: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Features

- CMOS Technology for Bus and Analog Applications
- Low On-Resistance: 0.4Ω (+2.7V Supply)
- Wide V_{DD} Range: +1.5 V to +4.2 V
- Low Power Consumption : $5 \mu \mathrm{~W}$
- Rail-to-Rail switching throughout Signal Range
- Fast Switching Speed: 20ns max. at 3.3V
- High Off Isolation: -27 dB at 100 kHz
- - 41 dB (100 kHz) Crosstalk Rejection Reduces Signal Distortion
- Extended Industrial Temperature Range: $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
- Packaging:
- Pb-free \& Green, 12-pin TDFN (ZE)

Applications

- Cell Phones
- PDAs
- Portable Instrumentation
- Battery Powered Communications
- Computer Peripherals

Pin Description

Pin Number	Name	Description
8,11	NOx	Data Port (Normally Open)
3,6	GND	Ground
2,5	NCx	Data Port (Normally Closed)
1,4	COMx	Common Output/Data Port
9,12	$\mathrm{~V}_{\mathrm{DD}} \mathrm{x}$	Postive Power Supply ${ }^{(2)}$
7,10	INx	Logic Control

Notes:

1. $\mathrm{x}=0$ or 1
2. $\mathrm{V}_{\mathrm{DD} 0}$ ad $\mathrm{V}_{\mathrm{DD} 1}$ are not internally connected. Each must be powered seperately.

Description

The PI3A3160 is a fast Dual single-pole double-throw (SPDT) CMOS switch. It can be used as an analog switch or as a lowdelay bus switch. Specified over a wide operating power supply voltage range, +1.5 V to +4.2 V , the switch has an On-Resistance of 0.4Ω at 3.0 V .

Control inputs, IN, tolerates input drive signals up to 3.3 V , independent of supply voltage.
PI3A3160 is a lower voltage and On-Resistance replacement for the PI5A3158.

Block Diagram / Pin Configuration

Function Table

Logic Input	Function
0	NCx Connected to COMx
1	NOx Connected to COMx

Abstract

Absolute Maximum Ratings Voltages Referenced to GND $V_{D D}$ \qquad -0.5 V to +4.4 V $\mathrm{V}_{\mathrm{IN}}, \mathrm{V}_{\mathrm{COM}}, \mathrm{V}_{\mathrm{NC}}, \mathrm{V}_{\mathrm{NO}}{ }^{(1)}$ \qquad -0.5 V to $\mathrm{V}_{+}+0.3 \mathrm{~V}$ or 30 mA , whichever occurs first Current (any terminal) \qquad $\pm 200 \mathrm{~mA}$ Peak Current, COM, NO, NC (Pulsed at $1 \mathrm{~ms}, 10 \%$ duty cycle). \qquad $\pm 400 \mathrm{~mA}$

Thermal Information

Continuous Power Dissipation
SOT23 (derate $7.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) \qquad
Storage Temperature \qquad $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Lead Temperature (soldering, 10s) \qquad $+300^{\circ} \mathrm{C}$

Note 1: Signals on NC, NO, COM, or IN exceeding V_{DD} or GND are clamped by internal diodes. Limit forward diode current to 30 mA .
Caution: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied.

Electrical Specifications - Single +4.2V Supply

$\left(\mathrm{V}_{\mathrm{DD}}=+4.2 \mathrm{~V} \pm 5 \%, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=1.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.7 \mathrm{~V}\right)$

