imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Cool-Power[®] ZVS Switching Regulators PI352x-00

RoHS

30 – 60V_{IN} Cool-Power ZVS Buck Regulator

Product Description

The PI352x-00 is a family of high input voltage, wide input range DC-DC ZVS Buck regulators integrating controller, power switches, and support components all within a high density System-in-Package (SiP).

The integration of a high-performance Zero-Voltage Switching (ZVS) topology, within the PI352x-00 series, increases point of load performance providing best in class power efficiency. The PI352x-00 requires only an external inductor, two voltage selection resistors and minimal capacitors to form a complete DC-DC switch mode buck regulator.

Device	Ou	1 Mary		
Device	Set	Range	l _{out} Max	
PI3523-00-LGIZ	3.3V	2.2 – 4V	22A	
PI3525-00-LGIZ	5.0V	4.0 - 6.5V	20A	
PI3526-00-LGIZ	12V	6.5 – 14V	18A	

Features & Benefits

- High Efficiency HV ZVS Buck Topology
- Wide input voltage range of 30 60V
- Power-up into pre-biased load ≤ 6.0V
- Parallel capable with single wire current sharing
- Input Over/Undervoltage Lockout (OVLO/UVLO)
- Output Overvoltage Protection (OVP)
- Overtemperature Protection (OTP)
- Fast and slow current limits
- Differential amplifier for output remote sensing
- User adjustable soft start & tracking
- –40 to 120°C operating range (T_{INT})

Applications

- HV to PoL Buck Regulator Applications
- Computing, Communications, Industrial, Automotive Equipment

Package Information

• 10 x 14 x 2.6mm LGA SiP

Contents

Order Information	3
Thermal, Storage and Handling Information	3
Absolute Maximum Ratings	3
Functional Block Diagram	4
Pin Description	5
Package Pinout	6
PI352x-00 Common Electrical Characteristics	7
PI3523-00 (3.3V _{OUT}) Electrical Characteristics	8
PI3525-00 (5.0V _{OUT}) Electrical Characteristics	15
PI3526-00 (12V _{OUT}) Electrical Characteristics	22
Functional Description	29
ENABLE (EN)	29
Remote Sensing	29
Soft Start	29
Output Voltage Selection	29
Output Current Limit Protection	29
Input Undervoltage Lockout	29
Input Overvoltage Lockout	30
Output Overvoltage Protection	30
Overtemperature Protection	30
Pulse Skip Mode (PSM)	30
Variable Frequency Operation	30
Thermal Characteristics	30

SiP Power Dissipation as Percentage of Total System Losses	33
Application Description	34
Output Voltage Set Point	34
Soft Start Adjust and Tracking	34
Inductor Pairing	35
Parallel Operation	35
Filter Considerations	35
VDR Bias Regulator	36
Layout Guidelines	37
Recommended PCB Footprint and Stencil	38
Package Drawings	39
Revision History	40
Product Warranty	41

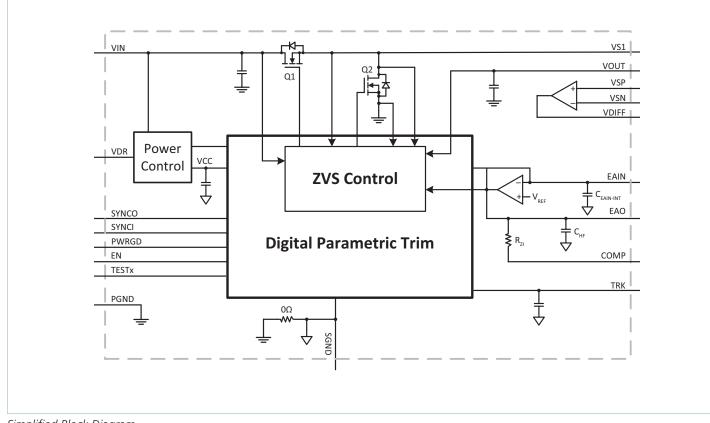
Order Information

Product	Nominal Output	Rated I _{OUT}	Package	Transport Media
PI3523-00-LGIZ	3.3V	22A	10 x 14mm LGA	TRAY
PI3525-00-LGIZ	5.0V	20A	10 x 14mm LGA	TRAY
PI3526-00-LGIZ	12V	18A	10 x 14mm LGA	TRAY

Thermal, Storage and Handling Information

Name	Rating
Storage Temperature	–65 to 150°C
Internal Operating Temperature	-40 to 120°C
Soldering Temperature for 20 seconds	245°C
MSL Rating	3
ESD Rating, JESD22-A114F, JS-002-2014	2kV HBM; 1kV CDM, respectively

Absolute Maximum Ratings


Name	Rating
V _{IN}	–0.7 to 75V
VS1	-0.7V _{DC} to 75V
V _{OUT}	–0.5 to 25V
SGND	±100mA
TRK	–0.3 to 5.5V, ±30mA
VDR, SYNCI, SYNCO, PWRGD, EN, COMP, EAO, EAIN, VDIFF, VSN, VSP, TESTx	–0.3 to 5.5V, ±5mA

Notes: Stresses beyond these limits may cause permanent damage to the device. Operation at these conditions or conditions beyond those listed in the Electrical Specifications table is not guaranteed. All voltages are referenced to PGND unless otherwise noted.

Functional Block Diagram

Simplified Block Diagram

Pin Description

Name	Location	1/0	Description
VS1	Block 1	Power	Switching Node: and ZVS sense for power switches.
VIN	Block 3	Power	Input Voltage: and sense for UVLO, OVLO and feed forward ramp.
VDR	5К	I/O	Gate Driver VCC: Internally generated 5.1V. May be used as a bias supply for low power external loads. See Application Description for important considerations.
SYNCI	4К	I	Synchronization Input: Synchronize to the falling edge of external clock frequency. SYNCI is a high impedance digital input node and should always be connected to SGND when not in use. The PI352x-00 family is not optimized for external synchronization functionality. Refer to Application Description of Parallel Operation for details.
SYNCO	ЗК	0	Synchronization Output: Outputs a high signal at the start of each clock cycle for the longer of $\frac{1}{2}$ of the minimum period or the on time of the high side power MOSFET.
TEST1	2К	I/O	Test Connections: Use only with factory guidance. Connect to SGND for proper operation.
TEST2	1K	I/O	Test Connections: Use only with factory guidance. Connect to SGND for proper operation.
TEST3	1J	I/O	Test Connections: Use only with factory guidance. Connect to SGND for proper operation.
TEST4	1H	I/O	Test Connections: Use only with factory guidance. Connect to SGND for proper operation.
TEST5	1E	I/O	Test Connections: Use only with factory guidance. Connect to SGND for proper operation.
PWRGD	1G	0	Power Good: High impedance when regulator is operating and V_{OUT} is in regulation. Otherwise pulls to SGND.
EN	1F	I/O	Enable Input: Regulator enable control. When asserted active or left floating: regulator is enabled. Otherwise regulator is disabled.
SGND	Block 5		Signal Ground: Internal logic ground for EA, TRK, SYNCI, SYNCO communication returns. SGND and PGND are star connected within the regulator package.
TRK	1C	I	Soft-Start and Track Input: An external capacitor may be connected between TRK pin and SGND to increase the rise time of the internal reference during soft start.
СОМР	1B	0	Compensation Capacitor: Connect capacitor for control loop dominant pole. See Error Amplifier section for details. A default C_{COMP} of 4.7nF is used in the example.
EAO	1A	0	Error amp output: External connection for additional compensation and current sharing.
EAIN	2A	I	Error Amp Inverting Input: Connection for the main V_{OUT} feedback divider tap.
VDIFF	3A	0	Independent Amplifier Output: Active only when module is enabled.
VSN	4A	I	Independent Amplifier Inverting Input: If unused connect in unity gain.
VSP	5A	I	Independent Amplifier Non-Inverting Input: If unused connect to SGND.
VOUT	6A,B	Power	Direct V_{OUT} Connect: for per-cycle internal clamp node and feed-forward ramp.
PGND	Block2	Power	Power Ground: V_{IN} and V_{OUT} power returns.

