: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Features

- CMOS Technology for Bus and Analog Applications
- Low ON-Resistance: 0.4Ω (+2.7V Supply)
- Wide V_{DD} Range: +1.5 V to +3.6 V
- Low Power Consumption : $5 \mu \mathrm{~W}$
- Rail-to-Rail switching throughout Signal Range
- Fast Switching Speed: 20ns max. at 3.3 V
- High Off Isolation: -27 dB at 100 kHz
- $-41 \mathrm{~dB}(100 \mathrm{kHz})$ Crosstalk Rejection Reduces Signal Distortion
- Extended Industrial Temperature Range: $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
- Packaging (Pb-free \& Green available):
- 6-pin Small Compact SOT23 (T)

Applications

- Cell Phones
- PDAs
- Portable Instrumentation
- Battery Powered Communications
- Computer Peripherals

Pin Description

Pin Number	Name	Description
1	NO	Data Port (Normally Open)
2	GND	Ground
3	NC	Data Port (Normally Closed)
4	COM	Common Output/Data Port
5	VDD	Positive Power Supply
6	IN	Logic Control

Function Table

Logic Input	Function
0	NC Connected to COM
1	NO Connected to COM

Description

The PI3A3159 is a, fast single-pole double-throw (SPDT) CMOS switch. It can be used as an analog switch or as a low-delay bus switch. Specified over a wide operating power supply voltage range, +1.5 V to +3.6 V , the PI 3 A 3159 has an On-Resistance of 0.4Ω at 3.0 V .
Control input, IN, tolerates input drive signals up to 3.3 V , independent of supply voltage.
PI3A3159 is a lower voltage and On-Resistance replacement for the PI5A3159.

Connection Diagram

Absolute Maximum Ratings
Voltages Referenced to GND
$V_{D D}$ \qquad
$\mathrm{V}_{\mathrm{IN}}, \mathrm{V}_{\mathrm{COM}}, \mathrm{V}_{\mathrm{NC}}, \mathrm{V}_{\mathrm{NO}}$ (Note 1) \qquad -0.5 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ or 30 mA , whichever occurs first
Current (any terminal). \qquad $\pm 200 \mathrm{~mA}$
Peak Current, COM, NO, NC
(Pulsed at $1 \mathrm{~ms}, 10 \%$ duty cycle) \qquad $\pm 400 \mathrm{~mA}$

Thermal Information

Continuous Power Dissipation
SOT23-6 (derate $7.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) \qquad 0.5 W

Storage Temperature \qquad $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Lead Temperature (soldering, 10s) \qquad $+300^{\circ} \mathrm{C}$

Note:

1. Signals on NC, NO, COM, or IN exceeding V_{DD} or GND are clamped by internal diodes. Limit forward diode current to 30 mA .

Caution: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied.

Electrical Specifications - Single +3.3V Supply

$\left(\mathrm{V}_{\mathrm{DD}}=+3.3 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=1.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.5 \mathrm{~V}\right)$

Parameter	Symbol	Conditions	Package	Temp. $\left({ }^{\circ} \mathrm{C}\right)$	Min. ${ }^{(1)}$	Typ. ${ }^{(2)}$	Max. ${ }^{(1)}$	Units
Analog Switch								
Analog Signal Range (3)	VANALOG			Full	0		V_{DD}	V
On Resistance	R_{ON}	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{COM}}=100 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=+1.5 \mathrm{~V} \end{aligned}$		25			0.4	Ω
			SOT23	Full			0.5	
			TDFN				0.6	
On-Resistance Match Between Channels ${ }^{(4)}$	$\Delta \mathrm{R}_{\mathrm{ON}}$			25			0.08	
				Full			0.09	
On-Resistance Flatness ${ }^{(5)}$	$\mathrm{R}_{\text {FLAT(ON) }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{COM}}=100 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=0.8 \mathrm{~V}, 2.0 \mathrm{~V} \end{aligned}$		25			0.1	
				Full			0.1	
NO or NC Off Leakage Current ${ }^{(6)}$	$\mathrm{I}_{\mathrm{NO} \text { (OFF) }}$ or $\mathrm{I}_{\mathrm{NC}(\mathrm{OFF})}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=+2.0 \mathrm{~V} \end{aligned}$		25	-1		1	nA
				Full	-10		10	
COM On Leakage Current ${ }^{(6)}$	$\mathrm{I}_{\text {COM }}(\mathrm{ON})$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=+2.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=+2.0 \mathrm{~V} \end{aligned}$		25	-2		2	
				Full	-20		20	

