imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Cool-Power[®] ZVS Switching Regulators PI354x-00

RoHS

36V_{IN} to 60V_{IN} Cool-Power ZVS Buck Regulator & LED Driver

Product Description

The PI354x-00 is a family of high input voltage, wide input range DC-DC ZVS-Buck regulators integrating controller, power switches, and support components all within a high density System-in-Package (SiP). The PI354x-00 products are designed to operate within an SELV compliant system with steady state operation limited to 60V. The PI354x-00 products allow for transient voltage conditions up to 70V before shutdown is triggered. The integration of a high-performance Zero-Voltage Switching (ZVS) topology, within the PI354x-00 series, increases point of load performance providing best in class power efficiency. The PI354x-00 requires only an external inductor, two voltage selection resistors and minimal capacitors to form a complete DC-DC switching mode buck regulator.

Device	Our	I Max		
Device	Set	Range	I _{OUT} Max	
PI3542-00-LGIZ	2.5V	2.2V to 3.0V	10A	
PI3543-00-LGIZ	3.3V	2.6V to 3.6V	10A	
PI3545-00-LGIZ	5.0V	4.0V to 5.5V	10A	
PI3546-00-LGIZ	12V	6.5V to 14V	9A	

PI354x-00 Family can operate in constant voltage output for typical buck regulation applications in addition to constant current output for LED lighting and battery charging applications.

Features & Benefits

- High Efficiency HV ZVS-Buck Topology
- Wide input voltage range of 36V to 60V
- Tolerant of transient events up to 70V_{IN}
- Constant voltage or constant current operation
- Constant current error amplifier and reference
- Power-up into pre-biased load
- Parallel capable up to 3 regulators
- Two phase interleaving
- Input Over/Undervoltage Lockout (OVLO/UVLO)
- Output Overvoltage Protection (OVP)
- Overtemperature Protection (OTP)
- Fast and slow current limits
- Differential amplifier for output remote sensing
- User adjustable soft-start & tracking
- -40°C to 125°C operating range (T_J)

Applications

- HV to PoL Buck Regulator Applications
- Computing, Communications, Industrial, Automotive Accessories
- Constant current output operation:
 - LED Lighting
 - Battery Charging

Package Information

• 10mm x 10mm x 2.6mm LGA SiP

Contents

Order Information	3
Thermal, Storage and Handling Information	3
Absolute Maximum Ratings	4
Functional Block Diagram	5
Pin Description	6
Package Pin-Out	7
Large Pin Blocks	7
PI354x-00 Common Electrical Characteristics	8
PI3542-00 (2.5V _{OUT}) Electrical Characteristics	10
PI3543-00 (3.3V _{OUT}) Electrical Characteristics	14
PI3545-00 (5.0V _{OUT}) Electrical Characteristics	18
PI3546-00 (12.0V _{OUT}) Electrical Characteristics	22
Functional Description	26
ENABLE (EN)	26
Remote Sensing	26
Switching Frequency Synchronization	26
Output Voltage Selection	26
Output Current Limit Protection	26
Input Undervoltage Lockout	26
Input Overvoltage Lockout	27
Output Overvoltage Protection	27
Overtemperature Protection	27
Pulse Skip Mode (PSM)	27
Variable Frequency Operation	27

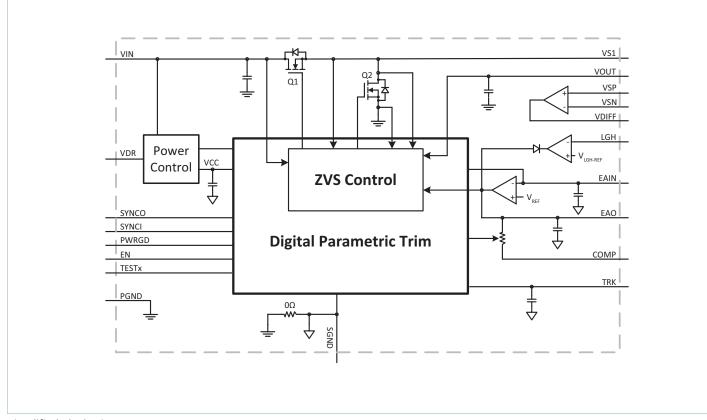
Application Description	27
Parallel Operation	27
Synchronization	27
Interleaving	27
Output Voltage Set Point	28
Soft-Start Adjust and Tracking	28
Inductor Pairing	28
Thermal De-rating	29
Small Signal Model - Constant Voltage Mode	29
Error Amplifier	29
Lighting Mode (LGH)	30
LGH Amplifier Small Signal Model	31
Filter Considerations	33
VDR Bias Regulator	34
System Design Considerations	34
Layout Guidelines	35
Recommended PCB Footprint and Stencil	37
Package Drawings	38
Revision History	39
Product Warranty	40

Order Information

Cool-Power	Output	Range	1 May	Backara	Transport	
Courrower	Set	Range	l _{out} Max	Package	Media	
PI3542-00-LGIZ	2.5V	2.2V to 3.0V	10A	10mm x 10mm LGA	TRAY	
PI3543-00-LGIZ	3.3V	2.6V to 3.6V	10A	10mm x 10mm LGA	TRAY	
PI3545-00-LGIZ	5.0V	4.0V to 5.5V	10A	10mm x 10mm LGA	TRAY	
PI3546-00-LGIZ	12V	6.5V to 14V	9A	10mm x 10mm LGA	TRAY	

Thermal, Storage and Handling Information

Name	Rating
Storage Temperature	-65°C to 150°C
Internal Operating Temperature	-40°C to 125°C
Soldering Temperature for 20 seconds	245°C
MSL Rating	3


Absolute Maximum Ratings

Name	Rating
V _{IN}	-0.7V to 75V
VS1	-0.7V _{DC} to 75V
V _{OUT}	-0.5V to 25V
SGND	±100mA
TRK	-0.3V to 5.5V / ±30mA
VDR, SYNCI, SYNCO, PWRGD, EN, LGH, COMP, EAO, EAIN, VDIFF, VSN, VSP, TESTx	-0.3V to 5.5V / ±5mA

Notes: Stresses beyond these limits may cause permanent damage to the device. Operation at these conditions or conditions beyond those listed in the Electrical Specifications table is not guaranteed. All voltage nodes are referenced to PGND unless otherwise noted.

