: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

3.0V, SOTiny ${ }^{\text {rin }}$ Single-Supply 0.4Ω SPST (NO) CMOS Analog Switch

Features

- Low On-Resistance: 0.4Ω Max (+2.7V Supply)
- 0.1Ω Max. On-Resistance Flatness at $+25^{\circ} \mathrm{C}$
- Fast Switching: 10ns Max.
- +1.5 V to +3.6 V Single-Supply Operation
- TTL/CMOS-Logic Compatible
- -25 dB Off-Isolation at 100 kHz
- 1nA Max. Off-Leakage at $+25^{\circ} \mathrm{C}$
- Packaging (Pb-free \& Green available):
- 5-pin Small Compact SOT23 (T)

Applications

- Cellular Phones
- Communications Circuits
- Battery-Operated Equipment
- DSL Modems
- Audio and Video Signal Routing
- PCMCIA Cards

Pin Description

SOT23	Name	Function
1	COM	Analog Switch, Common
2	NO	Analog Switch, Normally Open
3	GND	Ground
4	IN	Digital Control Input
5	V DD	Positive Supply Voltage
-	N.C.	No Internal Connection

Note:

1. NO and COM pins are identical and interchangeable. Any pin may be considered as an input or an output; signals pass.

Truth Table

Input	Switch State
LOW	OFF
HIGH	ON

Description

PI3A4626 is a single-pole/single-throw (SPST) normally open (NO) analog switch that operates from a single +1.5 V to +3.6 V supply.

The switch has 0.4Ω Max On-Resistance (R_{ON}), with 0.1Ω Max R_{ON} flatness over the analog signal range when powered from a +3.0 V supply. Leakage currents are less than 2 nA and fast switching times are less than 10ns.
To minimize PC board area use, the device is available in a small compact SOT23 package.

Block Diagrams/Pin Configurations

Absolute Maximum Ratings

Voltages Referenced to GND
$V_{D D}$ \qquad -0.5 V to +3.6 V
$\mathrm{V}_{\mathrm{IN}}, \mathrm{V}_{\mathrm{COM}}, \mathrm{V}_{\mathrm{NC}}, \mathrm{V}_{\mathrm{NO}}{ }^{(1)}$ \qquad -0.5 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
or 30 mA , whichever occurs first
Current (any terminal) \qquad $\pm 200 \mathrm{~mA}$

Peak Current, COM, NO, NC
(Pulsed at $1 \mathrm{~ms}, 10 \%$ duty cycle) \qquad $\pm 400 \mathrm{~mA}$

Thermal Information

Continuous Power Dissipation
SOT23 (derate $7.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 0.5 W

Storage Temperature \qquad $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Lead Temperature (soldering, 10s) \qquad $+300^{\circ} \mathrm{C}$

Note:

1. Signals on NC, NO, COM, or IN exceeding V_{DD} or GND are clamped by internal diodes. Limit forward diode current to 30 mA .

Caution: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied.

Electrical Specifications - Single $+\mathbf{3 . 3 V}$ Supply

$\left(\mathrm{V}_{\mathrm{DD}}=+3.3 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=1.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.5 \mathrm{~V}\right)$

