	
12, 13	C4, C5	I/O	Signal I/O (typically a differential pair)	
14, 15	A6, A7	I/O	Signal I/O (typically a differential pair)	
16, 17	C6, C7	I/O	Signal I/O (typically a differential pair)	
22, 23	D7, D6	I/O	Signal I/O (typically a differential pair)	
24, 25	B7, B6	I/O	Signal I/O (typically a differential pair)	
26, 27	D5, D4	I/O	Signal I/O (typically a differential pair)	
28,29	B5, B4	I/O	Signal I/O (typically a differential pair)	
31, 32	D3, D2	I/O	Signal I/O (typically a differential pair)	
33, 34	B3, B2	I/O	Signal I/O (typically a differential pair)	
35, 36	D1, D0	I/O	Signal I/O (typically a differential pair)	
37, 38	B1, B0	I/O	Signal I/O (typically a differential pair)	
9	SEL	Ι	Operation mode Select	
			(when SEL=0: $A \rightarrow B$, $C \rightarrow D$, when SEL=1: $A \rightarrow D$, B & C=Hi-Z)	
18, 20, 30, 40, 42	V _{DD}	Pwr	1.8V positive supply voltage	
19, 21, 39, 41	GND	Pwr	Power ground	

Maximum Ratings

(Above which useful life may be impaired. For user guidelines, not tested.)

Storage Temperature	65°C to +150°C
Supply Voltage to Ground Potential	0.5V to +2.5V
DC Input Voltage	0.5V to V _{DD}
DC Output Current	
Power Dissipation	

Note: Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

DC Electrical Characteristics for Switching over Operating Range $(T_A = -40^{\circ}C \text{ to } +85^{\circ}C, V_{DD} = 1.4 \text{ V to } 1.8 \text{ V} \pm 10\%)$

Paramenter	Description	Test Conditions	Min	Typ ⁽¹⁾	Max	Units
V _{IH}	Input HIGH Voltage	Guaranteed HIGH level	$0.65 \text{ x V}_{\text{DD}}$			
V _{IL}	Input LOW Voltage	Guaranteed LOW level	-0.5		0.35 x V _{DD}	v
V _{IK}	Clamp Diode Voltage	$V_{DD} = Max., I_{IN} = -18mA$		-0.7	-1.2	
IIH	Input HIGH Current	$V_{DD} = Max., V_{IN} = V_{DD}$			±5	
IIL	Input LOW Current	$V_{DD} = Max., V_{IN} = GND$			±5	μΑ
R _{ON}	On Resistance	$V_{DD} = Min., V_{IN} = 1.3V, I_{IN} = 40mA$			10	Ohm
C _{ON(AB)}	Capacitance on A/B, C/D	$V_{IN} = 0, V_{DD} = 1.8V$		2.0		pF

Note:

1. Typical values are at $V_{DD} = 1.5V$, $T_A = 25^{\circ}C$ ambient and maximum loading.

Power Supply Characteristics

Parameters	Description	Test Conditions ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units
I _{DD}	Quiescent Power Supply Current	$V_{DD} = Max., V_{IN} = GND \text{ or } V_{DD}$			400	μA

Notes:

1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device type.

2. Typical values are at $V_{DD} = 1.8V$, $T_A = 25^{\circ}C$ ambient and maximum loading.

Dynamic Electrical Characteristics Over the Operating Range

 $(T_{A} = -40^{\circ} \text{ to } +85^{\circ}\text{C}, V_{DD} = 1.8\text{V}\pm10\%, \text{GND}=0\text{V})$

Parameter	Description	Test Conditions	Min.	Typ. ⁽¹⁾	Max.	Units
X _{TALK}	Crosstalk	See Fig. 1 for Measurement Setup, $f = 3.00 \text{ GHz}$ f = 100 MHz		-15 -50		
O _{IRR}	OFF Isolation	See Fig. 2 for Measurement Setup, $f = 3.00 \text{ GHz}$ f = 100 MHz		-15 -45		dB
I _{LOSS}	Differential Inser- tion Loss	f=3 GHz		-3		
BW	Bandwidth (-3dB)			2.5		GHz

Notes:

1. Guaranteed by design. Typical values are at $V_{DD} = 1.5V$, $T_a = 25^{\circ}C$ ambient and maximum loading.

DPERICOM[®]

PI2PCIE2422 PCI Express Gen II Compliant, 8-Differential Channel Switch with 8:4 Mux/DeMux Option