Package Pinout

	A	В	С	D	E	F	G	Н	J	К
1	EAO	СОМР	TRK	SGND	TEST5	EN	PWRG0	TEST4	TEST3	TEST2
2	EAIN	SGND	SGND	SGND	SGND	PGND	PGND	PGND	PGND	TEST1
3	VDIFF	SGND	SGND	SGND	SGND	PGND	PGND	PGND	PGND	SYNCO
4	VSN	SGND	PGND	PGND	PGND	PGND	PGND	PGND	PGND	SYNC1
5	VSP	PGND	PGND	PGND	PGND	PGND	PGND	PGND	PGND	VDR
6	VOUT	VOUT	PGND	PGND	PGND	PGND	PGND	PGND	PGND	PGND
7										
8	VIN	VIN	VIN	VIN	VIN	VIN	VIN	VIN	VIN	VIN
9	VIN	VIN	VIN	VIN	VIN	VIN	VIN	VIN	VIN	VIN
10	VIN	VIN	VIN	VIN	VIN	VIN	VIN	VIN	VIN	VIN
11										
12	PGND	PGND	PGND	PGND	PGND	PGND	PGND	PGND	PGND	PGND
13										
14	VS1	VS1	VS1	VS1	VS1	VS1	VS1	VS1	VS1	VS1

PI332x & PI352x TOP THROUGH VIEW OF PRODUCT

Pin Block Name	Group of pins
VIN	A8-10, B8-10, C8-10, D8-10, E8-10, F8-10, G8-10, H8-10, J8-10, K8-10
VS1	A14, B14, C14, D14, E14, F14, G14, H14, J14, K14
PGND	A12, B12, C12, D12, E12, F12, G12, H12, J12, K12
PGND	B5, C4-6, D4-6, E4-6, F2-6, G2-6, H2-6, J2-6, K6
VOUT	Аб, Вб
SGND	B2-4, C2-3, D1-3, E2-3

PI352x-00 Common Electrical Characteristics

Specifications apply for -40° C < T_{INT} < 120°C, V_{IN} = 48V, EN = High, unless otherwise noted.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
		Differential Amp				
Open Loop Gain			96	120	140	dB
Small Signal Gain-bandwidth			5	7	12	MHz
Input Offset				0.5	1	mV
Common Mode Input Range			-0.1		2.5	V
Differential Mode Input Range					2	V
Input Bias Current			-1		1	μA
Output Current			-1		1	mA
Maximum V _{OUT}		$I_{VDIFF} = -1 mA$	4.85			V
Minimum V _{OUT}		$I_{VDIFF} = -1mA$			20	mV
Capacitive Load Range for Stability			0		50	pF
Slew Rate				11		V/µs
		PWRGD				
V _{OUT} Rising Threshold	$V_{\text{PG}_\text{HI}\%}$		78	84	90	% V _{out_c}
V _{OUT} Falling Threshold	V _{PG_LO%}		75	81	87	% V _{out_e}
PWRGD Output Low	V_{PG_SAT}	Sink = 4mA			0.4	V
		VDR				
Voltage Set Point	V _{VDR}	$V_{IN_DC} > 10V$	4.9	5.05	5.2	V
External Loading	I _{VDR}	See Application Description for details	0		2	mA
		Enable				
High Threshold	$V_{\text{EN}_{\text{HI}}}$		0.9	1.0	1.1	V
Low Threshold	$V_{EN_{LO}}$		0.7	0.8	0.9	V
Threshold Hysteresis	$V_{\text{EN}_{\text{HYS}}}$		100	200	300	mV
Pull-Up Voltage Level for Source Current	V _{EN_PU}			2		V
Pull-Up Current	I _{EN_PU_POS}	$V_{\rm IN}$ > 8V, excluding t_{FR_DLY}		50		μΑ
		Reliability				
MTBF		MIL-HDBK-217, 25°C, Ground Benign: GB		12.6		MHrs
		Telcordia SR-332, 25°C, Ground Benign: GB		96.9		MHrs

^[a] All parameters reflect regulator and inductor system performance. Measurements were made using a standard PI352x evaluation board with 3 x 3 " dimensions and 4 layer, 2oz copper. Refer to inductor pairing table within Application Description section for specific inductor manufacturer and value.

^[b] Regulator is assured to meet performance specifications by design, test correlation, characterization, and/or statistical process control.

Output voltage is determined by an external feedback divider ratio.

^[c] Output current capability may be limited and other performance may vary from noted electrical characteristics when V_{OUT} is not set to nominal.

^[d] Refer to Output Ripple plots.

^[e] Refer to Load Current vs. Ambient Temperature curves.

^[f] Refer to Switching Frequency vs. Load current curves.

PI3523-00 (3.3V_{OUT}) Electrical Characteristics

Specifications apply for -40° C < T_{INT} < 120°C, V_{IN} = 48V, EN = High, unless otherwise noted.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
		Input Specifications				
Input Voltage	V _{IN_DC}		30	48	60	V
Input Current	I _{IN_DC}	$V_{IN} = 48$ V, $T_{CASE} = 25$ °C, $I_{OUT} = 22$ A		1.69		А
Input Current At Output Short (fault condition duty cycle)	I _{IN_Short}	Short at terminals		4.7		mA
Input Quiescent Current	I _{Q_VIN}	Disabled		0.75	1.2	mA
Input Quiescent Current	I _{Q_VIN}	Enabled, no load, $T_{CASE} = 25^{\circ}C$		1.8		mA
Input Voltage Slew Rate	V _{IN_SR}				1	V/µs
Input capacitance, Internal	C _{IN_INT}	Effective value V_{IN} = 48V, 25°C		0.50		μF
		Detect for The Line				
EAIN Voltage Total Regulation	V _{EAIN}	Output Specifications	0.975	0.990	1.005	V
Output Voltage Trim Range		[b] [c]	2.2	3.3	4.0	V
Line Regulation	V _{OUT_DC} ΔV _{OUT} /ΔV _{IN}	@ 25°C, 30V < V _{IN} < 60V	2.2	0.10	4.0	%
Load Regulation	$\Delta V_{OUT} / \Delta I_{OUT}$	@ 25°C, 2A < I _{OUT} < 22A		0.10		%
Output Voltage Ripple		$I_{OUT} = 20A, C_{OUT} = 8 \times 100 \mu F, 20 MHz BW [d]$		76		mVp-p
Output Current	V _{OUT_AC}	$C_{OUT} = 20A, C_{OUT} = 8 \times 100 \mu r, 200 \mu r,$	0	70	22	A A
Current Limit	I _{OUT_DC}	Typical current limit based on nominal 230nH inductor.	0	25.3	22	A
Maximum Array Size	I _{OUT_CL}			23.5	3	Module
Output Current, array of 2	N _{PARALLEL}	Total array capability, ^[b] see applications section for details	0		[g]	A
Output Current, array of 3	IOUT_DC_ARRAY2	Total array capability, ^(b) see applications section for details	0		[g]	A
output current, unay or 5	'OUT_DC_ARRAY3		0			
		Protection				
Input UVLO Start Threshold	V _{UVLO_START}			27.0	29.1	V
Input UVLO Stop Hysteresis	V _{UVLO_HYS}		1.66	2.08	2.50	V
Input UVLO Response Time				1.25		μs
Input OVLO Stop Threshold	V _{OVLO}		62	64.3		V
Input OVLO Start Hysteresis	V _{OVLO_HYS}	Hysteresis active when OVLO present for at least $t_{\mbox{\scriptsize FR_DLY}}$	0.90	1.17	1.60	V
Input OVLO Response Time	t _f			1.25		μs
Output Overvoltage Protection, Relative	V _{OVP_REL}	Above set V _{OUT}		20		%
Output Overvoltage Protection, Absolute	V _{OVP_ABS}		4.5	5.2		V

