

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

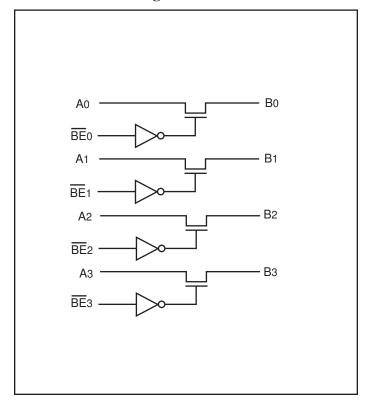
Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

2.5V/3.3V, High Bandwidth, Hot Insertion,4-Bit, 2-Port Bus Switch with Individual Enables

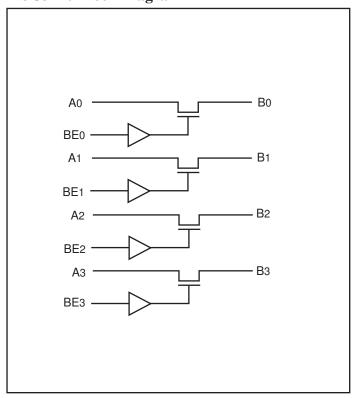
Features

- · Near-Zero propagation delay
- 5-ohm switches connect inputs to outputs
- High Bandwidth (>400 MHz)
- Rail-to-Rail, or 2.5V or 3.3V Switching
- 5V I/O Tolerant
- 2.5V Supply Voltage Operation
- · Permits Hot Insertion
- Packaging (Pb-free & Green available):
 - 14-pin 150-mil wide plastic SOIC (W)
 - 14-pin 170-mil wide plastic TSSOP (L)
 - 16-pin 150-mil wide plastic QSOP (Q)
 - 16-contact TFDN (ZJ)

Applications


- · High Bandwidth Data Switching
- Hot Docking

Description

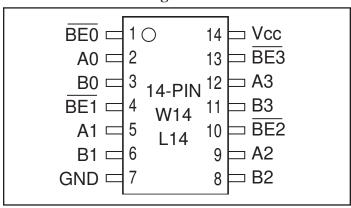

Pericom Semiconductor's PI3C3125 and PI3C3126 are 2.5 volt or 3.3 volt, 4-bit bus switches designed with four individual 5-ohm bus switches with fast individual enables in an industry standard 74XX125/126 pinout. When enabled via the associated Bus Enable pin, the "A" pin is directly connected to the "B" pin for that particular gate. The bus switch introduces no additional propagation delay or additional ground bounce noise.

The PI3C3125 device has active LOW enables, and the PI3C3126 has active HIGH enables. It is very useful in switching signals that have high bandwidth (>400 MHz).

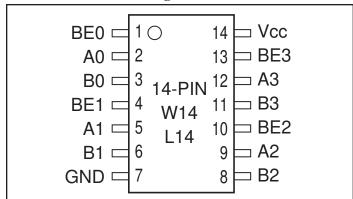
PI3C3125 Block Diagram

PI3C3126 Block Diagram

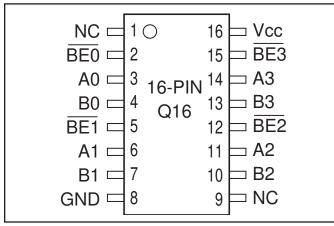
Maximum Ratings

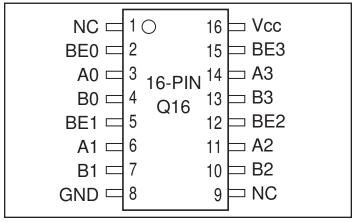

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature65°C to +150°C
Ambient Temperature with Power Applied40°C to +85°C
Supply Voltage to Ground Potential (Inputs & V_{CC} Only) $-0.5V$ to $+4.6V$
Supply Voltage to Ground Potential (Outputs & D/O Only)0.5V to +4.6V
DC Input Voltage0.5V to +5.5V
DC Output Current
Power Dissipation


Note:

Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.