Description	Parameters	Test Conditions	Package	Temp. $\left({ }^{\circ} \mathrm{C}\right)$	Min. ${ }^{(1)}$	Typ. ${ }^{(2)}$	Max. ${ }^{(1)}$	Units
Analog Switch								
Analog Signal Range ${ }^{(3)}$	VaNALOG			Full	0		V_{DD}	V
On Resistance	R_{ON}	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{COM}}=100 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}= \\ & +1.5 \mathrm{~V} \end{aligned}$		25			0.4	Ω
			SOT23	Full			0.5	
On-Resistance Match Between Channels ${ }^{(4)}$	$\Delta \mathrm{R}_{\mathrm{ON}}$			25			0.05	
				Full			0.06	
On-Resistance Flatness ${ }^{(5)}$	$\mathrm{R}_{\mathrm{FLAT}}(\mathrm{ON})$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{COM}}=100 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=0.8 \mathrm{~V}, \\ & 2.0 \mathrm{~V} \end{aligned}$		25			0.1	
				Full			0.1	
NO or NC Off Leakage Current ${ }^{(6)}$	$\mathrm{I}_{\mathrm{COM}(\mathrm{OFF})}$ or $\mathrm{I}_{\mathrm{NC}(\mathrm{OFF})}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{COM}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}} \text { or } \\ & \mathrm{V}_{\mathrm{NC}}=+2.0 \mathrm{~V} \\ & \hline \end{aligned}$		25	-1		1	nA
				Full	-20		10	
COM On Leakage Cur$\operatorname{rent}^{(6)}$	$\mathrm{I}_{\text {COM }(\mathrm{ON})}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{COM}}=+2.0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \\ & \mathrm{V}_{\mathrm{NC}}=+2.0 \mathrm{~V} \\ & \hline \end{aligned}$		25	-2		2	
				Full	-20		20	

Electrical Specifications - Single +3.3V Supply (continued)

$\left(\mathrm{V}_{\mathrm{DD}}=+3.3 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=1.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.5 \mathrm{~V}\right)$

Description	Parameters	Test Conditions	Temp (${ }^{\circ} \mathrm{C}$)	Min. ${ }^{(1)}$	Typ. ${ }^{(2)}$	Max. ${ }^{(1)}$	Units
Logic Input							
Input High Voltage	$\mathrm{V}_{\text {IH }}$	Guaranteed logic High Level	Full	1.4			V
Input Low Voltage	$\mathrm{V}_{\text {IL }}$	Guaranteed logic Low Level				0.5	
Input Current with Voltage High	$\mathrm{I}_{\text {INH }}$	$\mathrm{V}_{\mathrm{IN}}=1.4 \mathrm{~V}$, all others $=0.5 \mathrm{~V}$		-1		1	$\mu \mathrm{A}$
Input Current with Voltage Low	$\mathrm{I}_{\text {INL }}$	$\mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}$, all other $=1.4 \mathrm{~V}$		-1		1	

Dynamic

Turn-On Time	ton	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}} \text { or } \\ & \mathrm{V}_{\mathrm{NC}}=2.0 \mathrm{~V}, \text { Figure } 1 \end{aligned}$	25		10	
			Full		10	ns
Turn-Off Time	toff		25		10	
			Full		10	
Charge Injection ${ }^{(3)}$	Q	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \mathrm{~V}_{\mathrm{GEN}}=0 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{GEN}}=0 \Omega, \text { Figure } 2 \\ & \hline \end{aligned}$	25	50		pC
Off Isolation ${ }^{(7)}$	OIRR	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{f}=100 \mathrm{kHz}$, Figure 3		-25		dB
NC or NO Capacitance	$\mathrm{C}_{\text {(}}^{\text {OFF }}$)	$\mathrm{f}=1 \mathrm{MHz}$, Figure 4		130		pF
COM Off Capacitance	$\mathrm{C}_{\text {COM }}$ (OFF)			130		
COM On Capacitance	$\mathrm{C}_{\text {COM(ON) }}$	$\mathrm{f}=1 \mathrm{MHz}$, Figure 4		270		

Supply

Power Supply Range	V_{DD}		Full	1.5		3.6	V
Positve Supply Current	I_{CC}	$\mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$ or V_{DD}				100	nA

Notes:

1. The algebraic convention, where most negative value is a minimum and most positive is a maximum, is used in this data sheet.
2. Typical values are for DESIGN AID ONLY, not guaranteed or subject to production testing.
3. Guaranteed by design.
4. $\Delta \mathrm{R}_{\mathrm{ON}}=\mathrm{R}_{\mathrm{ON}}$ Max. - R_{ON} Min.
5. Flatness is defined as the difference between the maximum and minimum value of On-Resistance measured.
6. Leakage parameters are 100% tested at maximum rated hot temperature and guaranteed by correlation at $+25^{\circ} \mathrm{C}$.
7. Off Isolation $=20 \log _{10}\left[\mathrm{~V}_{\mathrm{COM}} /\left(\mathrm{V}_{\mathrm{NO}}\right.\right.$ or $\left.\left.\mathrm{V}_{\mathrm{NC}}\right)\right]$. See Figure 3.