^[a] All parameters reflect regulator and inductor system performance. Measurements were made using a standard PI352x evaluation board with 3 x 3" dimensions and 4 layer, 2oz copper. Refer to inductor pairing table within Application Description section for specific inductor manufacturer and value.

^[b] Regulator is assured to meet performance specifications by design, test correlation, characterization, and/or statistical process control. Output voltage is determined by an external feedback divider ratio.

^[c] Output current capability may be limited and other performance may vary from noted electrical characteristics when V_{OUT} is not set to nominal.

^[d] Refer to Output Ripple plots.

^[e] Refer to Load Current vs. Ambient Temperature curves.

^[f] Refer to Switching Frequency vs. Load current curves.

Specifications apply for $-40^{\circ}C < T_{INT} < 120^{\circ}C$, $V_{IN} = 48V$, EN = High, unless otherwise noted.

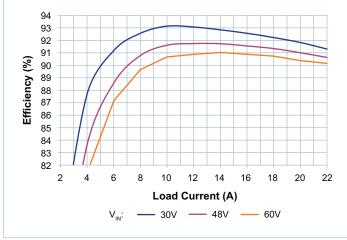
Parameter	Symbol	Conditions	Min	Тур	Max	Uni
		Timing				
Switching Frequency	f _s	^[f] While in Discontinuous Conduction Mode (DCM) only, SYNCI grounded	470	500	530	kHz
Fault Restart Delay	t _{FR_DLY}			30		ms
		Synchronization Input (SYNCI)				
Synchronization Frequency Range	f _{synci}	–50% and +10% relative to set switching frequency (f_s), while in DCM operating mode only. $^{[c][f]}$	250		550	kHz
SYNCI Threshold	V _{SYNCI}			2.5		V
		Synchronization Output (SYNCO)				
SYNCO High	V _{SYNCO_HI}	Source 1mA	4.5			V
SYNCO Low	V _{SYNCO_LO}	Sink 1mA			0.5	V
SYNCO Rise Time	t _{synco_rt}	20pF load		10		ns
SYNCO Fall Time	t _{synco_ft}	20pF load		10		ns
		Soft Start, Tracking and Error Amplifier				
TRK Active Range (Nominal)	V _{TRK}		0		1.4	V
TRK Enable Threshold	V _{TRK_OV}		20	40	60	m∖
TRK to EAIN Offset	V _{EAIN_OV}		50	80	110	m∖
Charge Current (Soft Start)	I _{TRK}		30	50	70	μA
Discharge Current (Fault)	I _{TRK_DIS}	$V_{TRK} = 0.5V$		8.7		mA
TRK Capacitance, Internal	C _{TRK_INT}			47		nF
Soft-Start Time	t _{ss}	$C_{TRK_EXT} = 0\mu F$	0.6	0.94	1.6	ms
Error Amplifier Trans-Conductance	GM _{EAO}	[b]		5.1		mS
PSM Skip Threshold	PSM _{SKIP}	[b]		0.6		V
EAIN Capacitance, Internal	C _{EAIN_INT}			56		pF
Error Amplifier Output Impedance	R _{OUT}	[b]	1			M۵
Internal Compensation Capacitor	C _{HF}	[b]		56		pf
Internal Compensation Resistor	R _{ZI}	[b]		6		kΩ

^[a] All parameters reflect regulator and inductor system performance. Measurements were made using a standard PI352x evaluation board with 3 x 3 " dimensions and 4 layer, 2oz copper. Refer to inductor pairing table within Application Description section for specific inductor manufacturer and value.

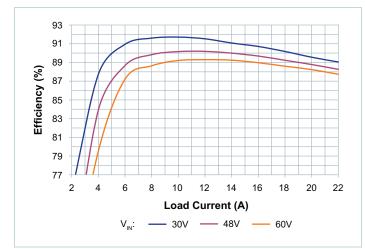
^[b] Regulator is assured to meet performance specifications by design, test correlation, characterization, and/or statistical process control.

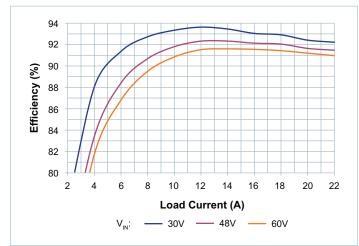
Output voltage is determined by an external feedback divider ratio.

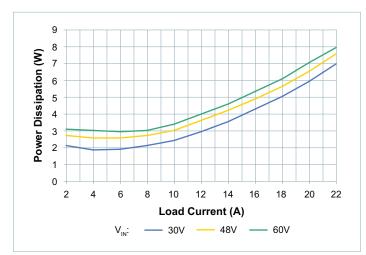
^[C] Output current capability may be limited and other performance may vary from noted electrical characteristics when V_{OUT} is not set to nominal.

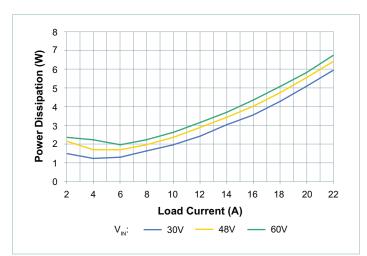

^[d] Refer to Output Ripple plots.

^[e] Refer to Load Current vs. Ambient Temperature curves.


^[f] Refer to Switching Frequency vs. Load current curves.


PI3523-00 (3.3V_{OUT}) Electrical Characteristics (Cont.)




Figure 2 — System Efficiency, Low Trim, Board Temperature = 25°C

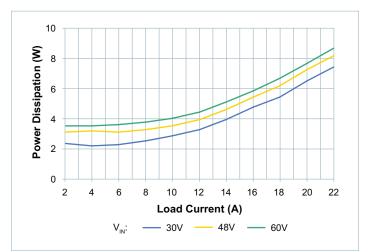
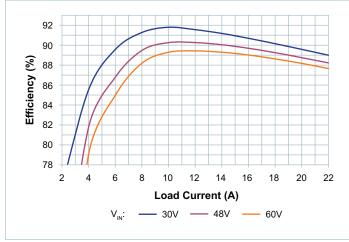
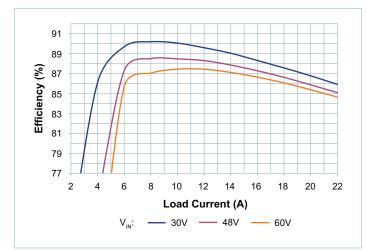
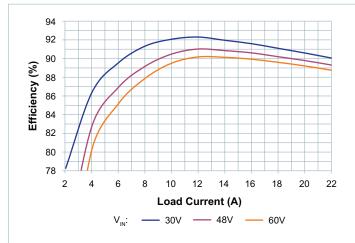


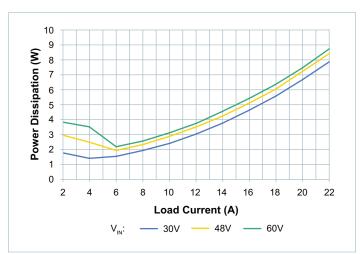
Figure 4 — System Power Dissipation, Nominal Trim, Board Temperature = 25°C


Figure 5 — System Power Dissipation, Low Trim, Board Temperature = 25°C


Figure 6 — System Power Dissipation, High Trim, Board Temperature = 25°C


PI3523-00 (3.3V_{OUT}) Electrical Characteristics (Cont.)




