imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

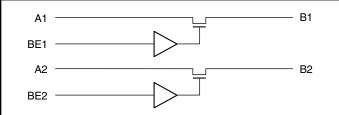
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

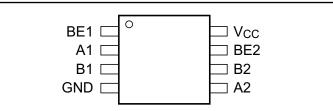
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

PI3C3305 PI3C3306

2.5V/3.3V, High-Bandwidth, Hot-Insertion, 2-Bit, 2-Port Bus Switch w/ Individual Enables


Features

- Near-Zero propagation delay
- 5Ω switches connect inputs to outputs
- High Bandwidth (>400 MHz)
- Rail-to-Rail, 3.3V or 2.5V Switching
- 5V I/O Tolerant
- 2.5V Supply Voltage Operation
- Permits Hot Insertion
- Packaging (Pb-free & Green):
- 8-pin 173-mil wide plastic TSSOP
 8-pin 118-mil wide plastic MSOP

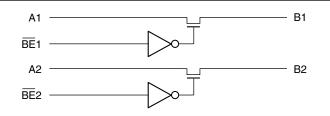

Applications

- High Bandwidth Data Switching
- · Hot Docking

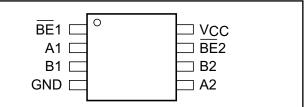
PI3C3305 Block Diagram

PI3C3305 Pin Configuration

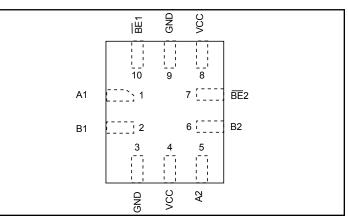
Pin Description


Pin Name	Description
BEn	Switch Enable (PI3C3305)
BEn	Switch Enable (PI3C3306)
A2-A1	Bus A
B2-B1	Bus B
V _{CC}	Power
GND	Ground

Description


Pericom Semiconductor's PI3C3305 and PI3C3306 are 2.5 volt or 3.3 volt, 2-bit bus switches designed with fast individual enables. When enabled via the associated Bus Enable (\overline{BE}) pin, the "A" pin is directly connected to the "B" pin for that particular gate. The bus switch introduces no additional propagation delay or additional ground bounce noise.

The PI3C3306 device has active LOW enables, and the PI3C3305 has active HIGH enables. It is very useful in switching signals that have high bandwidth (>400 MHz).


PI3C3306 Block Diagram

PI3C3306 8-Pin Configuration

PI3C3306 10-Contact Configuration

Truth Table⁽¹⁾

PI3C3306 BEn	PI3C3305 BEn	An	Bn	V _{CC}	Function
Х	X ⁽²⁾	Hi-Z	Hi-Z	GND	Disconnect
Н	L	Hi-Z	Hi-Z	V _{CC}	Disconnect
L	Н	Bn	An	V _{CC}	Connect

Notes:

1. H = High Voltage Level; L = Low Voltage Level; Hi-Z = High Impedance; X = Don't Care

2. A pull-up resistor should be provided for power-up protection.

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature	65°C to +150°C
Ambient Temperature with Power Applied	40°C to +85°C
Supply Voltage to Ground Potential	-0.5V to +4.6V
DC Input Voltage	-0.5V to +5.5V
DC Output Current	
Power Dissipation	

Note:

Stresses greater than those listed under MAXIMUM RAT-INGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

DC Electrical Characteristics (Over Operating Range, $T_A = -40^{\circ}C$ to $+85^{\circ}C$, $V_{CC} = 3.3V \pm 10\%$)