Notes:

1. The algebraic convention, where most negative value is a minimum and most positive is a maximum, is used in this data sheet.
2. Typical values are for DESIGN AID ONLY, not guaranteed or subject to production testing.
3. Guaranteed by design.
4. $\Delta \mathrm{R}_{\mathrm{ON}}=\mathrm{R}_{\mathrm{ON}}$ max. $-\mathrm{R}_{\mathrm{ON}} \min$.
5. Flatness is defined as the difference between the maximum and minimum value of On-Resistance measured.
6. Leakage parameters are 100% tested at maximum rated hot temperature and guaranteed by correlation at $+25^{\circ} \mathrm{C}$.

Electrical Specifications - Single +3.3V Supply (continued)
$\left(\mathrm{V}_{\mathrm{DD}}=+3.3 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=1.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.5 \mathrm{~V}\right)$

| Parameter | Symbol | Conditions | Temp. $\left({ }^{\circ} \mathrm{C}\right)$ | Min. ${ }^{(\mathbf{1})}$ | Typ. ${ }^{(\mathbf{2})}$ | Max. ${ }^{(\mathbf{1})}$ | Units |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Logic Input | | | | | | | |
| Input High Voltage | V_{IH} | Guaranteed Logic High Level | Full | 1.4 | | | |
| Input Low Voltage | V_{IL} | Guaranteed Logic LowLevel | | | | 0.5 | |
| Input Current with Volt-
 age High | $\mathrm{I}_{\mathrm{INH}}$ | $\mathrm{V}_{\mathrm{IN}}=1.4 \mathrm{~V}$, all others $=0.5 \mathrm{~V}$ | | -1 | | 1 | V |
| Input Current with Volt-
 age Low | $\mathrm{I}_{\mathrm{INL}}$ | $\mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}$, all others $=1.4 \mathrm{~V}$ | | -1 | | 1 | $\mu \mathrm{~A}$ |

Dynamic

Turn-On-Time	ton	$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}}$ or $\mathrm{V}_{\mathrm{NC}}=2.0 \mathrm{~V}$, Figure 1	25		20	ns
			Full		20	
Turn-Off-Time	toff		25		10	
			Full		15	
Charge Injection ${ }^{(3)}$	Q	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \mathrm{~V}_{\mathrm{GEN}}=0 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{GEN}}=0 \Omega, \text { Figure } 2 \end{aligned}$	25	40		pC
Off Isolation ${ }^{(4)}$	OIRR	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{f}=100 \mathrm{KHz}$, Figure 3		-27		dB
CrossTalk ${ }^{(5)}$	$\mathrm{X}_{\text {TALK }}$	$\mathrm{R}_{\mathrm{L}}=50 \Omega \mathrm{f}=100 \mathrm{KHz}$, Figure 4		-41		
NC or NO Capacitance	$\mathrm{C}_{\mathrm{NC} / \mathrm{NO}}$ (OFF)	$\mathrm{f}=1 \mathrm{MHz}$, Figure 5		90		pF
COM Off Capacitance	$\mathrm{C}_{\text {COM }}$ (OFF)			90		
COM On Capacitance	$\mathrm{C}_{\text {COM(ON) }}$	$\mathrm{f}=1 \mathrm{MHz}$, Figure 6		240		

Supply

Power-Supply Range	$\mathrm{V}_{\text {DD }}$		Full	1.5	3.6	V
Positive Supply Current	I_{CC}	$\mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$ or V_{DD}			100	nA

Notes:

1. The algebraic convention, where most negative value is a minimum and most positive is a maximum, is used in this data sheet.
2. Typical values are for DESIGN AID ONLY, not guaranteed or subject to production testing.
3. Guaranteed by design.
4. Off Isolation $=20 \log _{10}\left[\mathrm{~V}_{\mathrm{COM}} /\left(\mathrm{V}_{\mathrm{NO}}\right.\right.$ or $\left.\left.\mathrm{V}_{\mathrm{NC}}\right)\right]$. See Figure 3.
5. Between any two switches. See Figure 4.