Parameter	Symbol	Conditions	Temp. $\left({ }^{\circ} \mathrm{C}\right)$	Min. ${ }^{(1)}$	Typ. ${ }^{(2)}$	Max. ${ }^{(1)}$	Units
Analog Switch							
Analog Signal Range ${ }^{(3)}$	V ${ }_{\text {ANALOG }}$		Full	0		V_{DD}	V
On Resistance	R_{ON}	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=4.0 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{COM}}=99 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}} \end{aligned}$	25		0.4	0.45	Ω
			Full			0.6	
On-Resistance Match Between Channels ${ }^{(4)}$	$\Delta \mathrm{R}_{\mathrm{ON}}$		25			0.08	
			Full			0.09	
On-Resistance Flatness ${ }^{(5)}$	$\mathrm{R}_{\mathrm{FLAT}(\mathrm{ON})}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=4.0 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{COM}}=100 \mathrm{~mA} \end{aligned}$	25			0.1	
			Full			0.1	
NO or NC Off Leakage Current ${ }^{(6)}$	$\mathrm{I}_{\mathrm{NO}(\mathrm{OFF})}$ or $\mathrm{I}_{\mathrm{NC}(\mathrm{OFF})}$	$\mathrm{V}_{\mathrm{DD}}=4.2 \mathrm{~V}$	25	-100		100	nA
			Full	-400		400	
COM On Leakage Current ${ }^{(6)}$	$\mathrm{I}_{\text {COM }}(\mathrm{ON})$	$\mathrm{V}_{\mathrm{DD}}=4.2 \mathrm{~V}$	25	-200		200	
			Full	-400		400	

Notes:

1. The algebraic convention, where most negative value is a minimum and most positive is a maximum, is used in this data sheet.
2. Typical values are for DESIGN AID ONLY, not guaranteed or subject to production testing.
3. Guaranteed by design.
4. $\Delta \mathrm{R}_{\mathrm{ON}}=\mathrm{R}_{\mathrm{ON}} \max$ - $\mathrm{R}_{\mathrm{ON}} \min$.
5. Flatness is defined as the difference between the maximum and minimum value of On-Resistance measured.
6. Leakage parameters are 100% tested at maximum rated hot temperature and guaranteed by correlation at $+25^{\circ} \mathrm{C}$.
7. Off Isolation $=20 \log _{10}\left[\mathrm{~V}_{\mathrm{COM}} /\left(\mathrm{V}_{\mathrm{NO}}\right.\right.$ or $\left.\left.\mathrm{V}_{\mathrm{NC}}\right)\right]$. See Figure 4.
8. Between any two switches. See Figure 5.

Electrical Specifications - Single +3.3V Supply

$\left(\mathrm{V}_{\mathrm{DD}}=+3.3 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\text {IH }}=1.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.5 \mathrm{~V}\right)$

Parameter	Symbol	Conditions	Temp. $\left({ }^{\circ} \mathrm{C}\right)$	Min. ${ }^{(1)}$	Typ. ${ }^{(2)}$	Max. ${ }^{(1)}$	Units
Analog Switch							
Analog Signal Range ${ }^{(3)}$	VANALOG		Full	0		$\mathrm{V}_{\text {DD }}$	V
On Resistance	R_{ON}	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{COM}}=100 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=+1.5 \mathrm{~V} \end{aligned}$	25		0.4	0.45	Ω
			Full			0.6	
On-Resistance Match Between Channels ${ }^{(4)}$	$\Delta \mathrm{R}_{\mathrm{ON}}$		25			0.08	
			Full			0.09	
On-Resistance Flatness ${ }^{(5)}$	$\mathrm{R}_{\mathrm{FLAT}}(\mathrm{ON})$	$\begin{array}{\|l} \hline \mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}, \\ \mathrm{I}_{\mathrm{COM}}=100 \mathrm{~mA}, \\ \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=0.8 \mathrm{~V}, 2.0 \mathrm{~V} \\ \hline \end{array}$	25			0.1	
			Full			0.1	
NO or NC Off Leakage Current ${ }^{(6)}$	$\mathrm{I}_{\mathrm{NO}(\mathrm{OFF})}$ or $\mathrm{I}_{\mathrm{NC}(\mathrm{OFF})}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{COM}}=0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=+2.0 \mathrm{~V} \\ & \hline \end{aligned}$	25	-100		100	nA
			Full	-400		400	
COM On Leakage Current ${ }^{(6)}$	$\mathrm{I}_{\text {COM }}(\mathrm{ON})$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{COM}}=+2.0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=+2.0 \mathrm{~V} \end{aligned}$	25	-200		200	
			Full	-400		400	