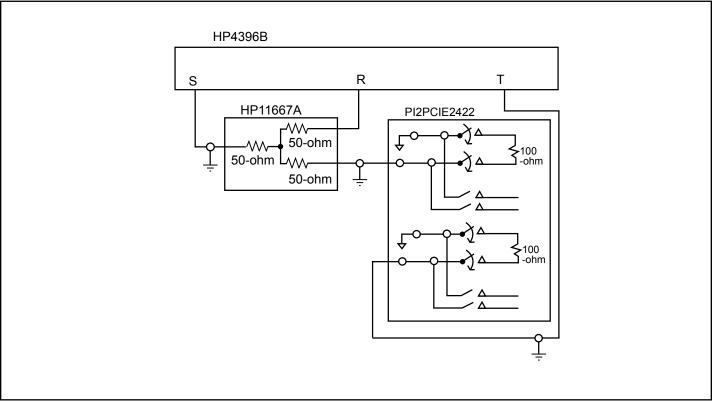


Fig 1: Crosstalk Setup

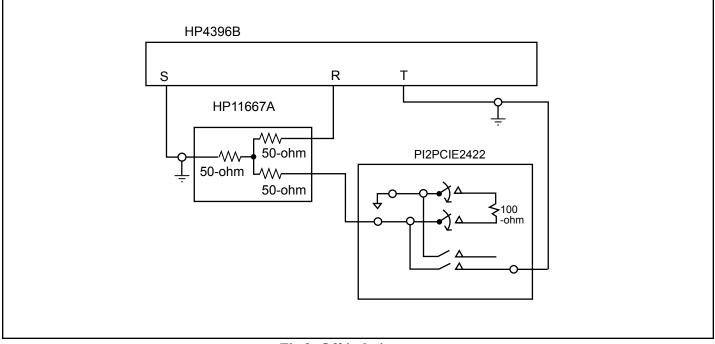


Fig 2: Off-isolation setup

PERICOM[®]

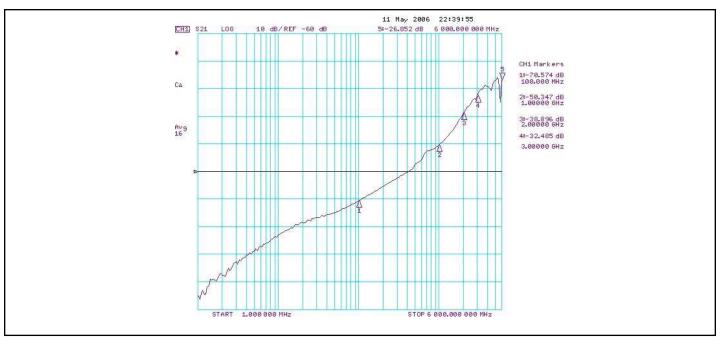


Fig 3: Typical Crosstalk Plot from 1MHz to 6.0GHz, VDD=1.5V, 25°C

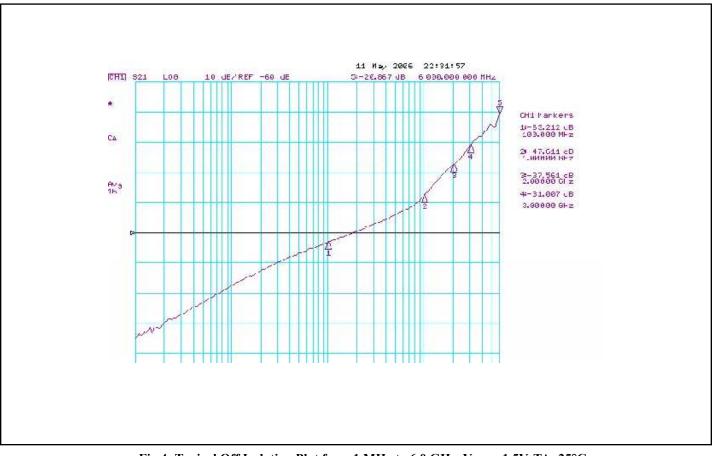
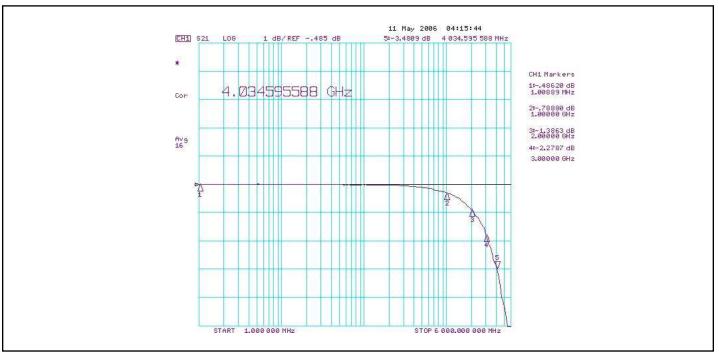
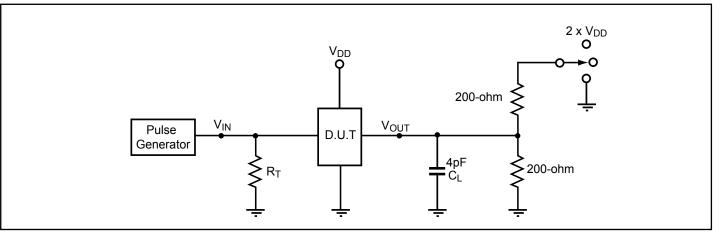


Fig 4: Typical Off Isolation Plot from 1 MHz to 6.0 GHz, V_{DD} = 1.5V, TA=25°C

PERICOM[®]