Figure 8 — System Efficiency, Low Trim, Board Temperature = 100°C

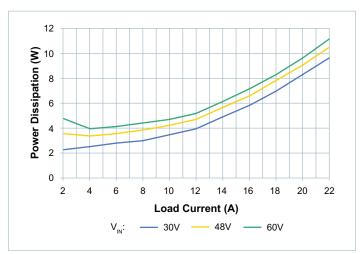


Figure 10 — System Power Dissipation, Nominal Trim, Board Temperature = 100°C

Figure 11 — System Power Dissipation, Low Trim, Board Temperature = 100°C

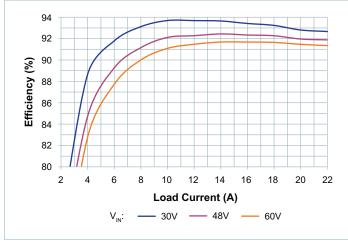
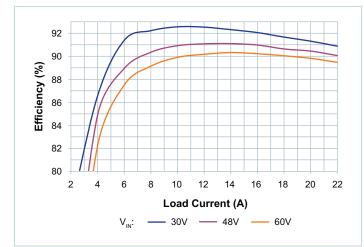


Figure 12 — System Power Dissipation, High Trim, Board Temperature = 100°C



Cool-Power[®] ZVS Switching Regulators Page 11 of 41

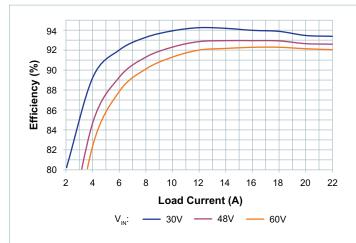

PI3523-00 (3.3V_{OUT}) Electrical Characteristics (Cont.)

Figure 14 — System Efficiency, Low Trim, Board Temperature = −40°C

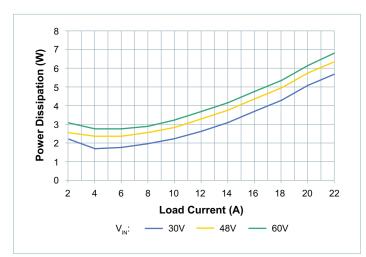
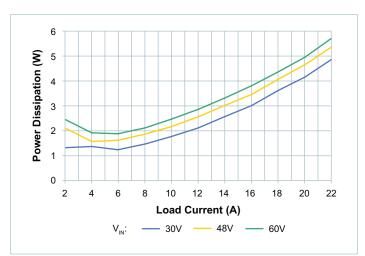
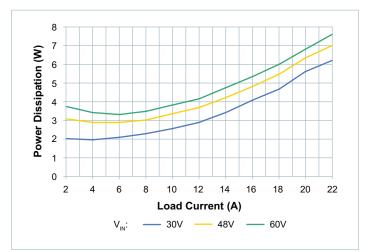
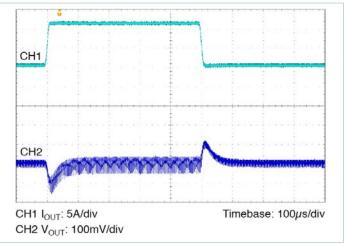
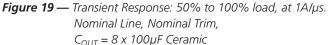
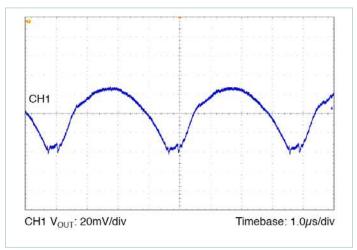




Figure 16 — System Power Dissipation, Nominal Trim, Board Temperature = −40°C

Figure 17 — System Power Dissipation, Low Trim, Board Temperature = -40°C




Figure 18 — System Power Dissipation, High Trim, Board Temperature = −40°C



Cool-Power[®] ZVS Switching Regulators Page 12 of 41

PI3523-00 (3.3V_{OUT}) Electrical Characteristics (Cont.)

Figure 20 — Output Voltage Ripple: Nominal Line, Nominal Trim, 100% load, $C_{OUT} = 8 \times 100 \mu F$ Ceramic

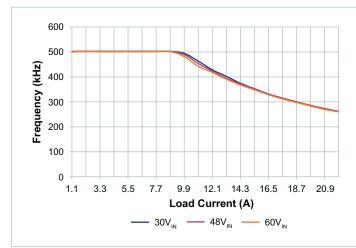


Figure 21 — Switching Frequency vs. Load, Nominal Trim

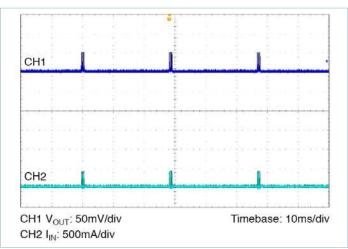


Figure 22 — Output Short Circuit, Nominal Line

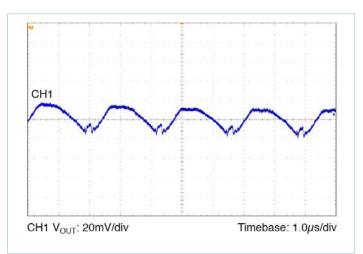
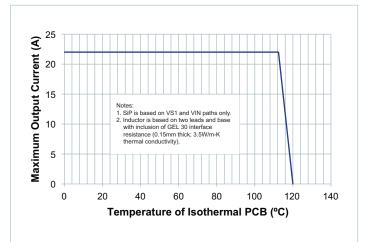



Figure 23 — Output Voltage Ripple: Nominal Line, Nominal Trim,50% load, $C_{OUT} = 8 \times 100 \mu F$ Ceramic

Figure 24 — System Thermal Specified Operating Area: Max I_{OUT} at Nominal Trim vs. temperature at locations noted

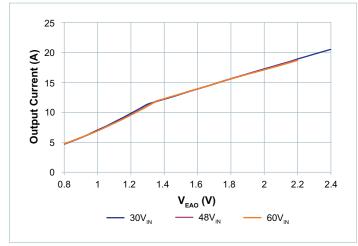


Figure 25 — Output Current vs. V_{EAO}, Nominal Trim

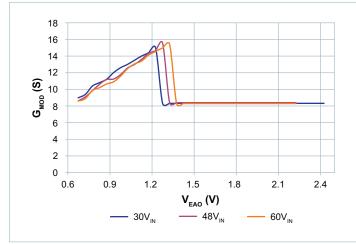


Figure 26 — Small Signal Modulator Gain vs. V_{EAO} , Nominal Trim

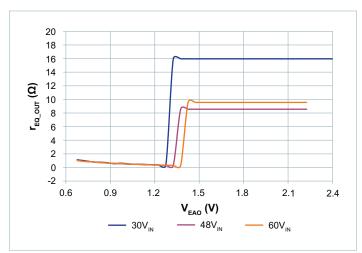
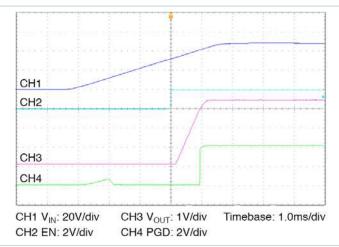
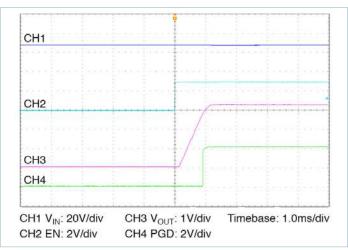




