

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

PI3741-0x-EVAL1

Cool-Power® ZVS Switching Regulators Buck-Boost Eval Board User Guide

Contents	Page
Introduction	1
Bill of Materials	2
Schematic	3
Typical Connections	4
Connector Descriptions	<u>5</u>
Schematic Symbol	6
Pad Definitions	6
PCB Design Files	7

Figure 1

PI3741-0x-EVAL1
Evaluation Board

Introduction

The PI3741-0x-EVAL1 evaluation board demonstrates the features and benefits of Picor's ZVS Buck-Boost regulator; pre-configured for either a 24Vor 48V output voltage and rated for up to 150W. Please refer to the corresponding PI3741-0x-LGIZ data sheet for all power specifications. The PI3741-0x-EVAL1 evaluation board is used with the following ZVS buck-boost products: PI3741-00-LGIZ, PI3741-01-LGIZ.

The evaluation board provides several options for applying input power (V_{IN} and GND) and output load (V_{OUT} and GND). The user can solder tab style banana jacks or wire, use threaded connectors with retaining nuts, or solder turret pins for clip-on connections.

The evaluation board comes with all of the PI3741-0x-LGIZ's features accessible to the user. The current monitor function (I_{MON}) is set-up to monitor the PI3741-0x-LGIZ's output current, sensed across a $5m\Omega$ resistor. The general purpose amplifier (V_{DIFF}) comes pre-set with a gain of 2, but can be easily re-configured for differential measurements by adding extra 0603 resistors.

The I/O pins are brought out to the right edge of the evaluation board to allow for easy monitoring or for adding additional circuitry. The status of the PGD pin is indicated by a dual colored LED; red indicating a fault and green indicating no faults. The SYNCO (sync out) and SYNCI (sync in) pins are accessible to allow for paralleling or for synchronizing to an external clock. Shorting J5 between IMON and VSP on the board will connect the output of IMON to the positive input of the general purpose amplifier, allowing for user designed signal scaling and conditioning.

A footprint for an external Soft-Start capacitor (0603) is available to tailor the start-up profile of the converter. The error amplifier's output (EAO) is brought to a pin and in conjunction with the soft-start pin can be used for paralleling converters. The error amplifier's input (EAIN) is not directly connected to a pin, but connects to the pin EXT_V_{REF} via a 10k series resistor. Applying a dc voltage to this pin will

allow the user to change the regulated output voltage without changing the feedback network.

The board is designed with an edge connector to facilitate testing at the factory, but this connection can also be used for board evaluation. The PCB is 4 layer FR-4 170Tg material with 2oz copper per layer, ENIG pad finish and a board thickness of 0.062".

Bill of Materials

Table 1Bill of Materials

Populated Components

Qty	Designator	Value	Description	Vendor Name	Vendor Part Number
14	C1, C2, C3, C4, C5, C7, C8, C9, C10, C11, C12, C13, C14, CIN1	2.2 uF	Ceramic Cap, X7S, 100V, 1206	TDK	C3216X7S2A225K160AB
1	CCOMP	4.7 nF	Ceramic Cap, X7R, 50 V, 0603	Murata	GRM188R71H472KA01D
1	D1	Fault Status	1 x 1 mm Dual Color SM LED	Rohm	SML-P24MUWT86
2	FT1, FT2	TEST 1, TEST 2	SM Testpoint	Keystone	5015
2	J5, J6		0.1" Header Jumper	Samtec	TSW-148-07-F-S
1	L1	65nH	FP0404 Series Inductor	Cooper	FP0404R1-R065-R
1	LMAG	0.9μΗ	HCV1206 Inductor	Cooper	HCV1206-R90-R
1	РСВ		PI37xx-xx Edge Connector Eval Board	PICOR	PCB0175rD
1	PI3741	ZVS Buck- Boost	Low Voltage ZVS B-B SIP 10 x 14 mm	VICOR	PI3741-0x-LGIZ
1	R5	1.00k	Resistor, 1%, 0.1 W, 0603	Rohm	MCR03EZPFX1001
5	RDIFF1, RDIFF2, REA3, RPGD, RSYNCI	10.0K	Resistor, 1%, 0.1 W, 0603	Rohm	MCR03EZPFX1002
1	REA1	14.0K for PI3741-00	Resistor, 1%, 0.1 W, 0603	Yageo	RC0603FR-0714KL
1 RE.		29.1K for PI3741-01	Resistor, 1%, 0.1 W, 0603	KOA Speer	RN73H1JTTD2912F50
1	REA4	1.07K	Resistor, 1%, 0.1W, 0603	Yageo	RC0603FR-071K07L
1	RGP	49.9	Resistor, 1%, 0.1 W, 0603	Rohm	MCR03ERTF49R9
1	RIN	0.51	Resistor, 1%, 0.25 W, 1206	Rohm	MCR18EZHFLR510
1	RSENSE	0.005	Resistor, 1%, 1 W, 2512	Panasonic	ERJ-M1WSF5M0U
3	RSDA, RSCL, RZ1	0	Resistor, 1%, 0.1 W, 0603	Rohm	MCR03EZPJ000
1	U1	NC7WZ14EP6X	Dual Schmidt trigger Inverter	Fairchild	NC7WZ14EP6X
1	CVDR	0.1 μF	Capacitor, X7R Ceramic, 0.1µF, 50V, 0603	Rohm	MCH185CN104KK

