

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

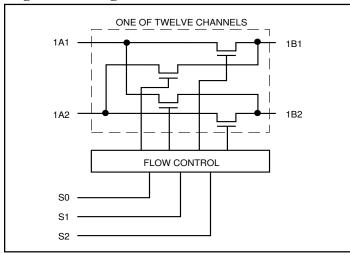
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



3.3V, 24-Bit Bus Exchange Switch

Product Features

- · Near-zero propagation delay
- 5-ohm switches connect inputs to outputs
- Direct bus connection when switches are ON
- Fast Switching Speed: 5ns (max.)
- V_{CC} Operating Range: 3.0V to 3.6V
- Industrial operating temperature: -40°C to +85°C
- Packages available:
 - -56-pin 240-mil wide thin plastic TSSOP (A)
 - -56-pin 300-mil wide plastic SSOP (V)

Logic Block Diagram

Truth Table

Function	S2	S1	S0	A 1	A2
Disconnect	L	L	L	Z	Z
A1 to B1	L	L	Н	B1	Z
A1 to B2	L	Н	L	B2	Z
A2 to B1	L	Н	Н	Z	B1
A2 to B2	Н	L	L	Z	B2
Disconnect	Н	L	Н	Z	Z
A1 to B1, A2 to B2	Н	Н	L	B1	B2
A1 to B2, A2 to B1	Н	Н	Н	B2	B1

Note:

- 1. H = High Voltage Level
 - L = Low Voltage Level
 - Z = High Impedance

Product Description

Pericom Semiconductor's PI3B series of logic circuits are produced using the Company's advanced submicron CMOS technology.

The PI3B16212 and PI3B162212 are 3.3 volt, 24-bit bus exchange switches designed with low ON resistance allowing inputs to be connected directly to outputs. The devices operate as a 24-bit bus switch or as a 12-bit exchanger, providing data exchange between the four signal ports via the data select pins (S0-S2).

The PI3B162212 device has a built-in 25-ohm series resistor to reduce reflection noise, thus eliminating the need for an external terminating resistor.

Product Pin Configuration

Product Pin Configu	rat	tion		
٠. ٩		$\overline{}$		
S0 📮	1	\circ	56	
1A1 🖣	2		55	S2
1A2 🛚			54	1B1
2A1 📮			53	1B2
2A2 📮	5		52	2B1
3A1 📮	6		51	
3A2 🛘	7		50	
GND [49	GND
4A1 📮	-		48	3B2
4A2 🛚	10		47	4B1
5A1 🖺	11	56-Pin		
5A2 🛚	12	A, V	45	5B1
6A1 🖺	13		44	5B2
6A2 🛚	14		43	
7A1 🛚	15		42	6B2
7A2 📮	16		41	7B1
vcc 🛚	17		40	7B2
8A1 📮	18		39	8B1
GND [19		38	GND
8A2 📮	20		37	8B2
9A1 📮	21		36	
9A2 📮	22		35	9B2
10A1 📮	23		34	10B1
10A2 ☐	24		33	10B2
11A1 📮	25		32	11B1
11A2 📮	26		31	11B2
12A1 📮	27		30	12B1
12A2 📮	28		29	12B2
•				

Product Pin Description

Pin Name	I/O	Description
S0-S2	I	Select Inputs
xAx	I/O	Bus A
xBx	I/O	Bus B

Maximum Ratings

(Above which useful life may be impaired. For user guidelines, not tested.)

Storage Temperature	65°C to +150°C
Ambient Temperature with Power Applied	40°C to +85°C
Supply Voltage Range	0.5V to +4.6V
DC Input Voltage	0.5V to +4.6V
DC Output Current	120mA
Power Dissipation	0.5W

Note

Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

DC Electrical Characteristics (Over the Operating Range, $T_A = -40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$, $V_{CC} = 3.0 \text{V}$ to 3.6 V)

Parameters	Description	Test Conditions(1)		Min.	Typ. ⁽²⁾	Max.	Units
V _{IH}	Input HIGH Voltage	Guaranteed Logic High Level		2.0			V
$V_{ m IL}$	Input LOW Voltage	Guaranteed Logic Low Level		-0.5		0.8	v
т	Innut Cumont	$V_{CC} = Max., V_{IN} = V_{CC} \text{ or GND}$				±1	
Щ	I_{I} Input Current $V_{CC} = 0$, $V_{IN} = V_{CC}$				10	μА	
I _{OZH}	High Impedance Output Current	$0 \le A, B \ge V_{CC}$, Switches Off				±1	
V _{IK}	Clamp Diode Voltage	$V_{CC} = Min., I_{IN} = -18mA$		_	-0.7	-1.2	V
R _{ON}	Switch ON Resistance ⁽³⁾	$V_{CC} = Min., V_{IN} = 0.0V,$ 16212		_	5	8	
	$I_{ON} = 64 \text{mA}$	162212	20	28	40		
		$V_{CC} = Min., V_{IN} = 2.4V,$	16212	_	10	15	Ω
		$I_{ON} = 15 \text{mA}$	162212	20	35	48	

Capacitance ($T_A = 25$ °C, f = 1 MHz)

Parameters ⁽⁴⁾	Description	Test Conditions	Тур	Units
C_{IN}	Input Capacitance		3.0	
C_{OFF}	A/B Capacitance, Switch Off	$V_{IN} = 0V$	14.0	pF
C _{ON}	A/B Capacitance, Switch On		30.0	

Notes:

- 1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device.
- 2. Typical values are at $V_{CC} = 3.3V$, $T_A = 25$ °C ambient and maximum loading.
- 3. Measured by the voltage drop between A and B pin at indicated current through the switch. ON resistance is determined by the lower of the voltages on the two (A,B) pins.