Functional Block Diagram

Simplified Block Diagram

Pin Description

Name	Location	I/O	Description
VS1	Block 2 (See Pkg Pin-Out dwg)	Power	Switching node: and ZVS sense for power switches.
VIN	Block 1	Power	Input voltage: and sense for UVLO, OVLO and feed forward ramp.
VDR	1E	I/O	Gate Driver V _{cc} : Internally generated 5.1V. May be used as reference or low power bias supply for external loads. See Application Description for Important considerations.
SYNCI	1D	I	Synchronization input: Synchronize to the falling edge of external clock frequency. SYNCI is a high impedance digital input node and should always be connected to SGND when not in use.
SYNCO	1C	0	Synchronization output: Outputs a high signal for ½ of the minimum period for synchronization of other regulators.
TESTx	1B, 1A, 2B, 2A	I/O	Test Connections: Use only with factory guidance. Connect to SGND for proper operation.
PWRGD	ЗА	0	Power Good: High impedance when regulator is operating and V_{OUT} is in regulation. Otherwise pulls to SGND.
EN	4A	I	Enable Input: Regulator enable control. When asserted active or left floating: regulator is enabled. Otherwise regulator is disabled.
TRK	5A	I	Soft-start and track input: An external capacitor may be connected between TRK pin and SGND to decrease the rate of rise during soft-start.
LGH	6A	I	Lighting (LGH)/Constant Current (CC) Sense Input: Input with a 100mV threshold. Used for lighting and constant current type applications. When not using the constant current mode (CC mode), the LGH pin should be connected to SGND.
СОМР	8A	0	Compensation Capacitor: Connect capacitor for control loop dominant pole. See Error Amplifier section for details. A default CCOMP of 4.7nF is used in the example
EAO	9A	0	Error amp output: External connection for additional compensation and current sharing.
EAIN	10A	ļ	Error Amp Inverting Input: Connection for the feedback divider tap.
VDIFF	10B	0	Independent Amplifier Output: Active only when module is enabled.
VSN	10C	I	Independent Amplifier Inverting Input: If unused, connect in unity gain
VSP	10D	I	Independent Amplifier Non-Inverting Input: If unused, connect in SGND
VOUT	9E, 10E	Power	Direct VOUT Connect: for per-cycle internal clamp node and feed-forward ramp.
SGND	Block 4	-	Signal ground: Internal logic ground for EA, TRK, SYNCI, SYNCO communication returns. SGND and PGND are star connected within the regulator package.
PGND	Block 3	Power	Power ground: V_{IN} and V_{OUT} power returns.

Package Pin-Out

PIN 1 INDEX	A	В	С	D	E	F	G	Н	J	К
1	TEST 2	TEST 1	SYNCO	SYNCI	VDR	PGD	PGD	PGD		VS1
2	TEST 4	TEST 3	PGD	PGD	PGD	PGD	PGD	PGD		VS1
3	PWRGD		PGD	PGD	PGD	PGD	PGD	PGD		VS1
4	EN	SGD	PGD	PGD	PGD	PGD	PGD	PGD		VS1
5	TRK	SGD	PGD	PGD	PGD	PGD	PGD	PGD		VS1
6	LGH	SGD	SGD	PGD	PGD	PGD	PGD	PGD		VS1
7	SGD	SGD	SGD	PGD	PGD	PGD	PGD	PGD		VS1
8	COMP	SGD	SGD	PGD	PGD				1 1	
9	EAO	SGD	SGD	SGD	VOUT		VIN	VIN	VIN	VIN
10	EAIN	VDIFF	VSN	VSP	VOUT		VIN	VIN	VIN	VIN
				TOP THR	OUGH VIEV PI354		DUCT			

Large Pin Blocks

Pin Block Name	Group of pins
VIN	К9-10, Ј9-10, Н9-10, G9-10
VS1	K1-7
PGND	H1-7, G1-7,F1-7, E2-8, D2-8, C2-5
SGND	D9, C6-9, B4-9, A7

PI354x-00 Common Electrical Characteristics

Specifications apply for -40°C < T_J < 125°C, V_{IN} = 48V, EN = High, V_{VDR} = 5.1V +/- 2%, L1 = 340nH ^[1] unless other conditions are noted.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
		Differential Amp				
Open Loop Gain			96	120	140	dB
Small Signal Gain-Bandwidth			5	7	12	MHz
Offset			-1	0.5	1	mV
Common Mode Input Range			-0.1		2.5	V
Differential Mode Input Range					2	V
Input Bias Current			-1		1	μA
Maximum V _{OUT}		I _{DIFF} = -1mA	V _{VDR} - 0.2			V
Minimum V _{OUT}					20	mV
Capacitive Load Range for Stability			0		50	pF
Slew Rate Rising				11		V/µs
Slew Rate Falling				11		V/µs
Sink/Source Current			-1		1	mA
		Current Source Function (LGH)				
LGH Reference	V _{LGH-REF}		95	100	107	mV
Input Offset				0.5		mV
Gain-Bandwidth Product			3			MHz
Internal Feedback Capacitance				20		pF
Gain				10		V/V
Intermediate Reference				1		V
Transconductance				1		mS
Output Current Capability		Sink current only	1			mA
		PWRGD				
PWRGD Rising Threshold	V _{PG_HI%}	[2]	79	85	91	% V _{OUT_}
PWRGD Falling Threshold	$V_{PG_LO\%}$	[2]	77	83	89	% V _{OUT_}
PWRGD Output Low	V_{PG_SAT}	Sink = 4mA ^[2]			0.4	V
PWRGD Sink Current	I _{PG_SAT}	[2]		4		mA

dimensions and 4 layer, 2 oz copper. Refer to inductor pairing table within Application Description section for specific inductor manufacturer and value. ^[2] Regulator is assured to meet performance specifications by design, test correlation, characterization, and/or statistical process control. Output voltage is

determined by an external feedback divider ratio.

^[3] Output current capability may be limited and other performance may vary from noted electrical characteristics when V_{OUT} is not set to nominal. ^[4] Refer to Output Ripple plots.

^[5] Refer to Load Current vs. Ambient Temperature curves.

PI354x-00 Common Electrical Characteristics (Cont.)

Specifications apply for -40°C < T_J < 125°C, V_{IN} = 48V, EN = High, V_{VDR} = 5.1V +/- 2%, L1 = 340nH ^[1] unless other conditions are noted.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
		Enable				
High Threshold	$V_{\text{EN}_{\text{HI}}}$		0.9	1	1.1	V
Low Threshold	V _{EN_LO}		0.7	0.8	0.9	V
Threshold Hysteresis	$V_{\text{EN}_{\text{HYS}}}$		100	200	300	mV
Enable Pull-Up Voltage	V _{EN_PU}			2		V
Source Current	I _{EN_SO}			50		μA
		VDR				
Voltage Setpoint	V _{VDR}	$V_{IN_DC} > 10V$	4.8	5.1	5.4	V
External Loading	I _{VDR}	See Application Description for details	0		2	mA
		Protection				
Input UVLO Start Threshold	V _{UVLO_START}		33.8	34.8	35.8	V
Input UVLO Stop Hysteresis	V _{UVLO_HYS}			0.9		V
Input UVLO Response Time				1.25		us
Input OVLO Stop Threshold	V _{OVLO}		70			V
Input OVLO Start Hysteresis	V _{OVLO_HYS}			1.3		V
Input OVLO Response Time	t _f			1.25		μs
Output Overvoltage Protection	V _{OVP}	Above set V _{OUT}		20		%
		Sync In (SYNCI)				
Synchronization Frequency Range	Δf_{SYNCI}	Relative to set switching frequency [3]	50		110	%
SYNCI Threshold	V _{SYNCI}			V _{VDR} /2		V
		Sync Out (SYNCO)				
SYNCO High	V _{SYNCO_HI}	Source 1mA	V _{VDR} -0.5			V
SYNCO Low	V _{SYNCO_LO}	Sink 1mA			0.5	V
SYNCO Rise Time	t _{synco_rt}	20pF load		10		ns
SYNCO Fall Time	t _{synco ft}	20pF load		10		ns

^[1] All parameters reflect regulator and inductor system performance. Measurements were made using a standard PI354x evaluation board with 2.5 x 4" dimensions and 4 layer, 2 oz copper. Refer to inductor pairing table within Application Description section for specific inductor manufacturer and value.

^[2] Regulator is assured to meet performance specifications by design, test correlation, characterization, and/or statistical process control. Output voltage is determined by an external feedback divider ratio.

^[3] Output current capability may be limited and other performance may vary from noted electrical characteristics when V_{OUT} is not set to nominal. ^[4] Refer to Output Ripple plots.