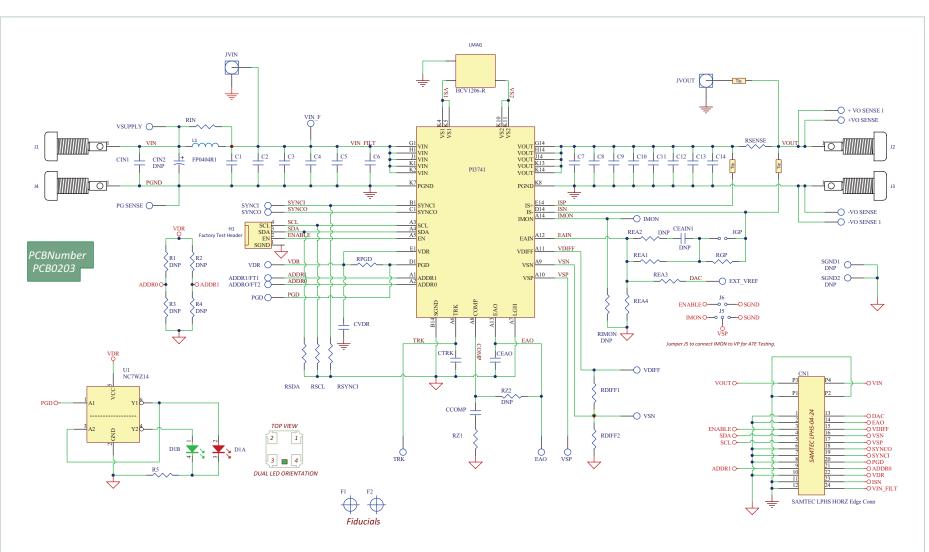
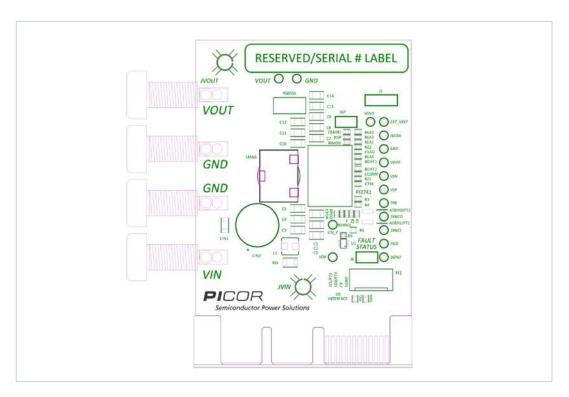

Non-Populated Components

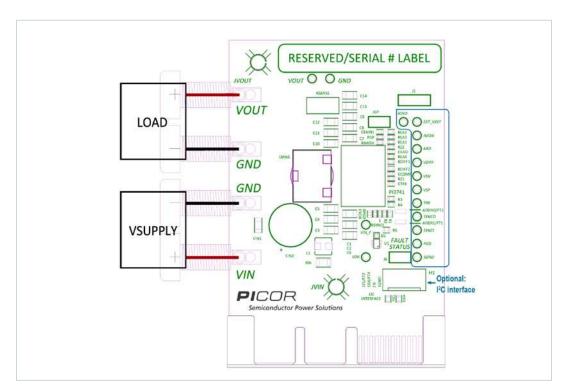
Table 2Bill of Material


Non-Populated Components

Qty	Designator	Description
3	REA2, RIMON, RZ2	Resistor, 1%, 0.1 W, 0603
4	R1, R2, R3, R4	Factory Use Only
14	EAO, EXT_VREF, PGD, IMON, SGND1, SGND2, SS/TRK, SYNCI, SYNCO, VDIFF, VDR, VIN, VSN, VSP	Thru-hole Testpoints, Vector K24C
3	CEAIN1, CEAO, CTRK	Ceramic Cap, 50 V, 0603
1	CIN2	Bi-Polar Capacitor, Nichicon UPW2A330MPD or equivalent
2	JVIN, JVOUT	Johnson Jack, Tektronix 131503100
3	ENABLE, FT3, FT4	SM Testpoint, Keystone 5015
1	JGP	0.1" Header Jumper
1	C6	Capacitor, Ceramic, 1206
1	H1	Factory Test Header