PI3C3125 14-Pin Configuration


PI3C3126 14-Pin Configuration

PI3C3125 16-Pin Configuration

PI3C3126 16-Pin Configuration

Pin Description

Pin Name	Description
BEn	Switch Enable (PI3C3125)
BEn	Switch Enable (PI3C3126)
A3 - A0	Bus A
B3 - B0	Bus B
V _{CC}	Power
GND	Ground

Truth Table⁽¹⁾

PI3C3125 BEn	PI3C3126 BEn	An	Bn	V _{CC}	Function
X*	X	Hi-Z	Hi-Z	GND	Disconnect
Н	L	Hi-Z	Hi-Z	V_{CC}	Disconnect
L	Н	Bn	An	V_{CC}	Disconnect

Note:

1. H = High Voltage Level, L = Low Voltage Level HI-Z = High Impedance, X = Don't Care

* A pull-up resistor should be provided for power-up protection.

DC Electrical Characteristics (Over Operating Range, $TA = -40^{\circ}C$ to $+85^{\circ}C$, $VCC = 3.3V \pm 10\%$)

Parameters	Description	Test Conditions(1)	Min.	Typ. (2)	Max	Units
V_{IH}	Input HIGH Voltage	Guearanteed Logic HIGH Level	2.0			V
$V_{ m IL}$	Input LOW Voltage	Guaranteed Logic LOW Level -0.5		0.8		
I_{IH}	Input HIGH current	$V_{CC} = Max., V_{IN} = V_{CC}$			±1	μA
$I_{ m IL}$	Input LOW Current	$V_{CC} = Max., V_{IN} = GND$			±1	μΑ
$I_{OZH}^{(3)}$	High Impedance Output Current	$0 \le A, B \le V_{CC}$			±1	
V _{IK}	Clamp Diode Volt-	$V_{CC} = Min., I_{IN} = -18mA$		-0.73	-1.2	V
	age					
R _{ON}	Switch ON Resis-	$V_{CC} = Min., V_{IN} = 0.0V, I_{ON} = 48mA \text{ or } 60mA$		5	7	Ω
	tance ⁽⁴⁾	$V_{CC} = Min., V_{IN} = 2.4V, I_{ON} = 15mA$		8	15	

Notes:

- 1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device type.
- 2. Typical values are at $V_{CC} = 3.3V$, $T_A = 25^{\circ}C$ ambient and maximum loading.
- 3. Not more than one output should be shorted at one time. Duration of the test should not exceed one second.
- 4. Measured by the voltage drop between A and B pin at indicated current through the switch. ON resistance is determined by the lower of the voltages on the two (A,B) pins.

Capacitance ($T_A = 25$ °C, f = 1 MHz)

Parameters ⁽¹⁾	Description	Test Conditions	Тур.	Units
C_{IN}	Input Capacitance	VIN = 0V	3.5	
C _{OFF}	A/B Capacitance, Switch Off	VIN = 0V	5.0	pF
C _{ON}	A/B Capacitance, Switch On	VIN = 0V	10.0	

Notes:

1. This parameter is determined by device characterization but is not production tested.

Power Supply Characteristics

Parameters	Description	Test Conditions		Min.	Typ. ⁽²⁾	Max.	Units
I_{CC}	Quiescent Power	$V_{CC} = Max$	$V_{IN} = GND \text{ or } V_{CC}$		260	500	
	Supply Current						μA
ΔI_{CC}	Supply Current	$V_{CC} = Max$	$V_{IN} = 3.0V^{(3)}$			750	·
	per Input HIGH						

Notes:

- 1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device.
- 2. Typical values are at VCC = 3.3V, $+25^{\circ}C$ ambient.
- 3. Per driven input (control input only); A and B pins do not contribute to Δ ICC.