^[5] Refer to Load Current vs. Ambient Temperature curves.

PI3542-00 (2.5V_{OUT}) Electrical Characteristics

Specifications apply for -40°C < T_J < 125°C, V_{IN} = 48V, EN = High, V_{VDR} = 5.1V +/- 2%, L1 = 340nH ^[1] unless other conditions are noted.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
		Input Specifications				
Input Voltage	V _{IN DC}	input specifications	36	48	60	V
Input Voltage, Transient		< 1% duty cycle, entire transient duration < 10ms	50	-0	70	V
Input Current	V _{IN_TRANS}	$V_{\text{IN}} = 48V$, T _C = 25°C, I _{OUT} = 10A		0.597	70	A
Input Current At Output Short (Fault Condition Duty Cycle)	I _{IN_Short}	Short at terminals		3.1		mA
Input Quiescent Current	I _{Q_VIN}	Disabled Enabled (no load)		0.75 1.4		mA
Input Voltage Slew Rate	V _{IN_SR}			1.4	1	V/µs
		Output Specifications				
EAIN Voltage Total Regulation	V _{EAIN}	[2]	0.985	1.00	1.015	V
Output Voltage Trim Range	V _{OUT_DC}	[2] [3]	2.2	2.5	3.0	V
Line Regulation	$\Delta V_{OUT} / \Delta V_{IN}$	@ 25°C, 36V < V _{IN} < 60V		0.10		%
Load Regulation	$\Delta V_{OUT} / \Delta I_{OUT}$	@ 25°C, 0.5A < I _{OUT} < 10A		0.10		%
Output Voltage Ripple	V _{OUT_AC}	I _{OUT} = 10A, C _{OUT} = 6 x 100μF, 20MHz BW ^[4]		47		mVp-p
Output Current	I _{OUT_DC}	[5]	0		10	А
Maximum Array Size	N _{Parallel}				3	Module
Output Current, Array of 2	I _{OUT_DC-ARRAY2}	Total array capability, see applications section for details	0		17.7	А
Output Current, Array of 3	I _{OUT_DC-ARRAY2}	Total array capability, see applications section for details	0		25.4	А
Current Limit	I _{OUT_CL}	Typ limit based on nominal 340nH inductor.		12		A
		Timing				
Switching Frequency	fs	$^{[6]}$ 48V_{IN} to 2.5V_{OUT}, 3A out, L1 = 340nH ±1%	-	400	-	kHz
Fault Restart Delay	t _{FR_DLY}			30		ms

^[1] All parameters reflect regulator and inductor system performance. Measurements were made using a standard PI354x evaluation board with 2.5 x 4" dimensions and 4 layer, 2 oz copper. Refer to inductor pairing table within Application Description section for specific inductor manufacturer and value.

^[2] Regulator is assured to meet performance specifications by design, test correlation, characterization, and/or statistical process control. Output voltage is determined by an external feedback divider ratio.

^[3] Output current capability may be limited and other performance may vary from noted electrical characteristics when V_{OUT} is not set to nominal. ^[4] Refer to Output Ripple plots.

^[5] Refer to Load Current vs. Ambient Temperature curves.

PI3542-00 (2.5V_{OUT}) Electrical Characteristics (Cont.)

Specifications apply for -40°C < T_J < 125°C, V_{IN} = 48V, EN = High, V_{VDR} = 5.1V +/- 2%, L1 = 340nH ^[1] unless other conditions are noted.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
		Soft Start, Tracking and Error Amplifier				
TRK Active Range (Nominal)	V _{TRK}		0		1.4	V
TRK Enable Threshold	V _{TRK_OV}		20	40	60	mV
TRK to EAIN Offset	V _{EIAN_OV}	V_{TRK} = 0.5V, EAO shorted to EAIN	50	80	110	mV
Charge Current (Soft-Start)	I _{TRK}		70	50	30	μA
Discharge Current (Fault)	I _{TRK_DIS}	V _{TRK} = 0.5V		10		mA
Soft-Start Time	t _{ss}	C _{TRK} = 0µF	0.6	0.94	1.6	ms
Error Amplifier Trans-Conductance	GM _{EAO}	[2]		5.1		mS
PSM Skip Threshold	PSM _{SKIP}	[2]		0.8		V
Error Amplifier Output Impedance	R _{OUT}	[2]	1			MΩ
Internal Compensation Capacitor	C _{HF}	[2]		56		pf
Internal Compensation Resistor	R _{ZI}	[2]		5		kΩ

^[1] All parameters reflect regulator and inductor system performance. Measurements were made using a standard PI354x evaluation board with 2.5 x 4" dimensions and 4 layer, 2 oz copper. Refer to inductor pairing table within Application Description section for specific inductor manufacturer and value. ^[2] Regulator is assured to meet performance specifications by design, test correlation, characterization, and/or statistical process control. Output voltage is

determined by an external feedback divider ratio.

^[3] Output current capability may be limited and other performance may vary from noted electrical characteristics when V_{OUT} is not set to nominal. ^[4] Refer to Output Ripple plots.

^[5] Refer to Load Current vs. Ambient Temperature curves.

PI3542-00 (2.5V_{OUT}) Electrical Characteristics (Cont.)

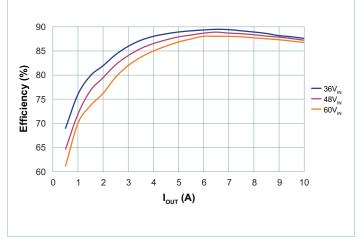


Figure 1 — Regulator Efficiency

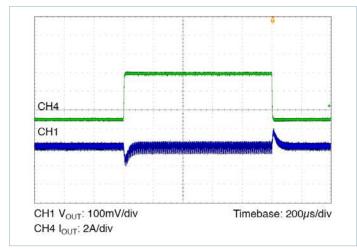


Figure 2 — Transient Response: 5A to 10A, at 1A/ μ s. 48V_{IN} to 2.5V_{OUT}, C_{OUT} = 6 x 100 μ F Ceramic

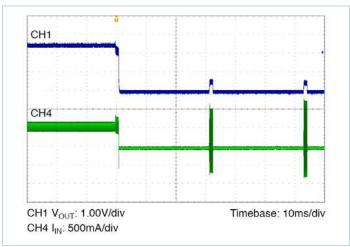


Figure 3 — Output Short Circuit @ $V_{IN} = 48V$

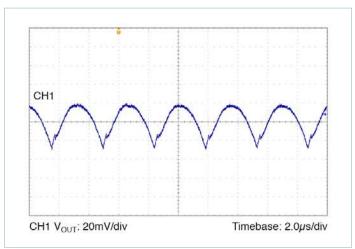


Figure 4 — Output Ripple: $48V_{IN}$, $2.5V_{OUT}$ at 10A. $V_{OUT} = 20mV/Div$, $2.0\mu s/Div$; $C_{OUT} = 6 \times 100\mu F$ Ceramic

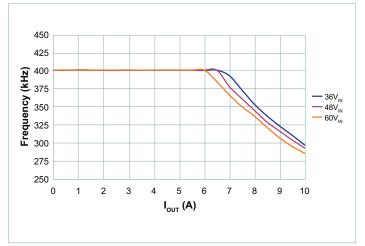


Figure 5 — Switching Frequency vs. Load Current

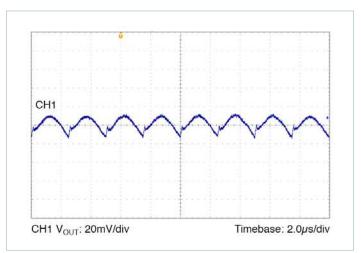


Figure 6 — Output Ripple: $48V_{IN}$, $2.5V_{OUT}$ at 5A. $V_{OUT} = 20mV/Div$, $2.0\mu s/Div$; $C_{OUT} = 6 \times 100\mu F$ Ceramic

PI3542-00 (2.5V_{OUT}) Electrical Characteristics (Cont.)