PI2PCIE2422 PCI Express Gen II Compliant, 8-Differential Channel Switch with 8:4 Mux/DeMux Option




Fig 5: Typical Insertion Loss Plot from 1MHz to 6.0GHz, VDD=1.5V, 25C

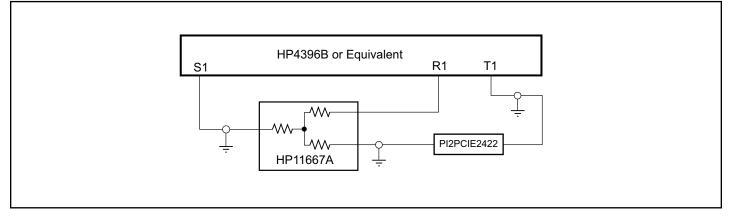
Switching Characteristics

 $(T_A = -40^{\circ} \text{ to } +85^{\circ}\text{C}, V_{DD} = 1.5\text{V}\pm10\%)$

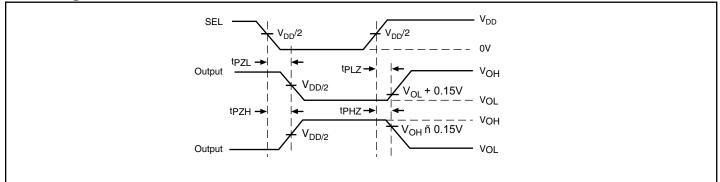
Paramenter	Description	Min.	Тур.	Max.	Units
tpZH, tpZL	Line Enable Time - SEL to A _N , B _N	0.5		15	
t _{PHZ} , tPLZ	Line Disable Time - SEL to A_N , B_N	0.5		15 ns	
t _{b-b}	Bit-to-bit skew within same differential pair			10	
t _{ch} -t _{ch}	Channel-to-channel timing skew			50	ps

Test Circuit for Electrical Characteristics⁽¹⁻⁵⁾

7


Notes:

- 1. C_L = Load capacitance: includes jig and probe capacitance.
- 2. R_T = Termination resistance: should be equal to Z_{OUT} of the Pulse Generator
- 3. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.
- Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- 4. All input impulses are supplied by generators having the following characteristics: $PRR \le MHz$, $Z_0 = 50\Omega$, $t_R \le 2.5ns$, $t_F \le 2.5ns$.
- 5. The outputs are measured one at a time with one transition per measurement.


Switch Positions

Test	Switch
t _{PLZ} , t _{PZL} (output on B-side)	2 x V _{DD}
t _{PHZ} , t _{PZH} (output on B-side)	GND
Prop Delay	Open

Test Circuit for Dynamic Electrical Characteristics

Switching Waveforms

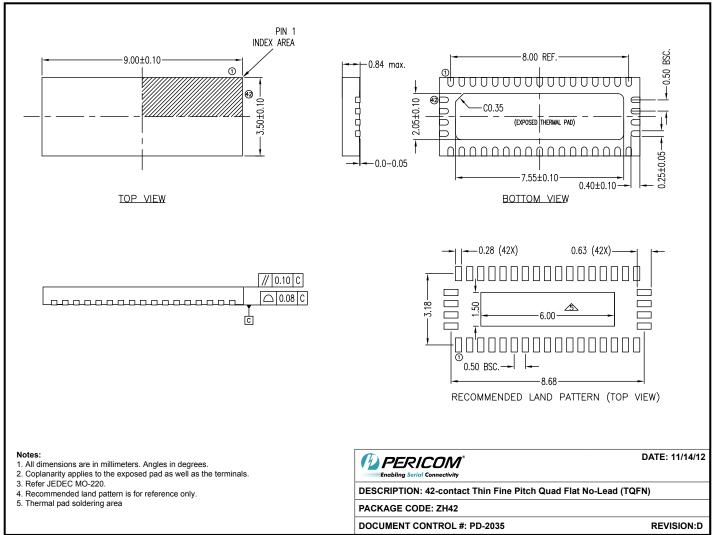
Voltage Waveforms Enable and Disable Times

Applications Information

Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd

PCI Express Application Specific Measurements and Test Set-up

Figure 6: the test set-up for the PI2PCIE2422 eye test


9

Notes:

- 1. A modified PI2PCIE2422 application board with 16-inch differential trace is used for Eye management.
- 2. Agilent N4902B BERT is used to generate a K28.5 pattern at 5 Gbps with 500mV single-end swing.
- 3. To create the P12PCIE2422-free test condition, the P12PCIE2422 chip is removed and a wire is connected between the trace and output probe.
- 4. An Agilent Infinuum 54855A is used and Serial Data Analysis software is ran to capture the Eye.

12-0529

Ordering Information

Ordering Code	Package Code	Package Description
PI2PCIE2422ZHE	ZH	42-contact, Thin Fine Pitch Quad Flat No-Lead (TQFN)

Notes:

1. Thermal characteristics can be found on the company web site at www.pericom.com/packaging/

2. E = Lead-free and green

2. X suffix = tape and reel

Pericom Semiconductor Corporation • 1-800-435-2336 • www.pericom.com