Notes:

1. The algebraic convention, where most negative value is a minimum and most positive is a maximum, is used in this data sheet.
2. Typical values are for DESIGN AID ONLY, not guaranteed or subject to production testing.
3. Guaranteed by design.
4. $\Delta \mathrm{R}_{\mathrm{ON}}=\mathrm{R}_{\mathrm{ON}} \max .-\mathrm{R}_{\mathrm{ON}}$ min.
5. Flatness is defined as the difference between the maximum and minimum value of On-Resistance measured.
6. Leakage parameters are 100% tested at maximum rated hot temperature and guaranteed by correlation at $+25^{\circ} \mathrm{C}$.
7. Off Isolation $=20 \log _{10}\left[\mathrm{~V}_{\mathrm{COM}} /\left(\mathrm{V}_{\mathrm{NO}}\right.\right.$ or $\left.\left.\mathrm{V}_{\mathrm{NC}}\right)\right]$. See Figure 4.
8. Between any two switches. See Figure 5.

Electrical Specifications - Single +4.2V Supply

$\left(\mathrm{V}_{\mathrm{DD}}=+4.2 \mathrm{~V} \pm 5 \%, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=1.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.7 \mathrm{~V}\right)$

Description	Parameters	Test Conditions	Temp (${ }^{\circ} \mathrm{C}$)	Min. ${ }^{(1)}$	Typ. ${ }^{(2)}$	Max. ${ }^{(1)}$	Units
Logic Input							
Input High Voltage	V_{IH}	Guaranteed logic High Level	Full	1.6			V
Input Low Voltage	V_{IL}	Guaranteed logic Low Level				0.7	
Input Current with Voltage High	İINH	$\mathrm{V}_{\mathrm{IN}}=1.4 \mathrm{~V}$, all others $=0.5 \mathrm{~V}$		-1		1	$\mu \mathrm{A}$
Input Current with Voltage Low	IINL	$\mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}$, all other $=1.4 \mathrm{~V}$		-1		1	

Dynamic

Turn-On Time	ton	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}} \text { or } \\ & \mathrm{V}_{\mathrm{NC}}=2.0 \mathrm{~V}, \text { Figure } 1 \end{aligned}$	25			20	ns
			Full			25	
Turn-Off Time	$\mathrm{t}_{\text {OFF }}$		25			12	
			Full			15	
Break-Before-Make	$\mathrm{t}_{\text {BBM }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=1.5 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \text {, See Figure } 8 \end{aligned}$	25	1	12		
			Full	1			
Charge Injection ${ }^{(3)}$	Q	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \mathrm{~V}_{\mathrm{GEN}}=0 \mathrm{~V}, \\ & \mathrm{R}_{\text {GEN }}=0 \Omega, \text { Figure } 2 \\ & \hline \end{aligned}$	25		100		pC
Off Isolation ${ }^{(7)}$	OIRR	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{f}=100 \mathrm{kHz}$, Figure 3			-27		dB
Cross Talk ${ }^{(8)}$	X ${ }_{\text {TALK }}$	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{f}=100 \mathrm{kHz}$, Figure 4			-41		
NC or NO Capacitance	$\mathrm{C}_{\text {(OFF) }}$	$\mathrm{f}=1 \mathrm{MHz}$, Figure 5			56		pF
COM Off Capacitance	$\mathrm{C}_{\text {COM }(\mathrm{OFF})}$				56		
COM On Capacitance	$\mathrm{C}_{\text {COM }}(\mathrm{ON})$	$\mathrm{f}=1 \mathrm{MHz}$, Figure 6			160		

Supply

Power-Supply Range	V_{DD}		Full	1.5		3.6	V
Positve Supply Current	I_{CC}	$\mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$ or V_{DD}	25			0.3	$\mu \mathrm{~A}$

Notes:

1. The algebraic convention, where most negative value is a minimum and most positive is a maximum, is used in this data sheet.
2. Typical values are for DESIGN AID ONLY, not guaranteed or subject to production testing.
3. Guaranteed by design.
4. $\Delta \mathrm{R}_{\mathrm{ON}}=\mathrm{R}_{\mathrm{ON}}$ max. $-\mathrm{R}_{\mathrm{ON}} \min$.
5. Flatness is defined as the difference between the maximum and minimum value of On-Resistance measured.
6. Leakage parameters are 100% tested at maximum rated hot temperature and guaranteed by correlation at $+25^{\circ} \mathrm{C}$.
7. Off Isolation $=20 \log _{10}\left[\mathrm{~V}_{\mathrm{COM}} /\left(\mathrm{V}_{\mathrm{NO}}\right.\right.$ or $\left.\left.\mathrm{V}_{\mathrm{NC}}\right)\right]$. See Figure 4.
8. Between any two switches. See Figure 5.

Electrical Specifications - Single +3.3 V Supply
$\left(\mathrm{V}_{\mathrm{DD}}=+3.3 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=1.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.5 \mathrm{~V}\right)$

Description	Parameters	Test Conditions	Temp (${ }^{\circ} \mathrm{C}$)	Min. ${ }^{(1)}$	Typ. ${ }^{(2)}$	Max. ${ }^{(1)}$	Units
Logic Input							
Input High Voltage	V_{IH}	Guaranteed logic High Level	Full	1.4			V
Input Low Voltage	V_{IL}	Guaranteed logic Low Level				0.5	
Input Current with Voltage High	$\mathrm{I}_{\text {INH }}$	$\mathrm{V}_{\text {IN }}=1.4 \mathrm{~V}$, all others $=0.5 \mathrm{~V}$		-1		1	$\mu \mathrm{A}$
Input Current with Voltage Low	$\mathrm{I}_{\text {INL }}$	$\mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}$, all other $=1.4 \mathrm{~V}$		-1		1	
Dynamic							
Turn-On Time	ton	$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}}$ or $\mathrm{V}_{\mathrm{NC}}=2.0 \mathrm{~V}$, Figure 1	25			20	ns
			Full			25	
Turn-Off Time	$\mathrm{t}_{\text {OFF }}$		25			12	
			Full			15	
Break-Before-Make	$\mathrm{t}_{\text {BBM }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=1.5 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \text { See Figure } 8 \end{aligned}$	25	1	12		
			Full	1			
Charge Injection ${ }^{(3)}$	Q	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \mathrm{~V}_{\mathrm{GEN}}=0 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{GEN}}=0 \Omega, \text { Figure } 2 \end{aligned}$	25		100		pC
Off Isolation ${ }^{(7)}$	OIRR	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{f}=100 \mathrm{kHz}$, Figure 3			-27		dB
Cross Talk ${ }^{(8)}$	$\mathrm{X}_{\text {TALK }}$	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{f}=100 \mathrm{kHz}$, Figure 4			-41		
NC or NO Capacitance	$\mathrm{C}_{\text {(OFF) }}$	$\mathrm{f}=1 \mathrm{MHz}$, Figure 5			56		pF
COM Off Capacitance	$\mathrm{C}_{\text {COM }}$ (OFF)				56		
COM On Capacitance	$\mathrm{C}_{\text {COM(ON) }}$	$\mathrm{f}=1 \mathrm{MHz}$, Figure 6			160		
Supply							
Power-Supply Range	V_{DD}		Full	1.5		3.6	V
Positve Supply Current	I_{CC}	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V} \text { or } \\ & \mathrm{V}_{\mathrm{DD}} \end{aligned}$	25			0.3	$\mu \mathrm{A}$

Notes:

1. The algebraic convention, where most negative value is a minimum and most positive is a maximum, is used in this data sheet.
2. Typical values are for DESIGN AID ONLY, not guaranteed or subject to production testing.
3. Guaranteed by design.
4. $\Delta \mathrm{R}_{\mathrm{ON}}=\mathrm{R}_{\mathrm{ON}} \max .-\mathrm{R}_{\mathrm{ON}} \min$.
5. Flatness is defined as the difference between the maximum and minimum value of On-Resistance measured.
6. Leakage parameters are 100% tested at maximum rated hot temperature and guaranteed by correlation at $+25^{\circ} \mathrm{C}$.
7. Off Isolation $=20 \log _{10}\left[\mathrm{~V}_{\mathrm{COM}} /\left(\mathrm{V}_{\mathrm{NO}}\right.\right.$ or $\left.\left.\mathrm{V}_{\mathrm{NC}}\right)\right]$. See Figure 4 .
8. Between any two switches. See Figure 5.

Electrical Specifications - Single +2.5V Supply

$\left(\mathrm{V}_{\mathrm{DD}}=+2.5 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=1.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.5 \mathrm{~V}\right)$

Description	Parameters	Test Conditions	Temp. $\left({ }^{\circ} \mathrm{C}\right)$	Min. ${ }^{(1)}$	Typ. ${ }^{(2)}$	Max. ${ }^{(1)}$	Units
Analog Switch							
Analog Signal Range ${ }^{(3)}$	VaNALOG			0		$\mathrm{V}_{\text {DD }}$	V
On Resistance	R_{ON}	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V}, \mathrm{I}_{\mathrm{COM}}=80 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=1.8 \mathrm{~V} \end{aligned}$	25			0.5	Ω
			Full			0.55	
On-Resistance Match Between Channels	$\Delta \mathrm{R}_{\mathrm{ON}}$		25			0.09	
			Full			0.09	
On-Resistance Flatness ${ }^{(5)}$	$\mathrm{R}_{\mathrm{FLAT}(\mathrm{ON})}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V}, \mathrm{I}_{\mathrm{COM}}=80 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=0.8 \mathrm{~V} 1.8 \mathrm{~V} \end{aligned}$	25			0.1	
			Full			0.1	

Dynamic

Turn-On Time	ton	$\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=$ 1.8V, Figure 1	25			20	ns
			Full			30	
Turn-Off Time	toff		25			12	
			Full			15	
Break-Before-Make	$\mathrm{t}_{\text {bBM }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=1.5 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \text { See Figure } 8 \\ & \hline \end{aligned}$	25	1	15		
Charge Injection ${ }^{(3)}$	Q	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \mathrm{~V}_{\mathrm{GEN}}=0 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{GEN}}=0 \mathrm{~V}, \text { Figure } 2 \end{aligned}$	25		60		pC

Logic Input

Input HIGH Voltage	V_{IH}	Guaranteed logic high level	Full	1.4			
Input LOW Voltage	V_{IL}	Guaranteed logic Low level	Full			0.5	V
Input HIGH Current	$\mathrm{I}_{\mathrm{INH}}$	$\mathrm{V}_{\mathrm{IN}}=1.4 \mathrm{~V}$, all others $=0.5 \mathrm{~V}$	Full	-1		1	M
Input HIGH Current	$\mathrm{I}_{\mathrm{INL}}$	$\mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}$, all others $=1.4 \mathrm{~V}$	Full	-1		1	

Notes:

1. The algebraic convention, where most negative value is a minimum and most positive is a maximum, is used in this data sheet.
2. Typical values are for DESIGN AID ONLY, not guaranteed or subject to production testing.
3. Guaranteed by design.
4. $\Delta \mathrm{R}_{\mathrm{ON}}=\mathrm{R}_{\mathrm{ON}}$ max. $-\mathrm{R}_{\mathrm{ON}} \min$.
5. Flatness is defined as the difference between the maximum and minimum value of On-Resistance measured.