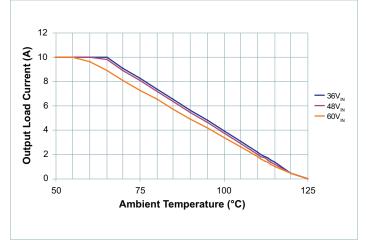
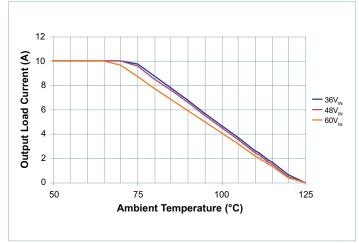



Figure 7 — Load Current vs. Ambient Temperature, OLFM

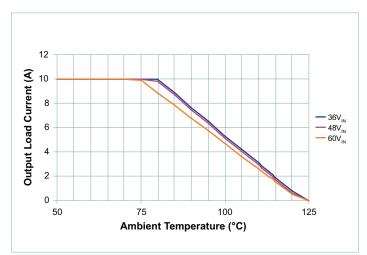


Figure 9 — Load Current vs. Ambient Temperature, 400LFM

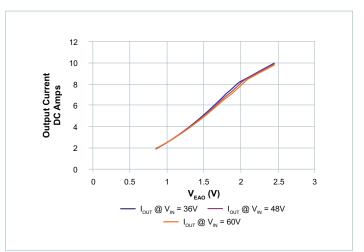


Figure 10 — Output Current vs. Error Voltage V_{EAO}

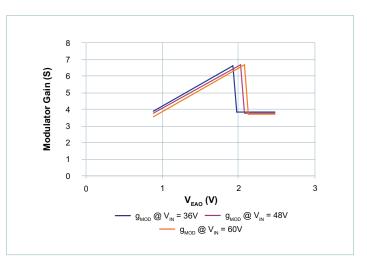


Figure 11 — Modulator Gain vs. Error Voltage V_{EAO}

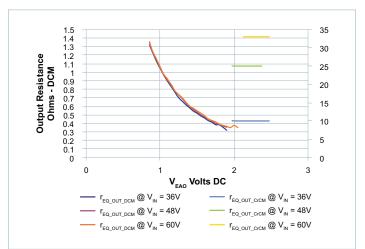


Figure 12 — Output Equivalent Resistance vs.Error Voltage V_{EAO}

PI3543-00 (3.3V_{OUT}) Electrical Characteristics

Specifications apply for -40°C < T_J < 125°C, V_{IN} = 48V, EN = High, V_{VDR} = 5.1V +/- 2%, L1 = 420nH ^[1] unless other conditions are noted.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
		Input Specifications				
Input Voltage	V _{IN_DC}		36	48	60	V
Input Voltage, Transient	V _{IN_TRANS}	< 1% duty cycle, entire transient duration < 10ms			70	V
Input Current	I _{IN_DC}	$V_{IN} = 48V$, $T_C = 25^{\circ}C$, $I_{OUT} = 10A$		0.762		А
Input Current At Output Short (Fault Condition Duty Cycle)	I _{IN_Short}	Short at terminals		3	-	mA
Innut Quiescent Current		Disabled		0.75		
Input Quiescent Current	I _{Q_VIN}	Enabled (no load)		1.6		mA
Input Voltage Slew Rate	V _{IN_SR}				1	V/µs
		Output Specifications				
EAIN Voltage Total Regulation	V _{EAIN}	[2]	0.985	1.00	1.015	V
Output Voltage Trim Range	V _{OUT_DC}	[2] [3]	2.6	3.3	3.6	V
Line Regulation	ΔV_{OUT} / ΔV_{IN}	@ 25°C, 36V < V _{IN} < 60V		0.10		%
Load Regulation	$\Delta V_{OUT} / \Delta I_{OUT}$	@ 25°C, 0.5A < I _{OUT} < 10A		0.10		%
Output Voltage Ripple	V _{OUT_AC}	I _{OUT} = 10A, C _{OUT} = 6 x 100μF, 20MHz BW ^[4]		62		mVp-p
Output Current	I _{OUT_DC}	[5]	0		10	А
Maximum Array Size	N _{Parallel}				3	Module
Output Current, Array of 2	I _{OUT_DC-ARRAY2}	Total array capability, see applications section for details	0		17.7	А
Output Current, Array of 3	I _{OUT_DC-ARRAY2}	Total array capability, see applications section for details	0		25.4	А
Current Limit	I _{OUT_CL}	Typ limit based on nominal 420nH inductor		11.5		A
		Timing				
Switching Frequency	fs	^[6] $48V_{IN}$ to $3.3V_{OUT}$, 6A out, L1 = 420nH ±1%	-	400	-	kHz
Fault Restart Delay	t _{FR DLY}			30		ms

^[1] All parameters reflect regulator and inductor system performance. Measurements were made using a standard PI354x evaluation board with 2.5 x 4" dimensions and 4 layer, 2 oz copper. Refer to inductor pairing table within Application Description section for specific inductor manufacturer and value.

[2] Regulator is assured to meet performance specifications by design, test correlation, characterization, and/or statistical process control. Output voltage is determined by an external feedback divider ratio.

^[3] Output current capability may be limited and other performance may vary from noted electrical characteristics when V_{OUT} is not set to nominal.

^[4] Refer to Output Ripple plots.

^[5] Refer to Load Current vs. Ambient Temperature curves.

PI3543-00 (3.3V_{OUT}) Electrical Characteristics (Cont.)

Specifications apply for -40°C < T_J < 125°C, V_{IN} = 48V, EN = High, V_{VDR} = 5.1V +/- 2%, L1 = 420nH ^[1] unless other conditions are noted.

Parameter	Symbol	Conditions	Min	Тур	Мах	Unit
		Soft Start, Tracking and Error Amplifier				
TRK Active Range (Nominal)	V _{TRK}		0		1.4	V
TRK Enable Threshold	V _{TRK_OV}		20	40	60	mV
TRK to EAIN Offset	V _{EIAN_OV}	V_{TRK} = 0.5V, EAO shorted to EAIN	50	80	110	mV
Charge Current (Soft-Start)	I _{TRK}		70	50	30	μA
Discharge Current (Fault)	I _{TRK_DIS}	V _{TRK} = 0.5V		10		mA
Soft-Start Time	t _{ss}	C _{TRK} = 0µF	0.6	0.94	1.6	ms
Error Amplifier Trans-Conductance	GM _{EAO}	[2]		5.1		mS
PSM Skip Threshold	PSM _{SKIP}	[2]		0.8		V
Error Amplifier Output Impedance	R _{OUT}	[2]	1			MΩ
Internal Compensation Capacitor	C _{HF}	[2]		56		pf
Internal Compensation Resistor	R _{ZI}	[2]		6		kΩ

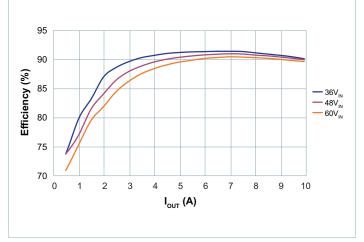
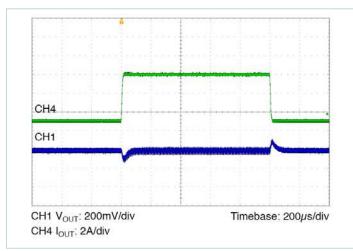
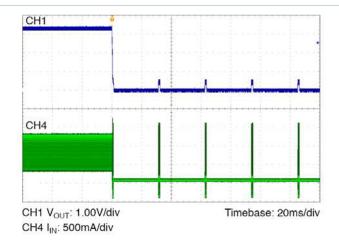
^[1] All parameters reflect regulator and inductor system performance. Measurements were made using a standard PI354x evaluation board with 2.5 x 4" dimensions and 4 layer, 2 oz copper. Refer to inductor pairing table within Application Description section for specific inductor manufacturer and value.