Electrical Specifications - Single +2.5V Supply ($\mathrm{V}_{\mathrm{DD}}=+2.5 \mathrm{~V} \pm 10 \%$, $\mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=1.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.5 \mathrm{~V}$)

Parameter	Symbol	Conditions	Temp. $\left({ }^{\circ} \mathrm{C}\right)$	Min. ${ }^{(1)}$	Typ. ${ }^{(2)}$	Max. ${ }^{(1)}$	Units
Analog Switch							
Analog Signal Range ${ }^{(3)}$	VANALOG			0		V_{DD}	V
On-Resistance	R_{ON}	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V}, \mathrm{I}_{\mathrm{COM}}=-8 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=1.8 \mathrm{~V} \end{aligned}$	25			0.5	Ω
			Full			0.55	
On-Resistance Match Between Channels ${ }^{(4)}$	$\Delta \mathrm{R}_{\mathrm{ON}}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V}, \mathrm{I}_{\mathrm{COM}}=-8 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=0.8 \mathrm{~V}, 1.8 \mathrm{~V} \end{aligned}$	25			0.09	
			Full			0.09	
On-Resistance Flatness ${ }^{(5)}$	$\mathrm{R}_{\text {FLAT(ON) }}$		25			0.02	
			Full			0.02	
Dynamic							
Turn-On-Time	ton	$\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}}$ or $\mathrm{V}_{\mathrm{NC}}=1.8 \mathrm{~V}$, Figure 1	25			30	ns
			Full			30	
Turn-Off-Time	toff		25			15	
			Full			15	
Charge Injection ${ }^{(3)}$	Q	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \mathrm{~V}_{\mathrm{GEN}}=0 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{GEN}}=0 \Omega \text {, Figure } 2 \\ & \hline \end{aligned}$	25		40		pC
Logic Input							
Input High Voltage	$\mathrm{V}_{\text {IH }}$	Guaranteed Logic High Level	Full	1.4			V
Input Low Voltage	$\mathrm{V}_{\text {IL }}$	Guaranteed Logic LowLevel	Full			0.5	
Input High Current	$\mathrm{I}_{\text {INH }}$	$\mathrm{V}_{\text {IN }}=1.4 \mathrm{~V}$, all others $=0.5 \mathrm{~V}$	Full	-1		1	$\mu \mathrm{A}$
Input Low Current	$\mathrm{I}_{\text {INL }}$	$\mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}$, all others $=1.4 \mathrm{~V}$	Full	-1		1	

Notes:

1. The algebraic convention, where most negative value is a minimum and most positive is a maximum, is used in this data sheet.
2. Typical values are for DESIGN AID ONLY, not guaranteed or subject to production testing.
3. Guaranteed by design.
4. $\Delta \mathrm{R}_{\mathrm{ON}}=\mathrm{R}_{\mathrm{ON}}$ max. $-\mathrm{R}_{\mathrm{ON}} \min$.
5. Flatness is defined as the difference between the maximum and minimum value of On-Resistance measured.

Electrical Specifications - Single $\mathbf{+ 1 . 8 V}$ Supply
$\left(\mathrm{V}_{\mathrm{DD}}=+1.8 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=1.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.5 \mathrm{~V}\right)$