Electrical Specifications - Single +2.5V Supply

$\left(\mathrm{V}_{\mathrm{DD}}=+2.5 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=1.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.5 \mathrm{~V}\right)$

Description	Parameters	Test Conditions	Temp. $\left({ }^{\circ} \mathrm{C}\right)$	Min. ${ }^{(1)}$	Typ. ${ }^{(2)}$	Max. ${ }^{(1)}$	Units
Analog Switch							
Analog Signal Range ${ }^{(3)}$	VANALOG			0		V_{DD}	V
On-Resistance	R_{ON}	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V}, \mathrm{I}_{\mathrm{COM}}=-8 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=1.8 \mathrm{~V} \end{aligned}$	25			0.4	
			Full			0.4	
On-Resistance Match Between Channels ${ }^{(4)}$	$\Delta \mathrm{R}_{\mathrm{ON}}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V}, \mathrm{I}_{\mathrm{COM}}=-8 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=0.8 \mathrm{~V}, 1.8 \mathrm{~V} \end{aligned}$	25			0.05	
			Full			0.06	
On-Resistance Flatness ${ }^{(5)}$	$\mathrm{R}_{\mathrm{FLAT}(\mathrm{ON})}$		25			0.1	
			Full			0.1	
Dynamic							
Turn-On Time	ton	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=1.8 \mathrm{~V} \text {, Figure } 1 \end{aligned}$	25			10	
			Full			15	
Turn-Off Time	toff		25			10	,
			Full			10	
Charge Injection ${ }^{(3)}$	Q	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \mathrm{~V}_{\mathrm{GEN}}=0 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{GEN}}=0 \mathrm{~V}, \text { Figure } 2 \\ & \hline \end{aligned}$	25		42		pC

Logic Input

Input HIGH Voltage	V_{IH}	Guaranteed logic high level	Full	1.4			V
Input LOW Voltage	V_{IL}	Guaranteed logic Low level	Full			0.5	
Input HIGH Current	$\mathrm{I}_{\mathrm{INH}}$	$\mathrm{V}_{\mathrm{IN}}=1.4 \mathrm{~V}$, all others $=0.5 \mathrm{~V}$	Full	-1		1	$\mu \mathrm{~A}$
Input HIGH Current	$\mathrm{I}_{\mathrm{INL}}$	$\mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}$, all others $=1.4 \mathrm{~V}$	Full	-1		1	

Notes:

1. The algebraic convention, where most negative value is a minimum and most positive is a maximum, is used in this data sheet.
2. Typical values are for DESIGN AID ONLY, not guaranteed or subject to production testing.
3. Guaranteed by design.
4. $\Delta \mathrm{R}_{\mathrm{ON}}=\mathrm{R}_{\mathrm{ON}}$ max. - $\mathrm{R}_{\mathrm{ON}} \min$.
5. Flatness is defined as the difference between the maximum and minimum value of On-Resistance measured.

Electrical Specifications - Single $\mathbf{+ 1 . 8 V}$ Supply

$\left(\mathrm{V}_{\mathrm{DD}}=+1.8 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=1.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.5 \mathrm{~V}\right)$

Description	Parameters	Test Conditions	Temp. $\left({ }^{\circ} \mathrm{C}\right)$	Min. ${ }^{(1)}$	Typ. ${ }^{(2)}$	Max. ${ }^{(1)}$	Units
Analog Switch							
Analog Signal Range ${ }^{(3)}$	VANALOG			0		V_{DD}	V
On-Resistance	R_{ON}	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V}, \mathrm{I}_{\mathrm{COM}}=-4 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=1.5 \mathrm{~V} \end{aligned}$	25			0.4	Ω
			Full			0.8	
On-Resistance Match Between Channels ${ }^{(4)}$	$\Delta \mathrm{R}_{\mathrm{ON}}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V}, \mathrm{I}_{\mathrm{COM}}=-4 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=0.8 \mathrm{~V}, 1.5 \mathrm{~V} \end{aligned}$	25			0.05	
			Full			0.06	
On-Resistance Flatness ${ }^{(5)}$	$\mathrm{R}_{\text {FLAT(ON) }}$		25			0.4	
			Full			0.6	