^[2] Regulator is assured to meet performance specifications by design, test correlation, characterization, and/or statistical process control. Output voltage is determined by an external feedback divider ratio.

^[3] Output current capability may be limited and other performance may vary from noted electrical characteristics when V_{OUT} is not set to nominal. ^[4] Refer to Output Ripple plots.

^[5] Refer to Load Current vs. Ambient Temperature curves.

PI3543-00 (3.3V_{OUT}) Electrical Characteristics (Cont.)

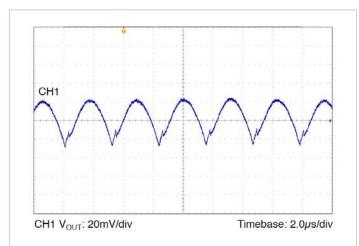

Figure 13 — Regulator Efficiency

Figure 14 — Transient Response: 5A to 10A, at $1A/\mu s$. $48V_{IN}$ to $3.3V_{OUT}$, $C_{OUT} = 6 \times 100 \mu F$ Ceramic

Figure 16 — Output Ripple: $48V_{IN}$, $3.3V_{OUT}$ at 10A. $V_{OUT} = 20mV/Div$, $2.0\mu s/Div$; $C_{OUT} = 6 \times 100\mu F$ Ceramic

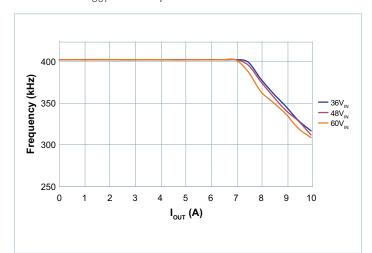
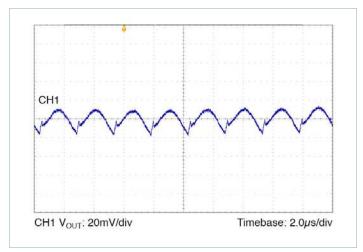
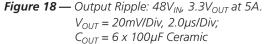




Figure 17 — Switching Frequency vs. Load Current

Rev 1.6

03/2017

PI3543-00 (3.3V_{OUT}) Electrical Characteristics (Cont.)

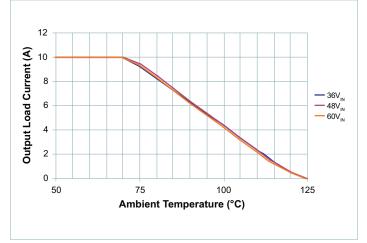


Figure 19 — Load Current vs. Ambient Temperature, OLFM

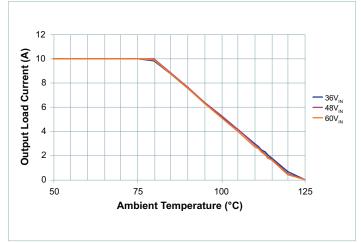


Figure 20 — Load Current vs. Ambient Temperature, 200LFM

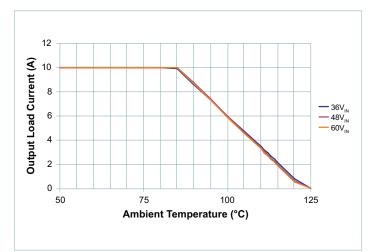


Figure 21 — Load Current vs. Ambient Temperature, 400LFM

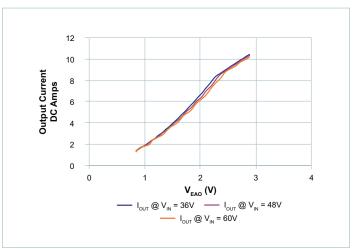


Figure 22 — Output Current vs. Error Voltage V_{EAO}

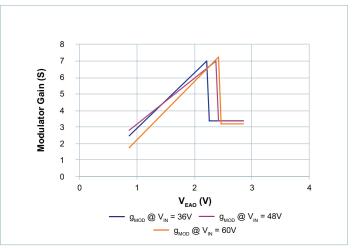


Figure 23 — Modulator Gain vs. Error Voltage V_{EAO}

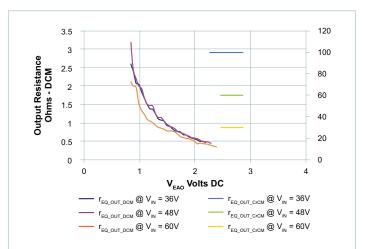


Figure 24 — Output Equivalent Resistance vs. Error Voltage V_{EAO}

PI3545-00 (5.0V_{OUT}) Electrical Characteristics

Specifications apply for -40°C < T_J < 125°C, V_{IN} = 48V, EN = High, V_{VDR} = 5.1V +/- 2%, L1 = 420nH ^[1] unless other conditions are noted.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
		Input Specifications				
Input Voltage	V _{IN_DC}		36	48	60	V
Input Voltage, Transient	V _{IN_TRANS}	< 1% duty cycle, entire transient duration < 10ms			70	V
Input Current	I _{IN_DC}	$V_{IN} = 48V, T_C = 25^{\circ}C, I_{OUT} = 10A$		1.126		А
Input Current At Output Short (Fault Condition Duty Cycle)	I _{IN_Short}	Short at terminals		3.2	-	mA
Input Quiescent Current	1	Disabled		0.75		mA
Input Quiescent Current	I _{Q_VIN}	Enabled (no load)		1.8		IIIA
Input Voltage Slew Rate	V _{IN_SR}				1	V/µs
		Output Specifications				
EAIN Voltage Total Regulation	V _{EAIN}	[2]	0.985	1.00	1.015	V
Output Voltage Trim Range	V _{OUT_DC}	[2] [3]	4.0	5.0	5.5	V
Line Regulation	$\Delta V_{OUT}/\Delta V_{\rm IN}$	@ 25°C, 36V < V _{IN} < 60V		0.10		%
Load Regulation	$\Delta V_{OUT} / \Delta I_{OUT}$	@ 25°C, 0.5A < I _{OUT} < 10A		0.10		%
Output Voltage Ripple	V _{OUT_AC}	I_{OUT} = 10A, C_{OUT} = 6 x 47 μ F, 20MHz BW $^{[4]}$		62.4		mVp-p
Output Current	I _{OUT_DC}	[5]	0		10	А
Maximum Array Size	N _{Parallel}				3	Module
Output Current, Array of 2	I _{OUT_DC-ARRAY2}	Total array capability, see applications section for details	0		17.7	А
Output Current, Array of 3	I _{OUT_DC-ARRAY2}	Total array capability, see applications section for details	0		25.4	А
Current Limit	I _{OUT_CL}	Typ limit based on nominal 420nH inductor.		12		А
		Timing				
Switching Frequency	fs	^[6] $48V_{IN}$ to $5V_{OUT}$, 3A out, L1 = 420nH ±1%	-	600	-	kHz
Fault Restart Delay	t _{FR_DLY}			30		ms

^[1] All parameters reflect regulator and inductor system performance. Measurements were made using a standard PI354x evaluation board with 2.5 x 4" dimensions and 4 layer, 2 oz copper. Refer to inductor pairing table within Application Description section for specific inductor manufacturer and value.