2

4. This parameter is determined by device characterization but is not production tested.

PS8180A 08/21/01

Power Supply Characteristics

Parameters	Description	Test Conditions(1)		Min.	Typ ⁽²⁾	Max.	Units
I_{CC}	Quiescent Power Supply Current	$V_{CC} = Max.$	$V_{IN} = GND$ or V_{CC}	_		10	
ΔI_{CC}	Supply Current per Input @ TTL HIGH	$V_{CC} = Max.$	$V_{IN} = 3.0V^{(3)}$	_	_	750	μΑ
I _{CCD}	Supply Current per Input per MHz ⁽⁴⁾	$V_{\rm CC}$ = Max., $V_{\rm IN}$ = 3V, A & B Pins Open Control Input Toggling, 50% Duty Cycle		_	_	0.25	mA/ MHz

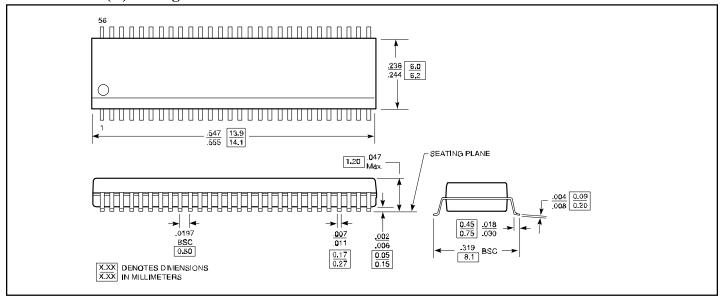
Notes:

- 1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for applicable device.
- 2. Typical values are at $V_{CC} = 3.3V, +25^{\circ}C$ ambient.
- 3. This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.
- 4. Per TTL driven input (control inputs only); A and B pins do not contribute to I_{CC}.
- 5. This current applies to the control inputs only and represent the current required to switch internal capacitance at the specified frequency. The A and B inputs generate no significant AC or DC currents as they transition. This parameter is not tested, but is guaranteed by design.

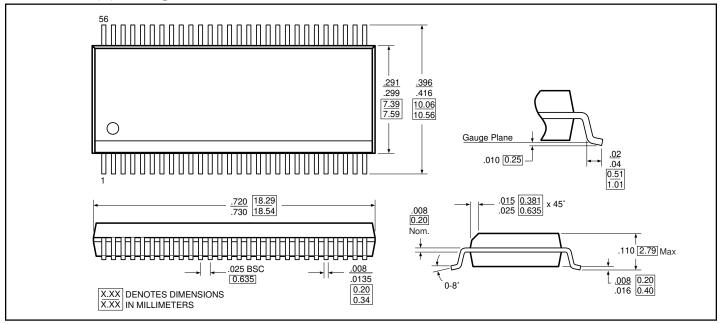
PI3B16212 Switching Characteristics over Operating Range

				PI3B	16212	
				Co	m.	
Parameters	Description	Conditions ⁽¹⁾		Max.	Min.	Units
t _{PLH}	Propagation Delay ^(2,3)	$C_L = 50 pF,$	16212	_	0.25	
$t_{ m PHL}$	Ax to Bx, Bx to Ax	$R_L = 500 \text{ ohms}$	162212	_	1.25	
t _{PZH} t _{PZL}	Bus Enable Time BE to Ax or Bx	$C_L = 50 pF,$ $R_L = 500 \text{ ohms}$		1	4.5	ns
t _{PHZ} t _{PLZ}	Bus Disable Time BE to Ax or Bx	R = 500 ohms		1	5.0	

Notes:


- 1. See test circuit and waveforms.
- 2. This parameter is guaranteed but not tested on Propagation Delays.
- 3. The bus switch contributes no propagational delay other than the RC delay of the ON resistance of the switch and the load capacitance. The time constant for the switch alone is of the order of 0.25ns for 50pF load. Since this time constant is much smaller than the rise/fall times of typical driving signals, it adds very little propagational delay to the system. Propagational delay of the bus switch when used in a system is determined by the driving circuit on the driving side of the switch and its interaction with the load on the driven side.

3


PS8180A 08/21/01

56-Pin TSSOP (A) Package

56-Pin SSOP (V) Package

Ordering Information

Part	Pin	Package	Width	Temperature
PI3B16212A	5.0	TSSOP	240-mil	−40°C to 85°C
PI3B16212V	36	SSOP	300-mil	-40 C to 83 C

Pericom Semiconductor Corporation

2380 Bering Drive • San Jose, CA 95131 • 1-800-435-2336 • Fax (408) 435-1100 • http://www.pericom.com