Parameters	Description	Test Conditions ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units
V _{IH}	Input HIGH Voltage	Guaranteed Logic HIGH Level	2.0			v
V _{IL}	Input LOW Voltage	Guaranteed Logic LOW Level	-0.5		0.8	v
I _{IH}	Input HIGH Current	$V_{CC} = Max., V_{IN} = V_{CC}$			±1	
I _{IL}	Input LOW Current	$V_{CC} = Max., V_{IN} = GND$			±1	μA
I _{OZH}	High Impedance Output Current	$0 \leq A, B \leq V_{CC}$			±1	μ
V _{IK}	Clamp Diode Voltage	$V_{CC} = Min., I_{IN} = -18mA$		-0.73	-1.2	V
Pour	Switch On Resistance ⁽³⁾	$V_{CC} = Min., V_{IN} = 0.0V, I_{ON} = 48mA \text{ or } 60mA$		5	7	Ω
R _{ON}	Switch On Resistance	$V_{CC} = Min., V_{IN} = 2.4V, I_{ON} = 15mA$		8	15	32

Notes:

1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device type.

2. Typical values are at $V_{CC} = 3.3V$, $T_A = 25^{\circ}C$ ambient and maximum loading.

3. Measured by the voltage drop between A and B pin at indicated current through the switch. On-Resistance is determined by the lower of the voltages on the two (A,B) pins.

Capacitance	$(T_A = 25^{\circ}C, f =$	= 1 MHz)
-------------	---------------------------	----------

Parameters ⁽¹⁾	Description	Test Conditions	Тур.	Units
C _{IN}	Input Capacitance		3.5	
C _{OFF}	A/B Capacitance, Switch Off	$V_{IN} = 0V$	5.0	pF
C _{ON}	A/B Capacitance, Switch On		10.0	

Notes:

1. This parameter is determined by device characterization but is not production tested.

2.5V/3.3V, High Bandwidth, Hot-Insertion, 2-Bit, 2-Port Bus Switch with Individual Enables

Power Supply Characteristics

Parameters	Description	Test Conditions ⁽¹⁾		Min.	Typ. ⁽²⁾	Max.	Units
I _{CC}	Quiescent Power Supply Current	$V_{CC} = Max.$	V_{IN} = GND or V_{CC}		260	500	
ΔI _{CC}	Supply Current per Input HIGH	V _{CC} = Max.	$V_{IN} = 3.0V^{(3)}$			750	μΑ

Notes:

1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device.

2. Typical values are at $V_{CC} = 3.3V$, $+25^{\circ}C$ ambient.

3. Per driven input (control input only); A and B pins do not contribute to ΔI_{CC} .

Switching Characteristics over 3.3V Operating Range

			3305/	3306	
Parameters	Description	Test Conditions ⁽¹⁾	Co	m	Units
			Min.	Max.	
t _{PLH} t _{PHL}	Propagation $Delay^{(2, 3)} A$ to B, B to A	$C_{L} = 50 pF$ $R_{L} = 500 \Omega$		0.25	
t _{PZH} t _{PZL}	Bus Enable Time	$C_L = 50 pF$	1.5	6.5	ns
t _{PHZ} t _{PLZ}	Bus Disable Time	$R_{L} = 500\Omega$ $R = 500\Omega$	1.5	5.5	

Notes:

1. See test circuit and waveforms.

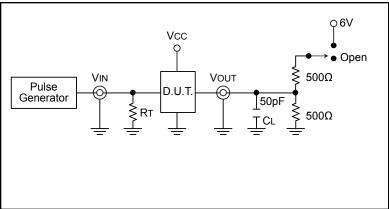
2. This parameter is guaranteed but not tested on Propagation Delays.

3. The bus switch contributes no propagational delay other than the RC delay of the On-Resistance of the switch and the load capacitance. The time constant for the switch alone is of the order of 0.25ns for 50pF load. Since this time constant is much smaller than the rise/fall times of typical driving signals, it adds very little propagational delay to the system. Propagational delay of the bus switch when used in a system is determined by the driving circuit on the driving side of the switch and its interaction with the load on the driven side.