^[2] Regulator is assured to meet performance specifications by design, test correlation, characterization, and/or statistical process control. Output voltage is determined by an external feedback divider ratio.

^[3] Output current capability may be limited and other performance may vary from noted electrical characteristics when V_{OUT} is not set to nominal.

^[4] Refer to Output Ripple plots.

^[5] Refer to Load Current vs. Ambient Temperature curves.

PI3545-00 (5.0V_{OUT}) Electrical Characteristics (Cont.)

Specifications apply for -40°C < T_J < 125°C, V_{IN} = 48V, EN = High, V_{VDR} = 5.1V +/- 2%, L1 = 420nH ^[1] unless other conditions are noted.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
		Soft Start, Tracking and Error Amplifier				
TRK Active Range (Nominal)	V _{TRK}		0		1.4	V
TRK Enable Threshold	V _{TRK_OV}		20	40	60	mV
TRK to EAIN Offset	V _{EIAN_OV}	$V_{TRK} = 0.5V$, EA0 shorted to EAIN	50	80	110	mV
Charge Current (Soft-Start)	I _{TRK}		70	50	30	μA
Discharge Current (Fault)	I _{TRK_DIS}	V _{TRK} = 0.5V		10		mA
Soft-Start Time	t _{ss}	C _{TRK} = 0μF	0.6	0.94	1.6	ms
Error Amplifier Trans-Conductance	GM _{EAO}	[2]		5.1		mS
PSM Skip Threshold	PSM _{SKIP}	[2]		0.8		V
Error Amplifier Output Impedance	R _{OUT}	[2]	1			MΩ
Internal Compensation Capacitor	C _{HF}	[2]		56		pf
Internal Compensation Resistor	R _{ZI}	[2]		6		kΩ

[1] All parameters reflect regulator and inductor system performance. Measurements were made using a standard PI354x evaluation board with 2.5 x 4" dimensions and 4 layer, 2 oz copper. Refer to inductor pairing table within Application Description section for specific inductor manufacturer and value.
 [2] Regulator is assured to meet performance specifications by design, test correlation, characterization, and/or statistical process control. Output voltage is determined by an external feedback divider ratio.

^[3] Output current capability may be limited and other performance may vary from noted electrical characteristics when V_{OUT} is not set to nominal.

^[4] Refer to Output Ripple plots.

^[5] Refer to Load Current vs. Ambient Temperature curves.

PI3545-00 (5.0V_{OUT}) Electrical Characteristics (Cont.)

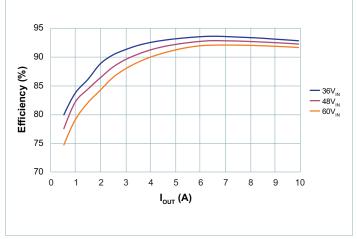
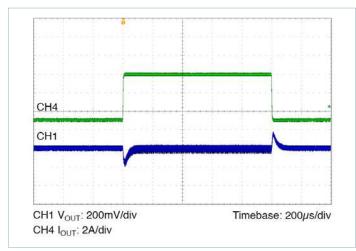
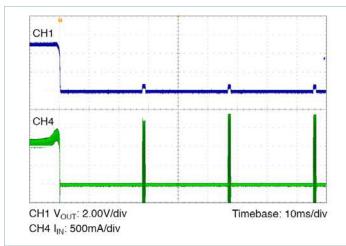
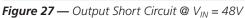





Figure 25 — Regulator Efficiency at 25°C

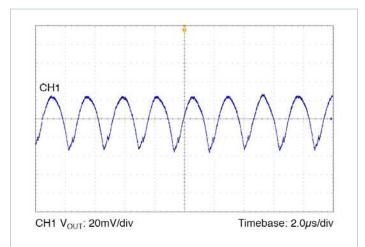


Figure 26 — Transient Response: 5A to 10A, at $1A/\mu s$. $48V_{IN}$ to $5.0V_{OUT}C_{OUT} = 6 \times 47\mu F$ Ceramic

Figure 28 — Output Ripple: $48V_{IN}$, $5.0V_{OUT}$ at 10A. $V_{OUT} = 20mV/Div$, $2.0\mu s/Div$; $C_{OUT} = 6 \times 47\mu F$ Ceramic

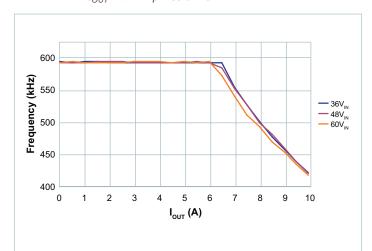


Figure 29 — Switching Frequency vs. Load Current

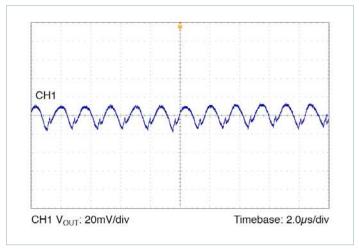


Figure 30 — Output Ripple: $48V_{IN}$, $5.0V_{OUT}$ at 5A. $V_{OUT} = 20mV/Div$, $2.0\mu s/Div$; $C_{OUT} = 6 \times 47\mu F$ Ceramic

PI3545-00 (5.0V_{OUT}) Electrical Characteristics (Cont.)

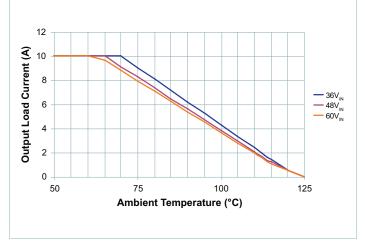


Figure 31 — Load Current vs. Ambient Temperature, OLFM

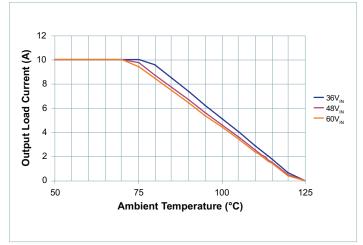


Figure 32 — Load Current vs. Ambient Temperature, 200LFM

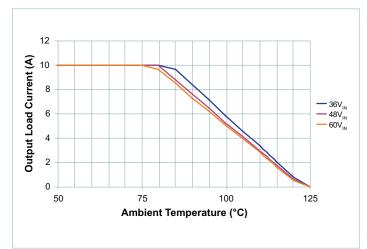


Figure 33 — Load Current vs. Ambient Temperature, 400LFM

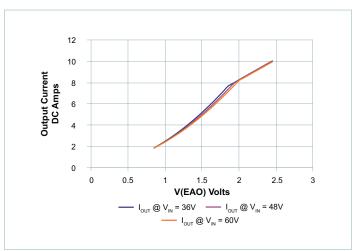


Figure 34 — Output Current vs. Error Voltage V_{EAO}

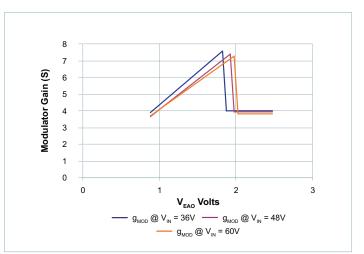


Figure 35 — Modulator Gain vs. Error Voltage V_{EAO}

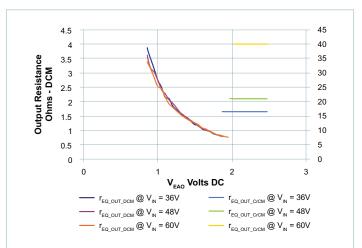


Figure 36 — Output Equivalent Resistance vs. Error Voltage V_{EAO}

PI3546-00 (12.0V_{OUT}) Electrical Characteristics

Specifications apply for -40°C < T_J < 125°C, V_{IN} = 48V, EN = High, V_{VDR} = 5.1V +/- 2%, L1 = 900nH ^[1] unless other conditions are noted.