Figure 27 — r_{EQ_OUT} vs V_{EAO}, Nominal Trim

Figure 28 — Start Up From V_{IN} Applied, Nominal Line, Nominal Trim, Typical Timing, PI3523

Figure 29 — Start Up From EN, V_{IN} Pre-Applied, Nominal Line, Nominal Trim, Typical Timing, PI3523

Specifications apply for -40° C < T_{INT} < 120°C, V_{IN} = 48V, EN = High, unless otherwise noted.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
		Input Specifications				
Input Voltage	V _{IN_DC}		30	48	60	V
Input Current	I _{IN_DC}	$V_{IN} = 48V$, $T_{CASE} = 25^{\circ}C$, $I_{OUT} = 20A$		2.28		А
Input Current At Output Short (fault condition duty cycle)	I _{IN_Short}	Short at terminals		2.3		mA
Input Quiescent Current	I _{Q_VIN}	Disabled		0.75	1.2	mA
Input Quiescent Current	I _{Q_VIN}	Enabled, no load, $T_{CASE} = 25^{\circ}C$		2.5		mA
Input Voltage Slew Rate	V _{IN_SR}				1	V/µs
Input capacitance, Internal	C _{IN_INT}	Effective value V_{IN} = 48V, 25°C		0.50		μF
		Output Specifications				
EAIN Voltage Total Regulation	V _{EAIN}		0.975	0.990	1.005	V
Output Voltage Trim Range	V _{OUT_DC}	[b] [c]	4.0	5.0	6.5	V
Line Regulation	$\Delta V_{OUT} / \Delta V_{IN}$	@ 25°C, 30V < V _{IN} < 60V		0.10		%
Load Regulation	$\Delta V_{OUT} / \Delta I_{OUT}$	@ 25°C, 2A < I _{OUT} < 20A		0.10		%
Output Voltage Ripple	V _{OUT_AC}	I_{OUT} = 20A, C_{OUT} = 12 x 47µF, 20MHz BW $^{[d]}$		75		mVp-p
Output Current	I _{OUT_DC}	[e]	0		20	Α
Current Limit	I _{OUT_CL}	Typical current limit based on nominal 230nH inductor.		23		A
Maximum Array Size	N _{PARALLEL}	[b]			3	Module
Output Current, array of 2	I _{OUT_DC_ARRAY2}	Total array capability, $^{\left[b\right] }$ see applications section for details	0		[g]	A
Output Current, array of 3	I _{OUT_DC_ARRAY3}	Total array capability, ${}^{\left[b \right]}$ see applications section for details	0		[g]	A
		Protection				
Input UVLO Start Threshold	V _{UVLO_START}			27.0	29.1	V
Input UVLO Stop Hysteresis	VUVLO_START		1.66	2.08	2.50	V
Input UVLO Response Time	* UVLU_HYS		1.00	1.25	2.30	μs
Input OVLO Stop Threshold	V _{OVLO}		62	64.3		V
Input OVLO Start Hysteresis	V _{OVLO HYS}	Hysteresis active when OVLO present for at least $t_{FR, DLY}$	0.90	1.17	1.60	V
Input OVLO Response Time	♥OVLO_HYS	Typerease active when over present for at redst t _{FR_DIY}	0.90	1.25	1.00	μs
Output Overvoltage Protection, Relative	V _{OVP_REL}	Above set V _{OUT}		20		μ3 %
Output Overvoltage Protection, Absolute	V _{OVP_ABS}		6.7	7.5		V

^[a] All parameters reflect regulator and inductor system performance. Measurements were made using a standard PI352x evaluation board with 3 x 3" dimensions and 4 layer, 2oz copper. Refer to inductor pairing table within Application Description section for specific inductor manufacturer and value.

^[b] Regulator is assured to meet performance specifications by design, test correlation, characterization, and/or statistical process control. Output voltage is determined by an external feedback divider ratio.

^[c] Output current capability may be limited and other performance may vary from noted electrical characteristics when V_{OUT} is not set to nominal.

^[d] Refer to Output Ripple plots.

^[e] Refer to Load Current vs. Ambient Temperature curves.

^[f] Refer to Switching Frequency vs. Load current curves.

Specifications apply for $-40^{\circ}C < T_{INT} < 120^{\circ}C$, $V_{IN} = 48V$, EN = High, unless otherwise noted.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
		Timing				
Switching Frequency	f _s	^[f] While in Discontinuous Conduction Mode (DCM) only, SYNCI grounded	564	600	636	kHz
Fault Restart Delay	t _{FR_DLY}			30		ms
		Synchronization Input (SYNCI)				
Synchronization Frequency Range	f _{synci}	–50% and +10% relative to set switching frequency (f_s), while in DCM operating mode only. $^{[c][f]}$	300		660	kHz
SYNCI Threshold	V _{SYNCI}			2.5		V
		Synchronization Output (SYNCO)				
SYNCO High	V _{SYNCO_HI}	Source 1mA	4.5			V
SYNCO Low	V _{SYNCO_LO}	Sink 1mA			0.5	V
SYNCO Rise Time	t _{synco_rt}	20pF load		10		ns
SYNCO Fall Time	t _{synco_ft}	20pF load		10		ns
		Soft Start, Tracking and Error Amplifier				
TRK Active Range (Nominal)	V _{TRK}		0		1.4	V
TRK Enable Threshold	V _{TRK_OV}		20	40	60	m∖
TRK to EAIN Offset	V _{EAIN_OV}		50	80	110	m∖
Charge Current (Soft Start)	I _{TRK}		30	50	70	μΑ
Discharge Current (Fault)	I _{TRK_DIS}	V _{TRK} = 0.5V		8.7		mA
TRK Capacitance, Internal	C _{TRK_INT}			47		nF
Soft-Start Time	t _{ss}	$C_{TRK_EXT} = 0\mu F$	0.6	0.94	1.6	ms
Error Amplifier Trans-Conductance	GM _{EAO}	[b]		7.6		mS
PSM Skip Threshold	PSM _{SKIP}	[b]		0.8		V
EAIN Capacitance, Internal	C _{EAIN_INT}			56		pF
Error Amplifier Output Impedance	R _{OUT}	[b]	1			M۵
Internal Compensation Capacitor	C _{HF}	[b]		56		pf
Internal Compensation Resistor	R _{ZI}	[b]		5		kΩ

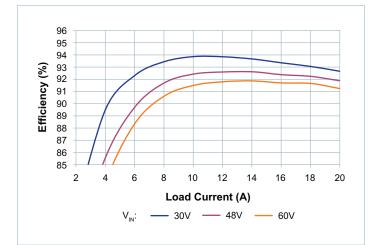
^[a] All parameters reflect regulator and inductor system performance. Measurements were made using a standard PI352x evaluation board with 3 x 3" dimensions and 4 layer, 2oz copper. Refer to inductor pairing table within Application Description section for specific inductor manufacturer and value.