07-0240 3 PS8153H 10/25/07

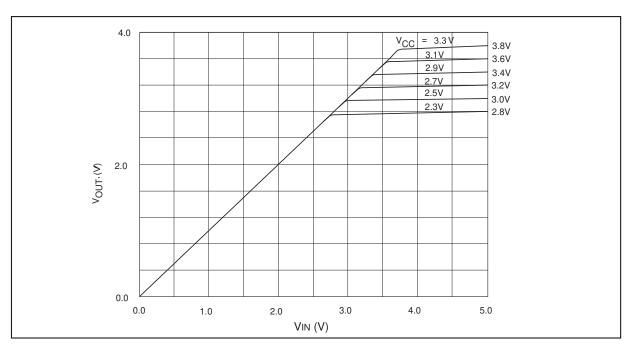
PI3C3125/PI3C3126 Switching Characteristics over 3.3V Operating Range

			PI3C3125/	PI3C3126		
Parameters	Description	Conditions	Com.		Units	
			Min.	Max.		
$t_{\rm PLH}$	Propogation Delay ^(1,2)	$C_L = 50 \text{pF}$ $R_L = 500 \Omega$		0.25		
$t_{ m PHL}$	A to B, B to A	$R_L = 500\Omega$			ns	
t_{PZH}	Bus Enable Time	$C_L = 50 \text{pF}$ $R_L = 500 \Omega$	1.5	6.5		
t_{PZL}		$R_L = 500\Omega$				
t_{PHZ}	Bus Disable Time	$R = 500\Omega$	1.5	5.5		
$t_{\rm PLZ}$						

Notes:

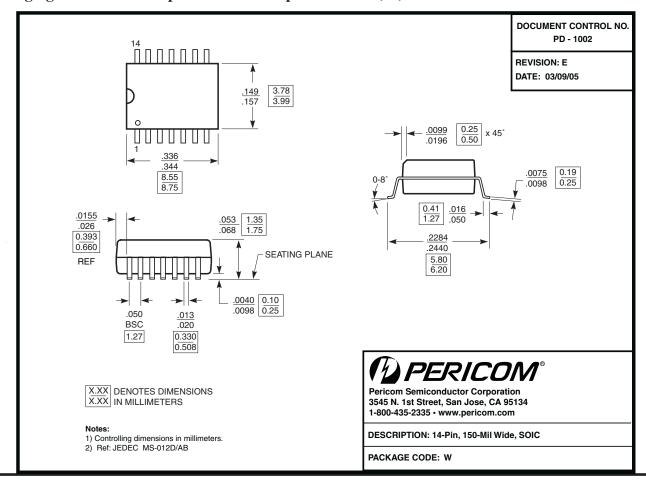
- 1. This parameter is guaranteed but not tested on Propagation Delays.
- 2. The bus switch contributes no propagational delay other than the RC delay of the ON resistance of the switch and the load capacitance. The time constant for the switch alone is of the order of 0.25ns for 50pF load. Since this time constant is much smaller than the rise/fall times of typical driving signals, it adds very little propagational delay to the system. Propagational delay of the bus switch when used in a system is determined by the driving circuit on the driving side of the switch and its interaction with the load on the driven side.

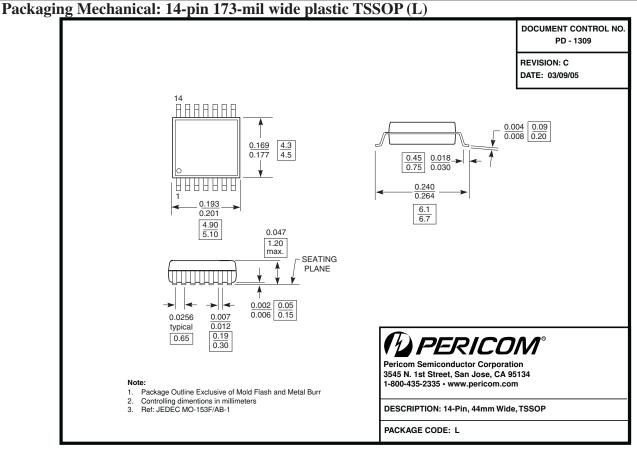
PI3C3125/PI3C3126 Switching Characteristics over 2.5V Operating Range


		Conditions	PI3C3125		
Parameters	Description		Co	Units	
			Min.	Max.	
$t_{\rm PLH}$	Propogation Delay ^(1,2)	$C_L = 50 pF$		0.25	
$t_{ m PHL}$	A to B, B to A	$C_L = 50 pF$ $R_L = 500 \Omega$			ns
t_{PZH}	Bus Enable Time	$C_L = 50 pF$	1.5	9.8	
t_{PZL}		$R_L = 500\Omega$			
t _{PHZ}	Bus Disable Time	$R = 500\Omega$	1.5	8.3]
$t_{\rm PLZ}$					