Parameter	Symbol	Conditions	Min	Тур	Мах	Unit
		Input Specifications				
Input Voltage	V _{IN_DC}		36	48	60	V
Input Voltage, Transient	V _{IN_TRANS}	< 1% duty cycle, entire transient duration < 10ms			70	V
Input Current	I _{IN_DC}	$V_{IN} = 48V, \ T_C = 25^{\circ}C, \ I_{OUT} = 9A$		2.33		А
Input Current At Output Short (Fault Condition Duty Cycle)	I _{IN_Short}	Short at terminals		3.3	-	mA
Input Quiescent Current		Disabled		0.75		mA
Input Quiescent Current	I _{Q_VIN}	Enabled (no load)		2.6		IIIA
Input Voltage Slew Rate	V _{IN_SR}				1	V/µs
		Output Specifications				
EAIN Voltage Total Regulation	V _{EAIN}	[2]	0.985	1.00	1.015	V
Output Voltage Trim Range	V _{OUT_DC}	[2] [3]	6.5	12	14	V
Line Regulation	ΔV_{OUT} / ΔV_{IN}	@ 25°C, 36V < V _{IN} < 60V		0.10		%
Load Regulation	ΔV_{OUT} / ΔI_{OUT}	@ 25°C, 0.5A < I _{OUT} < 9A		0.10		%
Output Voltage Ripple	V _{OUT_AC}	$I_{OUT} = 9A$, $C_{OUT} = 6 \times 10 \mu$ F, 20MHz BW ^[4]		114		mVp-p
Output Current	I _{OUT_DC}	[5]	0		9	А
Maximum Array Size	N _{Parallel}				3	Module
Output Current, Array of 2	I _{OUT_DC-ARRAY2}	Total array capability, see applications section for details	0		15.9	А
Output Current, Array of 3	I _{OUT_DC-ARRAY2}	Total array capability, see applications section for details	0		22.9	А
Current Limit	I _{OUT_CL}	Typ limit based on nominal 900nH inductor.		10.5		A
		Timing				
Switching Frequency	fs	^[6] 48V _{IN} to 12V _{OUT} , 2A out, L1 = 900nH ±1%	-	800	-	kHz
Fault Restart Delay	t _{FR_DLY}			30		ms

^[1] All parameters reflect regulator and inductor system performance. Measurements were made using a standard PI354x evaluation board with 2.5 x 4" dimensions and 4 layer, 2 oz copper. Refer to inductor pairing table within Application Description section for specific inductor manufacturer and value.

^[2] Regulator is assured to meet performance specifications by design, test correlation, characterization, and/or statistical process control. Output voltage is determined by an external feedback divider ratio.

^[3] Output current capability may be limited and other performance may vary from noted electrical characteristics when V_{OUT} is not set to nominal. ^[4] Refer to Output Ripple plots.

^[5] Refer to Load Current vs. Ambient Temperature curves.

PI3546-00 (12.0V_{OUT}) Electrical Characteristics (Cont.)

Specifications apply for -40°C < T_J < 125°C, V_{IN} = 48V, EN = High, V_{VDR} = 5.1V +/- 2%, L1 = 900nH ^[1] unless other conditions are noted.

Parameter	Symbol	Conditions	Min	Тур	Мах	Unit
		Soft Start, Tracking and Error Amplifier				
TRK Active Range (Nominal)	V _{TRK}		0		1.4	V
TRK Enable Threshold	V _{TRK_OV}		20	40	60	mV
TRK to EAIN Offset	V _{EIAN_OV}	$V_{TRK} = 0.5V$, EA0 shorted to EAIN	50	80	110	mV
Charge Current (Soft-Start)	I _{TRK}		70	50	30	μA
Discharge Current (Fault)	I _{TRK_DIS}	V _{TRK} = 0.5V		10		mA
Soft-Start Time	t _{ss}	C _{TRK} = 0μF	0.6	0.94	1.6	ms
Error Amplifier Trans-Conductance	GM _{EAO}	[2]		7.6		mS
PSM Skip Threshold	PSM _{SKIP}	[2]		0.8		V
Error Amplifier Output Impedance	R _{OUT}	[2]	1			MΩ
Internal Compensation Capacitor	C _{HF}	[2]		56		pf
Internal Compensation Resistor	R _{ZI}	[2]		5		kΩ

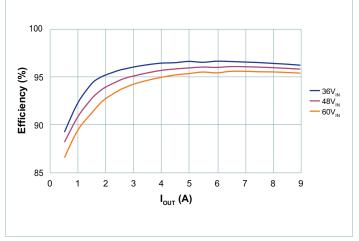
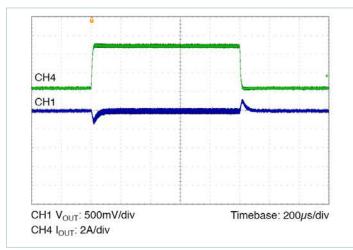
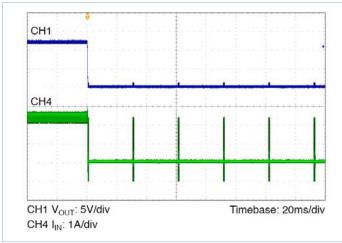
[1] All parameters reflect regulator and inductor system performance. Measurements were made using a standard PI354x evaluation board with 2.5 x 4" dimensions and 4 layer, 2 oz copper. Refer to inductor pairing table within Application Description section for specific inductor manufacturer and value.
[2] Regulator is assured to meet performance specifications by design, test correlation, characterization, and/or statistical process control. Output voltage is

determined by an external feedback divider ratio.

^[3] Output current capability may be limited and other performance may vary from noted electrical characteristics when V_{OUT} is not set to nominal. ^[4] Refer to Output Ripple plots.

^[5] Refer to Load Current vs. Ambient Temperature curves.

PI3546-00 (12.0V_{OUT}) Electrical Characteristics (Cont.)