^[b] Regulator is assured to meet performance specifications by design, test correlation, characterization, and/or statistical process control.

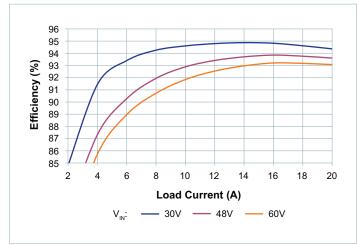
Output voltage is determined by an external feedback divider ratio.

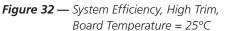
^[c] Output current capability may be limited and other performance may vary from noted electrical characteristics when V_{OUT} is not set to nominal.

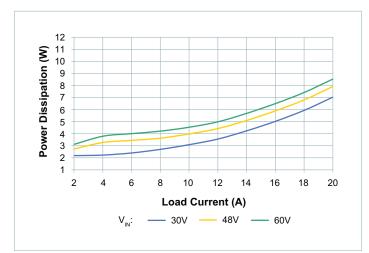
^[d] Refer to Output Ripple plots.

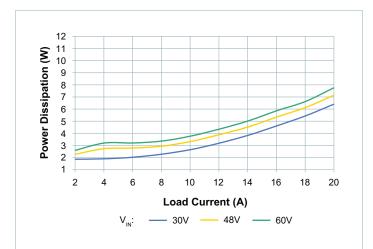

^[e] Refer to Load Current vs. Ambient Temperature curves.

^[f] Refer to Switching Frequency vs. Load current curves.








Figure 31 — System Efficiency, Low Trim, Board Temperature = 25°C

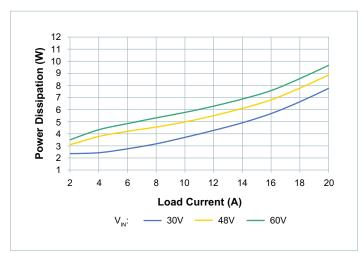
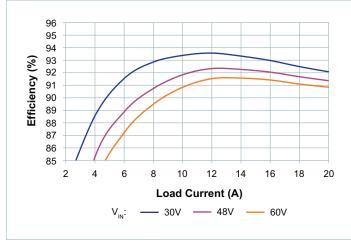
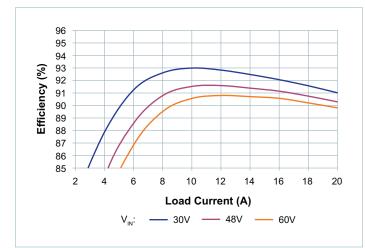
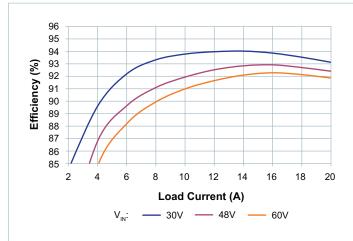
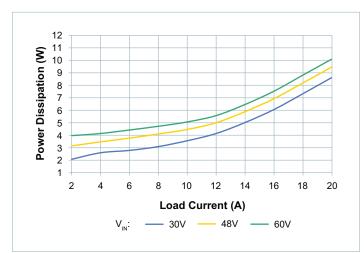


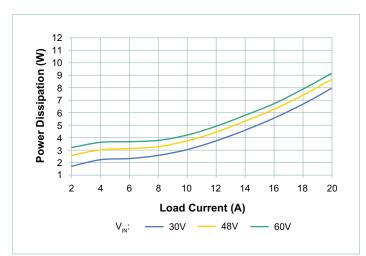
Figure 33 — System Power Dissipation, Nominal Trim, Board Temperature = 25°C


Figure 34 — System Power Dissipation, Low Trim, Board Temperature = 25℃


Figure 35 — System Power Dissipation, High Trim, Board Temperature = 25°C


PI3525-00 (5V_{OUT}) Electrical Characteristics (Cont.)




Figure 37 — System Efficiency, Low Trim, Board Temperature = 90°C

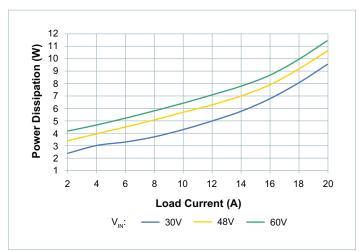


Figure 39 — System Power Dissipation, Nominal Trim, Board Temperature = 90°C

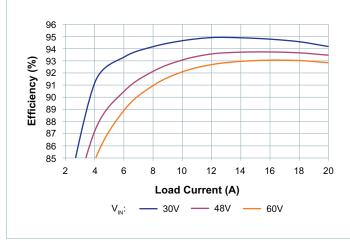


Figure 40 — System Power Dissipation, Low Trim, Board Temperature = 90°C

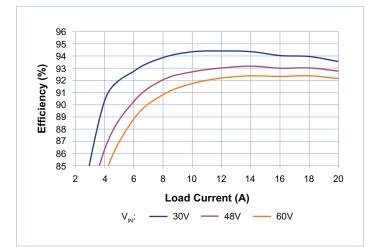
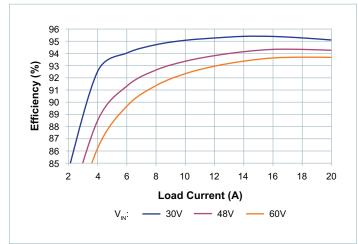
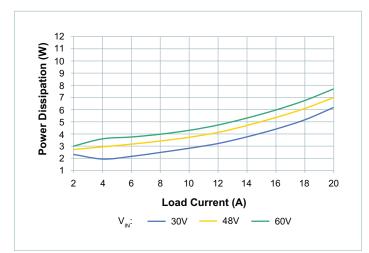
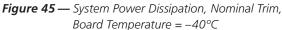
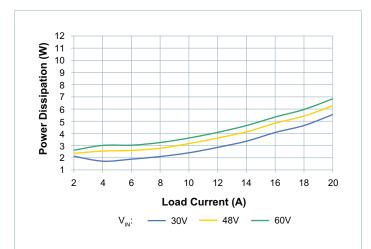


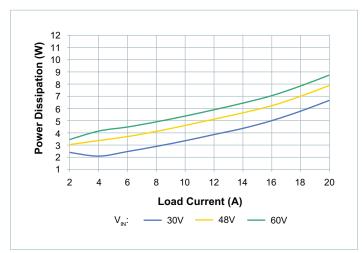
Figure 41 — System Power Dissipation, High Trim, Board Temperature = 90°C

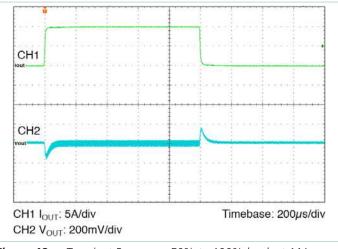


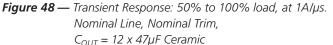





Figure 43 — System Efficiency, Low Trim, Board Temperature = -40°C






Figure 46 — System Power Dissipation, Low Trim, Board Temperature = -40°C

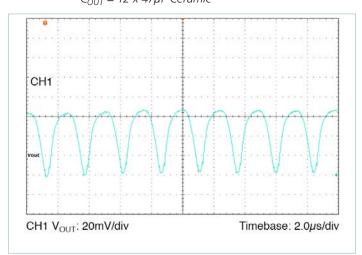


Figure 47 — System Power Dissipation, High Trim, Board Temperature = -40°C

Figure 49 — Output Voltage Ripple: Nominal Line, Nominal Trim, 100% load, $C_{OUT} = 12 \times 47 \mu F$ Ceramic