Dynamic

Turn-On Time	ton	$\mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=$ 1.5V, Figure 1	25		15	ns
			Full		15	
Turn-Off Time	toff		25		10	
			Full		15	
Charge Injection ${ }^{(3)}$	Q	$\begin{aligned} & \mathrm{CL}=1 \mathrm{nF}, \mathrm{~V}_{\mathrm{GEN}}=0 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{GEN}}=0 \mathrm{~V}, \text { Figure } 2 \end{aligned}$	25	29		pC

Logic Input

Input HIGH Voltage	V_{IH}	Guaranteed logic high level	Full	1.4			V
Input LOW Voltage	V_{IL}	Guaranteed logic Low level	Full			0.5	
Input HIGH Current	$\mathrm{I}_{\mathrm{INH}}$	$\mathrm{V}_{\mathrm{IN}}=1.4 \mathrm{~V}$, all others $=0.5 \mathrm{~V}$	Full	-1		1	$\mu \mathrm{~A}$
Input HIGH Current	$\mathrm{I}_{\mathrm{INL}}$	$\mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}$, all others $=1.4 \mathrm{~V}$	Full	-1		1	

Notes:

1. The algebraic convention, where most negative value is a minimum and most positive is a maximum, is used in this data sheet.
2. Typical values are for DESIGN AID ONLY, not guaranteed or subject to production testing.
3. Guaranteed by design.
4. $\Delta \mathrm{R}_{\mathrm{ON}}=\mathrm{R}_{\mathrm{ON}}$ max. $-\mathrm{R}_{\mathrm{ON}}$ min.
5. Flatness is defined as the difference between the maximum and minimum value of On-Resistance measured.

Test Circuits/Timing Diagrams

LOGIC INPUT WAVEFORMS INVERTED FOR
SWITCHES THAT HAVE OPPOSITE LOGIC

* 1.5V FOR 3.3V SUPPLY

Figure 1. Switching Time

Figure 2. Charge Injection

Figure 3. Off Isolation
OTE :

1. ALL DIMENSIONS IN MILLIMETERS. ANGLES IN DEGREES.
2. DIMENSIONS EXCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.
3. REFER EIAJ SC74A AND JEDEC MO-178.

SYMBOLS	MIN.	NOM.	MAX.
A	-	-	1.45
A1	0.00	-	0.15
A2	0.90	1.15	1.30
b	0.35	--	0.50
c	0.08	--	0.22
D	2.80	2.90	3.00
E	2.60	2.80	3.00
E1	1.50	1.60	1.75
L	0.30	0.45	0.60
L1	0.60 REF		
R	0.10	--	--
R1	0.10	--	0.25
θ	0^{*}	4	$8{ }^{\circ}$
e	0.95 BSC		
e1	1.90 BSC		

SIDE VIEW

Enabling Serial Connectivity
DESCRIPTION: 5-pin, Small Outline Transistor Plastic Package (SOT23) PACKAGE CODE: T (T5)
DOCUMENT CONTROL \#: PD-1911

09-0130
Note:

- For latest package info, please check: http://www.pericom.com/products/packaging/mechanicals.php

Ordering Information

Ordering Code	Packaging Code	Package Description	Top Mark
PI3A4626TEX	T	Pb-free \& Green, 5-pin Small Compact SOT23	ZD

Notes:

1. Thermal characteristics can be found on the company web site at www.pericom.com/packaging/
2. $\mathrm{X}=$ Tape/Reel
3. Number of transistors $=$ TBD