Electrical Specifications - Single +1.8V Supply

$\left(\mathrm{V}_{\mathrm{DD}}=+1.8 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{INH}}=1.4 \mathrm{~V}, \mathrm{~V}_{\text {INL }}=0.5 \mathrm{~V}\right)$

Description	Parameters	Test Conditions	Temp. $\left({ }^{\circ} \mathrm{C}\right)$	Min. ${ }^{(1)}$	Typ. ${ }^{(2)}$	Max. ${ }^{(1)}$	Units
Analog Switch							
Analog Signal Range ${ }^{(3)}$	VANALOG			0		$\mathrm{V}_{\text {DD }}$	V
On-Resistance	R_{ON}	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V}, \mathrm{I}_{\mathrm{COM}}=60 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=1.5 \mathrm{~V} \end{aligned}$	25			0.55	Ω
			Full			0.7	
On-Resistance Match Between Channels ${ }^{(4)}$	$\Delta \mathrm{R}_{\mathrm{ON}}$		25			0.03	
			Full			0.03	
On-Resistance Flatness ${ }^{(5)}$	$\mathrm{R}_{\mathrm{FLAT}(\mathrm{ON})}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V}, \mathrm{I}_{\mathrm{COM}}=60 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=0.8 \mathrm{~V}, 1.5 \mathrm{~V} \end{aligned}$	25			0.9	
			Full			1.1	

Dynamic

Turn-On Time	ton	$\mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}}$ or $\mathrm{V}_{\mathrm{NC}}=1.5 \mathrm{~V}$, Figure 1	25			40	ns
			Full			50	
Turn-Off Time	toff		25			12	
			Full			15	
Break-Before-Make	$\mathrm{t}_{\text {BBM }}$	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=1.5 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \text {, See Figure } 8 \\ & \hline \end{aligned}$	25	1	30		
Charge Injection ${ }^{(3)}$	Q	$\begin{aligned} & \hline \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \mathrm{~V}_{\text {GEN }}=0 \mathrm{~V}, \\ & \mathrm{R}_{\text {GEN }}=0 \mathrm{~V}, \text { Figure } 2 \\ & \hline \end{aligned}$	25		40		pC

Logic Input

Input HIGH Voltage	V_{IH}	Guaranteed logic high level	Full	1.4			V
Input LOW Voltage	V_{IL}	Guaranteed logic Low level	Full			0.5	
Input HIGH Current	$\mathrm{I}_{\mathrm{INH}}$	$\mathrm{V}_{\mathrm{IN}}=1.4 \mathrm{~V}$, all others $=0.5 \mathrm{~V}$	Full	-1		1	N
Input HIGH Current	$\mathrm{I}_{\mathrm{INL}}$	$\mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}$, all others $=1.4 \mathrm{~V}$	Full	-1		1	

Notes:

1. The algebraic convention, where most negative value is a minimum and most positive is a maximum, is used in this data sheet.
2. Typical values are for DESIGN AID ONLY, not guaranteed or subject to production testing.
3. Guaranteed by design.
4. $\Delta \mathrm{R}_{\mathrm{ON}}=\mathrm{R}_{\mathrm{ON}}$ max. $-\mathrm{R}_{\mathrm{ON}}$ min.
5. Flatness is defined as the difference between the maximum and minimum value of On-Resistance measured.

Test Circuits/Timing Diagrams

LOGIC INPUT WAVEFORMS INVERTED FOR SWITCHES THAT HAVE OPPOSITE LOGIC

* 1.5V FOR 3.3V SUPPLY

Figure 1. Switching Time

Figure 2. Charge Injection

Figure 3. Off Isolation

Figure 4. Crosstalk

Test Circuits/Timing Diagrams (continued)

Figure 5. Channel-Off Capacitance

Figure 6. Channel-On Capacitance

Figure 8. Break Before Make Diagram

Packaging Mechanical: 12-Contact TDFN (ZE)

06-0360
Note:

- For latest package info, please check: http://www.pericom.com/products/packaging/mechanicals.php

Ordering Information

Ordering Code	Package Code	Package Description	Top Mark
PI3A3160ZEEX	ZE	Pb-free \& Green, 12-contact TDFN	YI

Notes:

1. Thermal characteristics can be found on the company web site at www.pericom.com/packaging/
2. $\mathrm{X}=$ Tape/Reel
3. Number of transistors $=$ TBD