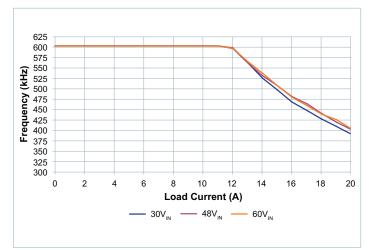


Figure 50 — Switching Frequency vs. Load, Nominal Trim

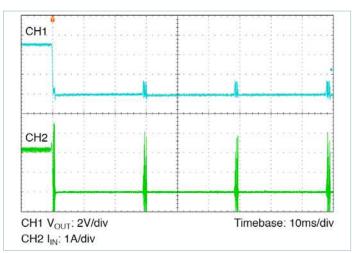
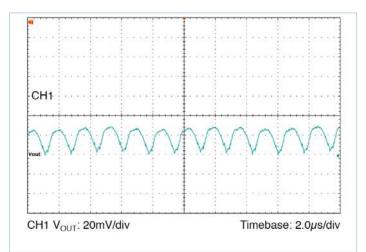
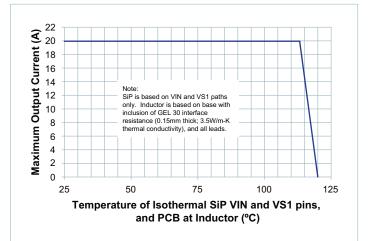




Figure 51 — Output Short Circuit, Nominal Line

Figure 52 — Output Voltage Ripple: Nominal Line, Nominal Trim, 50% load, $C_{OUT} = 12 \times 47 \mu F$ Ceramic

Figure 53 — System Thermal Specified Operating Area: Max I_{OUT} at Nominal Trim vs. temperature at locations noted

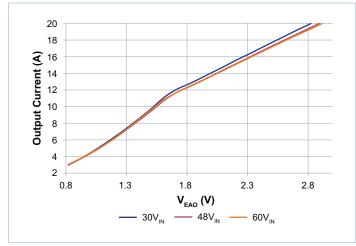


Figure 54 — Output Current vs. V_{EAO}, Nominal Trim

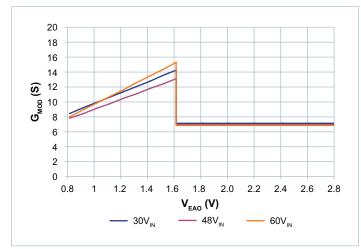


Figure 55 — Small Signal Modulator Gain vs. V_{EAO}, Nominal Trim

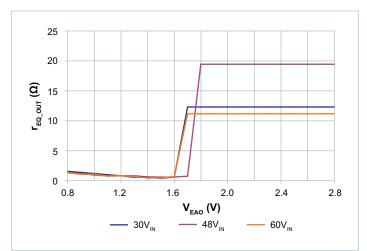


Figure 56 — r_{EQ_OUT} vs V_{EAO}, Nominal Trim

Page 21 of 41

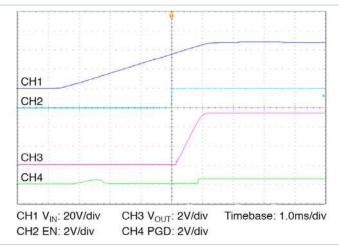


Figure 57 — Start Up From V_{IN} Applied, Nominal Line, Nominal Trim, Typical Timing, PI3525

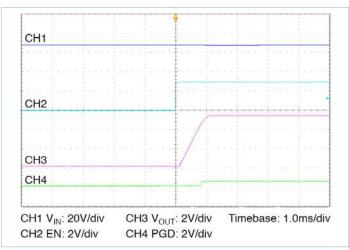


Figure 58 — Start Up From EN, V_{IN} Pre-Applied, Nominal Line, Nominal Trim, Typical Timing, PI3525

PI3526-00 (12V_{OUT}) Electrical Characteristics

Specifications apply for -40° C < T_{INT} < 120°C, V_{IN} = 48V, EN = High, unless otherwise noted.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
		Input Specifications				
Input Voltage	V _{IN_DC}		30	48	60	V
Input Current	I _{IN_DC}	$V_{IN} = 48V$, $T_{CASE} = 25^{\circ}C$, $I_{OUT} = 18A$		4.68		А
Input Current At Output Short (fault condition duty cycle)	I _{IN_Short}	Short at terminals		4.5		mA
Input Quiescent Current	I _{Q_VIN}	Disabled		0.75	1.2	mA
Input Quiescent Current	I _{Q_VIN}	Enabled, no load, $T_{CASE} = 25^{\circ}C$		3.2		mA
Input Voltage Slew Rate	V _{IN_SR}				1	V/µs
Input capacitance, Internal	C _{IN_INT}	Effective value V_{IN} = 48V, 25°C		0.50		μF
		Output Specifications		1		
EAIN Voltage Total Regulation	V _{EAIN}	[b]	0.975	0.990	1.005	V
Output Voltage Trim Range	V _{OUT_DC}	[b] [c]	6.5	12	14	V
Line Regulation	$\Delta V_{OUT} / \Delta V_{IN}$	@ 25°C, 30V < V _{IN} < 60V		0.10		%
Load Regulation	$\Delta V_{OUT} / \Delta I_{OUT}$	@ 25°C, 2A < I _{OUT} < 20A		0.10		%
Output Voltage Ripple	V _{OUT_AC}	I_{OUT} = 18A, C_{OUT} = 8 x 10µF, 20MHz BW $^{[d]}$		240		mVp-p
Output Current	I _{OUT_DC}	[e]	0		18	Α
Current Limit	I _{OUT_CL}	Typical current limit based on nominal 480nH inductor.		20.7		А
Maximum Array Size	N _{PARALLEL}	[b]			3	Module
Output Current, array of 2	IOUT_DC_ARRAY2	Total array capability, ^[b] see applications section for details	0		[g]	А
Output Current, array of 3	I _{OUT_DC_ARRAY3}	Total array capability, $^{\left[b\right] }$ see applications section for details	0		[g]	A
		Protection				
Input UVLO Start Threshold	V _{UVLO_START}	Trocedon -		27	29.1	V
Input UVLO Stop Hysteresis	VUVLO_START		1.66	2.08	2.50	V
Input UVLO Response Time	VUVLO_HYS		1.00	1.25	2.50	μs
Input OVLO Stop Threshold	V _{OVLO}		62	64.3		μ3 V
Input OVLO Stop Hireshold	VOVLO VOVLO HYS	Hysteresis active when OVLO present for at least $t_{FR, DLY}$	0.90	1.17	1.60	V
Input OVLO Response Time	VOVLO_HYS	hysteresis active when Oveo present for at least t _{FR_DLY}	0.90	1.17	1.00	μs
Output Overvoltage Protection, Relative	V _{OVP_REL}	Above set V _{OUT}		20		μs %
Output Overvoltage Protection, Absolute	V _{OVP_ABS}		14.6	15.7		V

^[a] All parameters reflect regulator and inductor system performance. Measurements were made using a standard PI352x evaluation board with 3 x 3" dimensions and 4 layer, 2oz copper. Refer to inductor pairing table within Application Description section for specific inductor manufacturer and value.

^[b] Regulator is assured to meet performance specifications by design, test correlation, characterization, and/or statistical process control. Output voltage is determined by an external feedback divider ratio.

^[c] Output current capability may be limited and other performance may vary from noted electrical characteristics when V_{OUT} is not set to nominal.