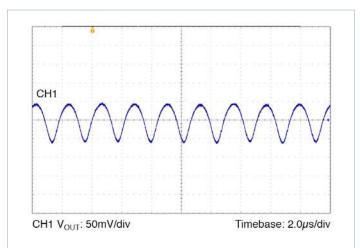


Figure 37 — Regulator Efficiency

Figure 38 — Transient Response: 5A to 10A, at $1A/\mu s$. $48V_{IN}$ to $12.0V_{OUT}$, $C_{OUT} = 6 \times 10\mu F$ Ceramic

Figure 40 — Output Ripple: $48V_{IN}$, $12.0V_{OUT}$ at 9A. $V_{OUT} = 50mV/Div$, $2.0\mu s/Div$; $C_{OUT} = 6 \times 10\mu F$ Ceramic

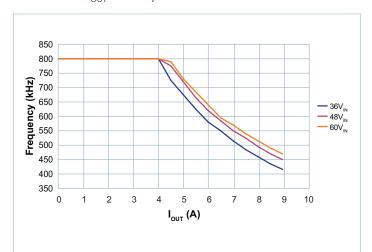
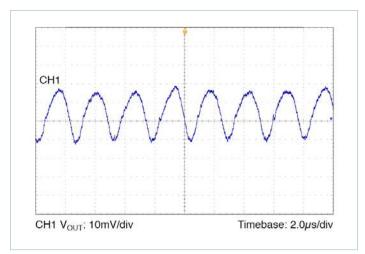
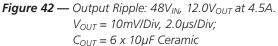




Figure 41 — Switching Frequency vs. Load Current

Rev 1.6

03/2017

PI3546-00 (12.0V_{OUT}) Electrical Characteristics (Cont.)

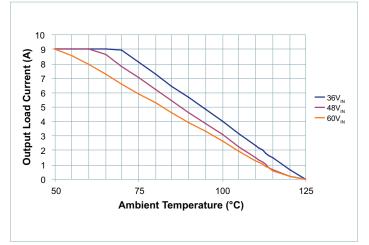


Figure 43 — Load Current vs. Ambient Temperature, OLFM

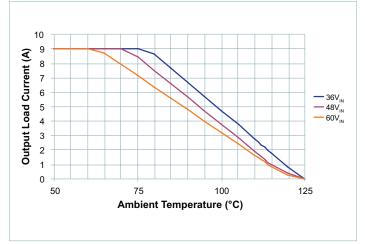


Figure 44 — Load Current vs. Ambient Temperature, 200LFM

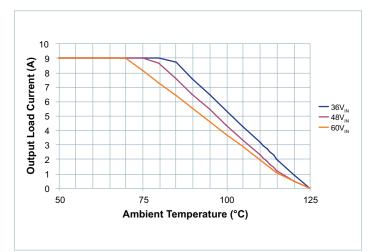


Figure 45 — Load Current vs. Ambient Temperature, 400LFM

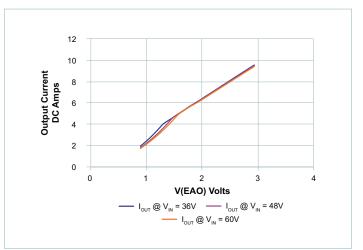


Figure 46 — Output Current vs. Error Voltage V_{EAO}

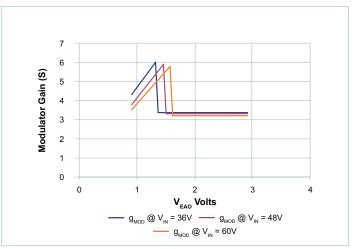


Figure 47 — Modulator Gain vs. Error Voltage V_{EAO}

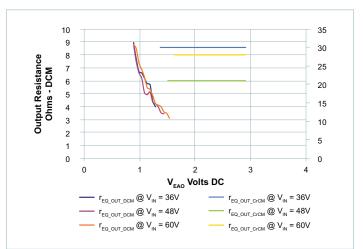


Figure 48 — Output Equivalent Resistance vs. Error Voltage V_{EAO}

Functional Description

The PI354x-00 is a family of highly integrated ZVS-Buck regulators. The PI354x-00 has an output voltage that can be set within a prescribed range shown in Table 1. Performance and maximum output current are characterized with a specific external power inductor (see Table 2).

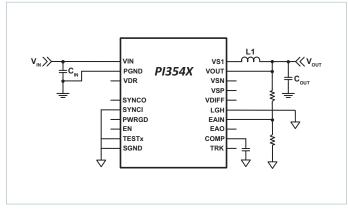


Figure 49 — ZVS-Buck with required components

For basic operation, Figure 49 shows the connections and components required. No additional design or settings are required.

ENABLE (EN)

EN is the enable pin of the converter. The EN Pin is referenced to SGND and permits the user to turn the regulator on or off. The EN default polarity is a positive logic assertion. If the EN pin is left floating or asserted high, the converter output is enabled. Pulling EN pin below $0.8V_{DC}$ with respect to SGND will disable the regulator output.

Remote Sensing

If remote sensing is required, the PI354x-00 product family is equipped with an undedicated differential amplifier. This amplifier can allow full differential remote sense by configuring it as a differential follower and connecting the VDIFF pin to the EAIN pin.

Switching Frequency Synchronization

The SYNCO pin provides a 5V level clock that can be used to monitor the internal clock of the regulator, or synchronize other regulators to it. The start of the switching cycles will coincide with the rising edge of SYNCO, and SYNCO will remain high for 1/2 the period of the preset switching frequency (f_s), or T1, whichever is longer. The SYNCI input allows the controller to synchronize its internal clock to an external clock source. The SYNCI pin should be connected to SGND through a 0Ω resistor when not in use and should never be left floating. The controller can synchronize to frequencies between 50% and 110% of the preset switching frequency (f_s). When using SYNCI, the PI354x-00 phase synchronizes to the falling edge of the applied clock on SYNCI. When SYNCI is driven from a second module's SYNCO, there is an effective 180 degrees of phase shift between the start of the switching cycles, provided the modules are switching at the preset switching frequency. At higher loads when pulse stretching occurs and the operating frequency is lowered, the phase shift is

no longer 180 degrees. Also when the switching frequency of a module is reduced due to an external clock source driving SYNCI, the current limit threshold may be significantly reduced.

Soft-Start

The PI354x-00 includes an internal soft-start capacitor to control the rate of rise of the output voltage. See the Electrical Characteristics Section for the default value. Connecting an external capacitor from the TRK pin to SGND will increase the start-up ramp period. See, "Soft Start Adjustment and Track," in the Applications Description section for more details.

Output Voltage Selection

The PI354x-00 output voltage can be selected by connecting a resistor from EAIN pin to SGND and a resistor from Vout to the EAIN pin as shown in Figure 49. Table 1 defines the allowable operational voltage ranges for the PI354x-00 family.

Device	Output Voltage			
Device	Nom.	Range		
PI3542-00-LGIZ	2.5V	2.2V to 3.0V		
PI3543-00-LGIZ	3.3V	2.6V to 3.6V		
PI3545-00-LGIZ	5.0V	4.0V to 5.5V		
PI3546-00-LGIZ	12V	6.5V to 14.0V		

Table 1 — PI354x-00 family output voltage ranges

Output Current Limit Protection

PI354x-00 has two methods implemented to protect from output short or over current condition.

Slow Current Limit protection: prevents the output from sourcing current higher than the regulator's maximum rated current. If the output current exceeds the Current Limit (I_{OUT_CL}) for 1024µs, a slow current limit fault is initiated and the regulator is shutdown which eliminates output current flow. After Fault Restart Delay (t_{FR_DLY}), a soft-start cycle is initiated. This restart cycle will be repeated indefinitely until the excessive load is removed.

Fast Current Limit protection: PI354x-00 monitors the regulator inductor current pulse-by-pulse to prevent the output from supplying very high current due to sudden low impedance short. If the regulator senses a high inductor current pulse, it will initiate a fault and stop switching until Fault Restart Delay ends and then initiate a soft-start cycle.

Input Undervoltage Lockout

If $V_{\rm IN}$ falls below the input Undervoltage Lockout (UVLO) threshold, but remains high enough to power the internal bias supply, the PI354x-00 will complete the current cycle and stop switching. The system will soft start once the input voltage is reestablished and after the Fault Restart Delay.