Parameter	Symbol	Conditions	Temp. $\left({ }^{\circ} \mathrm{C}\right)$	Min. ${ }^{(1)}$	Typ. ${ }^{(2)}$	Max. ${ }^{(1)}$	Units
Analog Switch							
Analog Signal Range ${ }^{(3)}$	VANALOG			0		V_{DD}	V
On-Resistance	R_{ON}	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V}, \mathrm{I}_{\mathrm{COM}}=-4 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=1.5 \mathrm{~V} \end{aligned}$	25			0.6	Ω
			Full			0.6	
On-Resistance Match Between Channels ${ }^{(4)}$	$\Delta \mathrm{R}_{\mathrm{ON}}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V}, \mathrm{I}_{\mathrm{COM}}=-4 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=0.8 \mathrm{~V}, 1.5 \mathrm{~V} \end{aligned}$	25			0.07	
			Full			0.09	
On-Resistance Flatness ${ }^{(5)}$	$\mathrm{R}_{\text {FLAT(ON) }}$		25			0.8	
			Full			0.8	
Dynamic							
Turn-On-Time	ton	$\mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}}$ or $\mathrm{V}_{\mathrm{NC}}=1.5 \mathrm{~V}$, Figure 1	25			50	ns
			Full			50	
Turn-Off-Time	toff		25			25	
			Full			25	
Charge Injection ${ }^{(3)}$	Q	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \mathrm{~V}_{\mathrm{GEN}}=0 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{GEN}}=0 \Omega, \text { Figure } 2 \end{aligned}$	25		36		pC
Logic Input							
Input High Voltage	$\mathrm{V}_{\text {IH }}$	Guaranteed Logic High Level	Full	1.4			V
Input Low Voltage	$\mathrm{V}_{\text {IL }}$	Guaranteed Logic LowLevel	Full			0.5	
Input High Current	$\mathrm{I}_{\text {INH }}$	$\mathrm{V}_{\text {IN }}=1.4 \mathrm{~V}$, all others $=0.5 \mathrm{~V}$	Full	-1		1	$\mu \mathrm{A}$
Input Low Current	$\mathrm{I}_{\text {INL }}$	$\mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}$, all others $=1.4 \mathrm{~V}$	Full	-1		1	

Notes:

1. The algebraic convention, where most negative value is a minimum and most positive is a maximum, is used in this data sheet.
2. Typical values are for DESIGN AID ONLY, not guaranteed or subject to production testing.
3. Guaranteed by design.
4. $\Delta \mathrm{R}_{\mathrm{ON}}=\mathrm{R}_{\mathrm{ON}} \max .-\mathrm{R}_{\mathrm{ON}} \min$.
5. Flatness is defined as the difference between the maximum and minimum value of On-Resistance measured.

Test Circuits/Timing Diagrams

C_{L} INCLUDES FIXTURE AND STRAY CAPACITANCE $\mathrm{V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{NO}}\left(\frac{\mathrm{R}_{\mathrm{L}}}{\mathrm{R}_{\mathrm{L}}+\mathrm{R}_{\mathrm{ON}}}\right)$

LOGIC INPUT WAVEFORMS INVERTED FOR SWITCHES THAT HAVE OPPOSITE LOGIC

* 1.5V FOR 3.3V SUPPLY

Figure 1. Switching Time

Figure 2. Charge Injection

Figure 3. Off Isolation

Test Circuits/Timing Diagrams (continued)

Figure 5. Channel-Off Capacitance

Figure 6. Channel-On Capacitance

Packaging Mechanical: 6-Pin SOT23 (T)

1. ALL DIMENSIONS IN MILLIMETERS. ANGLES IN DEGREES.
2. DIMENSIONS EXCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.

SYMBOLS	MIN.	NOM.	MAX.
A	-	-	1.45
A1	0.00	-	0.15
A2	0.90	1.15	1.30
b	0.35	--	0.50
c	0.08	--	0.22
D	2.80	2.90	3.00
E	2.60	2.80	3.00
E1	1.50	1.60	1.75
L	0.30	0.45	0.60
L1	0.60 REF		
R	0.10	--	--
R1	0.10	--	0.25
θ	0	4	8.
e	0.95 BSC		
e1	1.90 BSC		

3. REFER EIAJ SC74A AND JEDEC MO-178.

(1) PERICOM ${ }^{\circ}$ Enabling Serial Connectivity	DATE: 10/19/09
DESCRIPTION: 6-pin, Small Outline Transistor Plastic Package (SOT23)	
PACKAGE CODE: T (T6)	
DOCUMENT CONTROL \#: PD-1912	REVISION: C

09-0131
Note:

- For latest package info, please check: http://www.pericom.com/products/packaging/mechanicals.php

Ordering Information

Ordering Code	Package Code	Package Description	Top Mark
PI3A3159TEX	T	Pb-free \& Green, 6-pin, SOT23	ZG

Notes:

Thermal characteristics can be found on the company web site at http://www.pericom.com/packaging/
X = Tape/Reel