^[d] Refer to Output Ripple plots.

^[e] Refer to Load Current vs. Ambient Temperature curves.

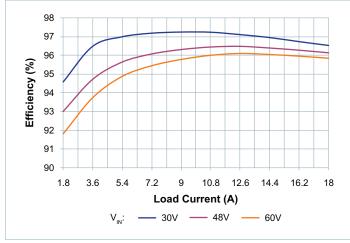
^[f] Refer to Switching Frequency vs. Load current curves.

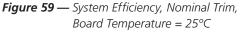
Specifications apply for -40° C < T_{INT} < 120°C, V_{IN} = 48V, EN = High, unless otherwise noted.

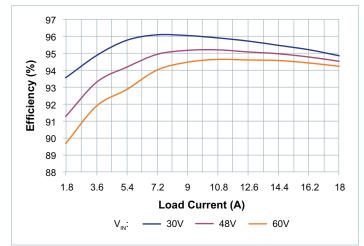
Parameter	Symbol	Conditions	Min	Тур	Мах	Unit
		Timing				
Switching Frequency	f _s	^[f] While in DCM operating mode only, SYNCI grounded	658	700	742	kHz
Fault Restart Delay	t _{FR_DLY}			30		ms
		Synchronization Input (SYNCI)				
Synchronization Frequency Range	f _{synci}	–50% and +10% relative to set switching frequency (f _s), while in DCM operating mode only. $^{\rm [c][f]}$	350		770	kHz
SYNCI Threshold	V _{SYNCI}			2.5		V
		Synchronization Output (SYNCO)				
SYNCO High	V _{SYNCO_HI}	Source 1mA	4.5			V
SYNCO Low	V _{SYNCO_LO}	Sink 1mA			0.5	V
SYNCO Rise Time	t _{synco_rt}	20pF load		10		ns
SYNCO Fall Time	t _{SYNCO_FT}	20pF load		10		ns
		Soft Start, Tracking and Error Amplifier				
TRK Active Range (Nominal)	V _{TRK}		0		1.4	V
TRK Enable Threshold	V _{TRK_OV}		20	40	60	mV
TRK to EAIN Offset	$V_{\text{EAIN}_{OV}}$		50	80	110	mV
Charge Current (Soft Start)	I _{TRK}		30	50	70	μA
Discharge Current (Fault)	I _{TRK_DIS}	$V_{TRK} = 0.5V$		8.7		mA
TRK Capacitance, Internal	C _{TRK_INT}			47		nF
Soft-Start Time	t _{ss}	$C_{TRK_EXT} = 0\mu F$	0.6	0.94	1.6	ms
Error Amplifier Trans-Conductance	GM_{EAO}	[b]		7.6		mS
PSM Skip Threshold	PSM _{SKIP}	[b]		0.8		V
EAIN Capacitance, Internal	C _{EAIN-INT}			56		pF
Error Amplifier Output Impedance	R _{OUT}	[b]	1			MΩ
Internal Compensation Capacitor	C _{HF}	[b]		56		pf
Internal Compensation Resistor	R _{ZI}	[b]		5		kΩ

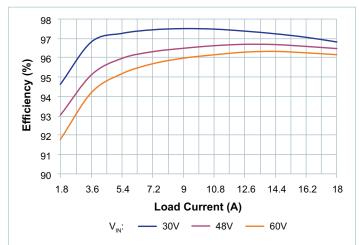
^[a] All parameters reflect regulator and inductor system performance. Measurements were made using a standard PI352x evaluation board with 3 x 3" dimensions and 4 layer, 2oz copper. Refer to inductor pairing table within Application Description section for specific inductor manufacturer and value.

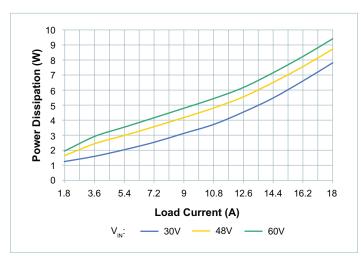
^[b] Regulator is assured to meet performance specifications by design, test correlation, characterization, and/or statistical process control. Output voltage is determined by an external feedback divider ratio.

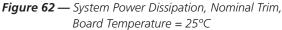

^[c] Output current capability may be limited and other performance may vary from noted electrical characteristics when V_{OUT} is not set to nominal. ^[d] Refer to Output Ripple plots.

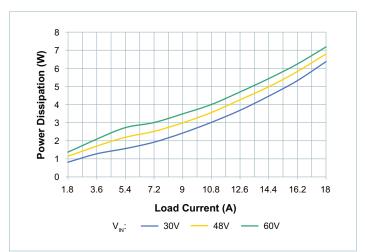

^[e] Refer to Load Current vs. Ambient Temperature curves.


^[f] Refer to Switching Frequency vs. Load current curves.


PI3526-00 (12V_{OUT}) Electrical Characteristics (Cont.)






Figure 60 — System Efficiency, Low Trim, Board Temperature = 25°C

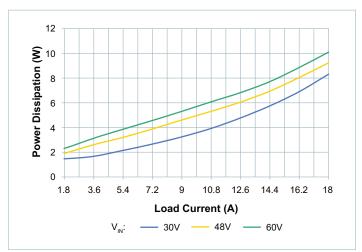
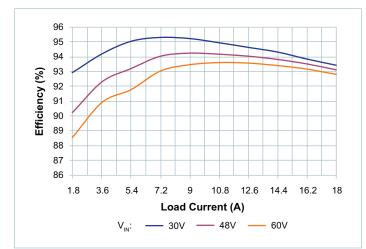


Figure 63 — System Power Dissipation, Low Trim, Board Temperature = 25°C

Figure 64 — System Power Dissipation, High Trim, Board Temperature = 25°C



Cool-Power[®] ZVS Switching Regulators Page 24 of 41

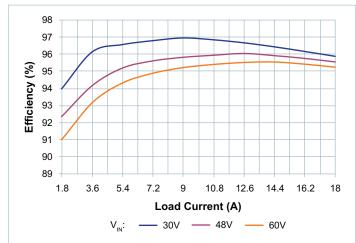

PI3526-00 (12V_{OUT}) Electrical Characteristics (Cont.)

Figure 65 — System Efficiency, Nominal Trim, Board Temperature = 100°C

Figure 66 — System Efficiency, Low Trim, Board Temperature = 100°C

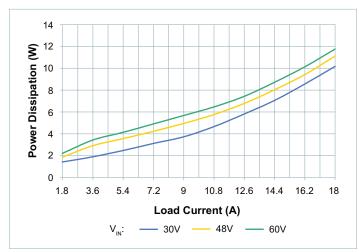
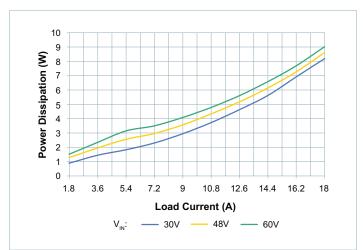
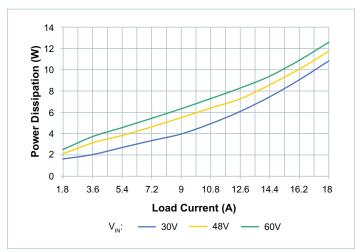




Figure 68 — System Power Dissipation, Nominal Trim, Board Temperature = 100°C

Figure 69 — System Power Dissipation, Low Trim, Board Temperature = 100°C

Figure 70 — System Power Dissipation, High Trim, Board Temperature = 100°C