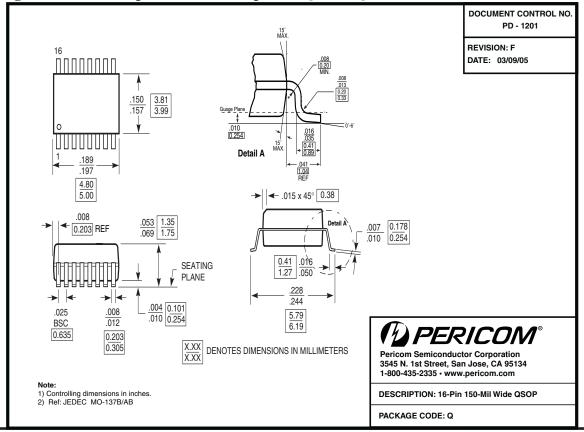
Notes:

- 1. This parameter is guaranteed but not tested on Propagation Delays.
- 2. The bus switch contributes no propagational delay other than the RC delay of the ON resistance of the switch and the load capacitance. The time constant for the switch alone is of the order of 0.25ns for 50pF load. Since this time constant is much smaller than the rise/fall times of typical driving signals, it adds very little propagational delay to the system. Propagational delay of the bus switch when used in a system is determined by the driving circuit on the driving side of the switch and its interaction with the load on the driven side.

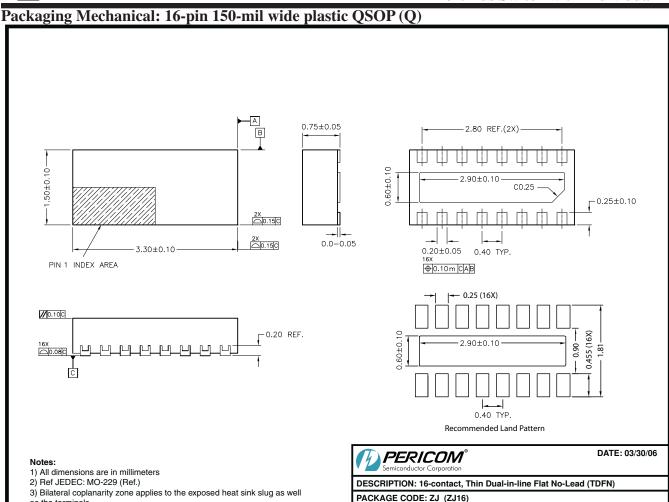

07-0240 4 PS8153H 10/25/07


Output Voltage vs. Input Voltage over Various Supply Voltages

Packaging Mechanical: 14-pin 150-mil wide plastic SOIC (W)



07-0240 5 PS8153H 10/25/07



Packaging Mechanical: 16-pin 150-mil wide plastic QSOP (Q)

REVISION: B

Ordering Information

as the terminals

Ordering Code	Packaging Code	Package Type	Top Mark
PI3C3125L	L	14-pin TSSOP	
PI3C3125LE	L	Pb-Free & Green, 14-Pin TSSOP	
PI3C3125W	W	14-pin SOIC	
PI3C3125WE	W	Pb-free & Green, 14-pin SOIC	
PI3C3125Q	Q	16-pin QSOP	
PI3C3125QE	Q	Pb-free & Green, 16-pin QSOP	
PI3C3125ZJE	ZJ	Pb-free & Green, 16-pin TDFN	TA
PI3C3126L	L	14-pin TSSOP	
PI3C3126LE	L	Pb-free & Green, 14-pin TSSOP	
PI3C3126W	W	14-pin SOIC	
PI3C3126WE	W	Pb-free & Green, 14-pin SOIC	
PI3C3126Q	Q	16-pin QSOP	
PI3C3126QE	Q	Pb-free & Green, 16-pin QSOP	

DOCUMENT CONTROL #: PD-2042

Notes:

- Thermal characteristics can be found on the company web site at www.pericom.com/packaging/
- E = Pb-free & Green
- Adding an X suffix = Tap Preidom Semiconductor Corporation 1-800-435-2336 www.pericom.com

07-0240 7 PS8153H 10/25/07