Switching Characteristics over 2.5V Operating Range

			3305/	/3306	
Parameters	Description	Test Conditions ⁽¹⁾	Co	m	Units
			Min.	Max.	
t _{PLH} t _{PHL}	Propagation $Delay^{(2, 3)} A$ to B, B to A	$C_{L} = 50 pF$ $R_{L} = 500 \Omega$		0.25	
t _{PZH} t _{PZL}	Bus Enable Time	$C_L = 50 pF$ $R_L = 500 \Omega$	1.5	9.8	ns
t _{PHZ} t _{PLZ}	Bus Disable Time	$R = 500\Omega$	1.5	8.3	

Notes:


1. See test circuit and waveforms.

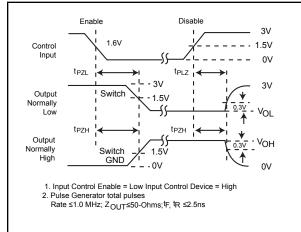
2. This parameter is guaranteed but not tested on Propagation Delays.

3. The bus switch contributes no propagational delay other than the RC delay of the On-Resistance of the switch and the load capacitance. The time constant for the switch alone is of the order of 0.25ns for 50pF load. Since this time constant is much smaller than the rise/fall times of typical driving signals, it adds very little propagational delay to the system. Propagational delay of the bus switch when used in a system is determined by the driving circuit on the driving side of the switch and its interaction with the load on the driven side.

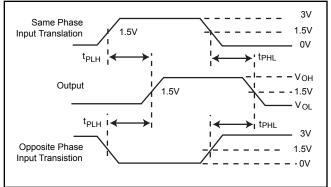
2.5V/3.3V, High Bandwidth, Hot-Insertion, 2-Bit, 2-Port Bus Switch with Individual Enables

Test Circuits

Switch Position

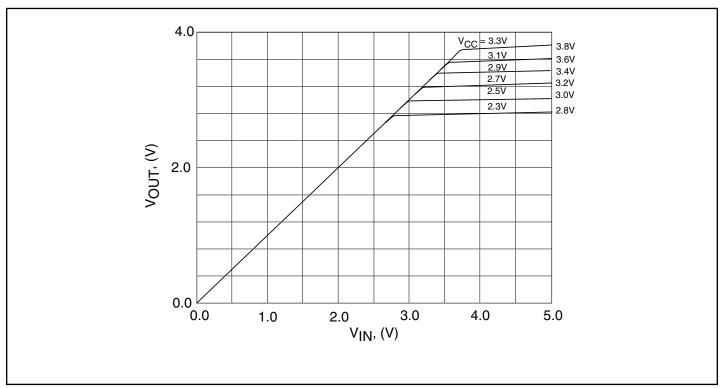

Test	Switch	
Disable LOW	6V	
Enable LOW	6V	
Disable HIGH	GND	
Enable HIGH	GND	
tPD	Open	

Definitions:


 C_L = Load capacitance (includes jig and probe capacitance)

 R_T = Termination resistance (should be equal to Z_{OUT} of the pulse generator)

Enable and Disable Timing


Propagation Delay

PERICOM[®]

PI3C3305/PI3C3306

2.5V/3.3V, High Bandwidth, Hot-Insertion, 2-Bit, 2-Port Bus Switch with Individual Enables