Figure 2
Evaluation Board
Schematic

Figure 3 Evaluation Board Details

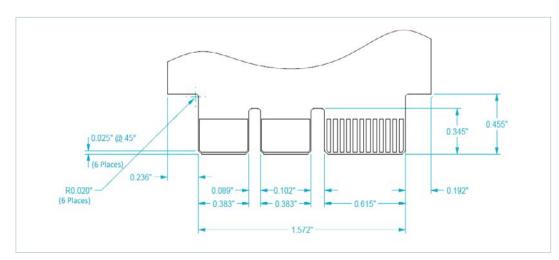


Typical Connections

Figure 4 illustrates the typical input supply and output load connections required to power the PI3741-x0 evaluation board. The test points on the right side of the board provide access to key nodes used to assess the board's performance. The jumper "JGP" provides an access point that allows the user to add a small signal in the feedback loop to make Gain/Phase measurements. The jumper J5 will connect the IMON output signal to the positive input of the general purpose amplifier, allowing this signal to be scaled. The J6 jumper will disable the converter when connected.

J_{VIN} is an unpopulated "Johnson Jack" location that may be used to measure input ripple voltage.

Figure 4
Typical Input and
Output Connections



PICOR PCB Edge Connector Description

SAMTEC Reference Mechanical Drawings: based on EXTreme LPHPower™ Socket Assembly series, available from Samtec's website PCB Dimensions: "Recommended PCB layout for LPHS-XX-XVX-X-VXX-XX PCB Layout.pdf"

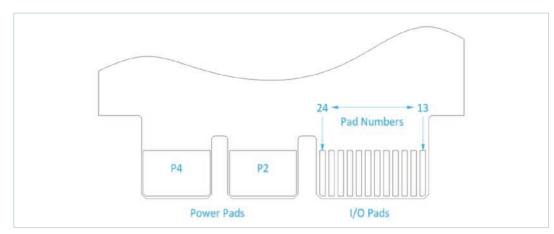
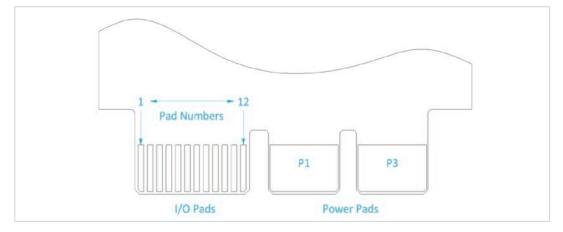

Right Angle Socket: "LPHS-XX-XX-X-RTX-XX-MKT.pdf" Vertical Socket: "LPHS-XX-XX-XV-VXX-MKT.pdf"

Figure 5 *Edge Connector Details*



PAD Numbering

Figure 6
Top (Component) View

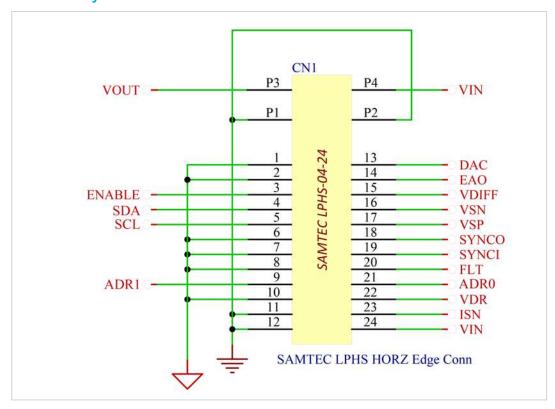


Figure 7Bottom View

Schematic Symbol

Figure 8
Schematic of edge connector

PAD Definitions

PAD	Name	Description
P1,P2	PGND	Power ground connection for the input supply and output load
P3	VOUT	Output voltage connection
P4	VIN	Input voltage connection
1, 2, 6, 7, 8, 10	SGND	Signal ground used as reference for I/O measurements
11, 12	PGND	Power ground used as reference for input and output voltage measurements
3	ENABLE	Enable
4	SDA	Factory use only
5	SCL	Factory use only
9	ADR1	Factory use only
13	DAC	External voltage node to adjust regulated output voltage (EXT_V_{REF})
14	EAO	Error amplifier output
15	VDIFF	Differential amplifier output
16	VSN	Differential amplifier inverting input
17	VPN	Differential amplifier non-inverting input
18	SYNCO	Sync output pin
19	SYNCI	Sync input pin
20	PGD	Power good status pin
21	ADR0	Factory use only
22	VDR	Internal generated 5.1V supply for gate drivers and internal logic
23	ISN	Remote sensed output voltage, after the IMON resistor
24	VIN	Input supply voltage measured at SIP's input

PCB Design Files

ODB++ evaluation board design files are available for download on Vicor's website.

www.vicorpower.com

Product	Design File Format	Link to Download
PI3741-0x-EVAL1	ODB++	http://www.vicorpower.com/files/live/sites/vicor/files/documents/ pcb_files/PI3741-0x_Eval_ODB++.zip

vicorpower.com