Output Voltage vs. Input Voltage over Various Supply Voltages

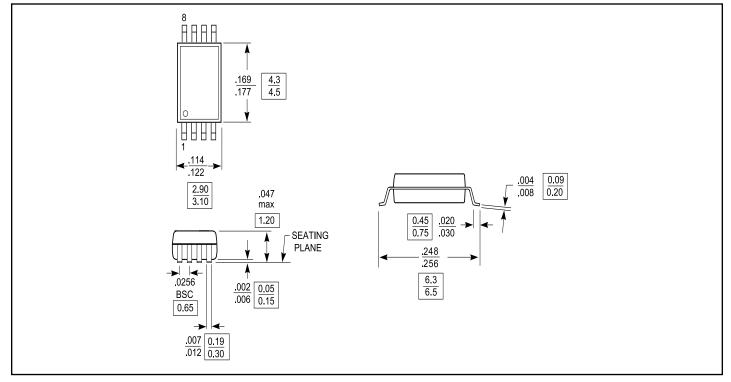
Application Information

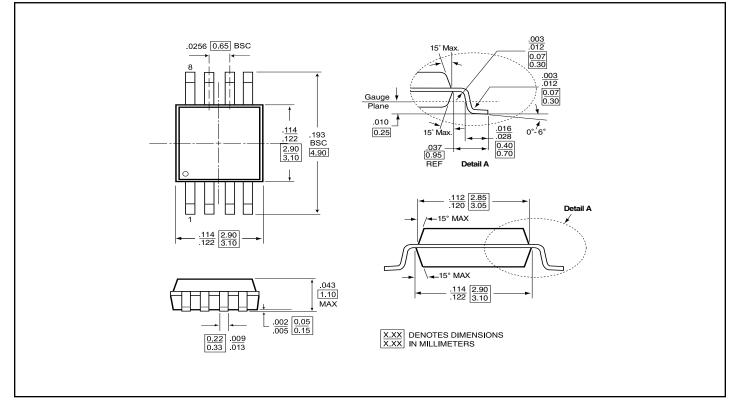
Logic Inputs

The logic control inpus can be driven up to +3.6V regardless of the supply voltage. For example, given a +3.3V supply, IN may be driven LOW to 0V and HIGH to 3.6V. Driving IN Rail-toRail[®] minimizes power consumption.

Power-Supply Sequencing

Proper power-supply sequencing is advised for all CMOS devices. It is recommended to always apply V_{CC} before applying signals to the input/output or control pins.

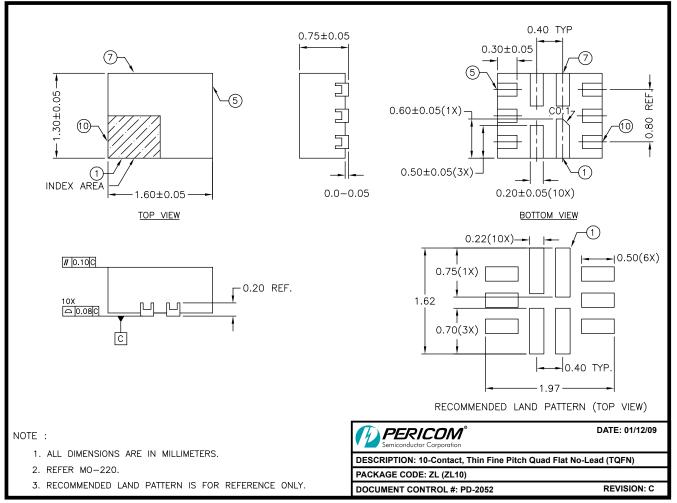

Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd.


PI3C3305/PI3C3306

2.5V/3.3V, High Bandwidth, Hot-Insertion, 2-Bit, 2-Port Bus Switch with Individual Enables

Packaging Mechanical: 8-Pin TSSOP (L)

Packaging Mechanical: 8-Pin MSOP (U)



PI3C3305/PI3C3306

PERICOM®

2.5V/3.3V, High Bandwidth, Hot-Insertion, 2-Bit, 2-Port Bus Switch with Individual Enables

Packaging Mechanical: 8-Pin MSOP (ZL)

09-0031

Ordering Information

Ordering Code	Package Code	Description
PI3C3305LE	L	Pb-free & Green, 8-pin 173-mil wide plastic TSSOP
PI3C3305UEX	U	Pb-free & Green, 8-pin 118-mil wide plastic MSOP Tape/Reel
PI3C3306LE	L	Pb-free & Green, 8-pin 173-mil wide plastic TSSOP
PI3C3306UEX	U	Pb-free & Green, 8-pin 118-mil wide plastic MSOP Tape/Reel

Notes:

• Thermal characteristics can be found on the company web site at www.pericom.com/packaging/

• E = Pb-free & Green

• Adding an X suffix = Tape/Reel

Pericom Semiconductor Corporation • 1-800-435-2336 • www.pericom.com