imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

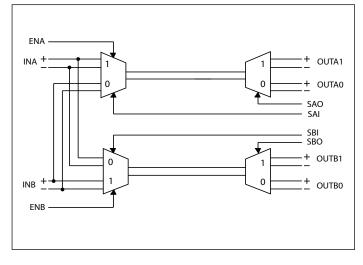
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

PI3DBS3224

3.3V High Speed 2 : 4 Differential Mux/Demux


Features

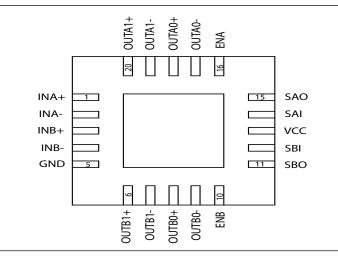
- → 2:4 Differential Multiplexer/Demultiplexer
- ➔ Bidirectional Operation
- → Can be used in
 - Single 1:4 Configuration
 - Dual 1:2 Configuration
 - Fan out 1:2 Configuration
- → High BW (1.2 GHz Typ)
- → Low RON and CON:
 - 13 Ω RON Typ
 - 9 pF CON Typ
- → ESD Performance (I/O Pins)
 - ±8-kV Contact Discharge (IEC61000-4-2)
 - 2-kV Human Body Model per JESD22-A114E (to GND)
- → ESD Performance (All Pins)
 - 2-kV Human Body Model per JESD22-A114E
- → Small QFN package (3 x 3 mm, 0.4 mm pitch)

Applications

- → Desktop/Notebooks Computers
- → DisplayPort Auxiliary Channel Multiplexing
- → USB 2.0 Multiplexing
- → Netbooks/eBooks/Tablets

Block Diagram

Description


The PI3DBS3224 is a 2:4 bidirectional multiplexer for highspeed differential and single ended signal applications (up to 720 Mbps). The PI3DBS3224 can be used in a 1:4 or dual 1:2 multiplexer/demultiplexer configuration. The PI3DBS3224 offers a high BW of 1.2 GHz with channel RON of 13 Ω (Typ).

The PI3DBS3224 can also be used to fan out a differential or single ended signal pair to two ports simultaneously (fan-out configuration). The BW performance is lower in this configuration.

The PI3DBS3224 operates with a 3 to 3.6V power supply. It features ESD protection of up to \pm 8-kV contact discharge and 2-kV Human Body Model on its I/O pins.

The PI3DBS3224 provides fail-safe protection by isolating the I/O pins with high impedance when the power supply (V_{CC}) is not present.

Pin Configuration

Pin Description

Pin #	PIN Name	І/О Туре	Description
14	SAI	Input	Control Input
15	SAO	Input	Control Input
12	SBI	Input	Control Input
11	SBO	Input	Control Input
16	ENA	Input	Enable
1	INA+	I/O	Input A
2	INA-	I/O	Input A
10	ENB	Input	Enable
3	INB+	I/O	Input B
4	INB-	I/O	Input B
9	OUTB0-	I/O	Output B0
8	OUTB0+	I/O	Output B0
7	OUTB1-	I/O	Output B1
6	OUTB1+	I/O	Output B1
5	GND	Ground	Ground
13	VCC	Power	Power Supply
17	OUTA0-	I/O	Output A0
18	OUTA0+	I/O	Output A0
19	OUTA1-	I/O	Output A1
20	OUTA1+	I/O	Output A1

Function Table

ENA, ENB	OUTA0	OUTA1	OUTB0	OUTB1
00	Hi-Z	Hi-Z	Hi-Z	Hi-Z
01	Hi-Z	Hi-Z	-	-
10	-	-	Hi-Z	Hi-Z
11	-	-	-	-

SAI, SAO, SBI, SBO	OUTA0	OUTA1	OUTB0	OUTB1
0000	INB	-	INA	-
0001	INB	-	-	INA
0010	INB	-	INB	-
0011	INB	-	-	INB
0100	-	INB	INA	-
0101	-	INB	-	INA
0110	-	INB	INB	-
0111	-	INB	-	INB
1000	INA	-	INA	-
1001	INA	-	-	INA
1010	INA	-	INB	-
1011	INA	-	-	INB
1100	-	INA	INA	-
1101	-	INA	-	INA
1110	-	INA	INB	-
1111	-	INA	-	INB

Maximum Ratings

(Above which useful life may be impaired. For user guidelines, not tested.)

Storage Temperature65°C to+155°	С
Supply Voltage to Ground Potential0.3V to+4.0	V
DC Input Voltage0.3V to+4.3	V
DC Output Current120m.	A
Power Dissipation	N

Note:

Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

DC Electrical Characteristics over Operating Range

For Single 1:4 or Dual 1:2 configurations. $T_A = -40$ °C to 85 °C, Typical values are at Vcc = 3.3V, $T_A = 25$ °C (unless otherwise noted)

Symbol	Parameter	Test Condition	Min	Тур	Max	Unit
Vik	Digital input clamp voltage	$V_{CC} = 3.6 \text{ V}, \text{ I}_{I} = -18 \text{ mA}$	-1.2	-0.9		V
I _{IN}	Digital input leakage current	$V_{CC} = 3.6 \text{ V}, V_{IN} = 0 \text{ to } 3.6 \text{ V}$			±2	μΑ
I _{OZ} ⁽³⁾		V_{cc} = 3.6 V, V_0 = 0 V to 3.6 V, V_I = 0 V, Switch OFF			±2	μΑ
Ioff	Power off leakage current	$V_{CC} = 0$ V, $V_{IN} = V_{CC}$ or GND, $V_{I/O} = 0$ V to 3.6 V			±8	μΑ
Icc	Supply current	V_{CC} = 3.6 V, $I_{I/O}$ = 0, Switch ON or OFF		70	130	μΑ
CIN	Digital input capacitance	$V_{CC} = 3.3 \text{ V}, V_{IN} = V_{CC} \text{ or } \text{GND}$		3	5	pF
CI/O(OFF)	OFF capacitance	$V_{CC} = 3.3 \text{ V}, V_{1/0} = 3.3 \text{ V} \text{ or } 0, \text{f} = 10 \text{MHz}, \text{ Switch}$ OFF		6	7	pF
CI/O(ON)	ON capacitance	$V_{CC} = 3.3 \text{ V}, V_{L/O} = 3.3 \text{ V}$ or 0, f = 10MHz, Switch ON		9	10	pF
		$V_{CC} = 3.6 \text{ V}, V_I = V_{CC}, I_O = -30 \text{ mA}$		13	19	Ω
r _{on}	ON state resistance	$V_{CC} = 3.3 \text{ V}, V_1 = 0.5 \text{ V}, I_0 = -30 \text{ mA}$		10		Ω
Δr_{on}	ON state resistance match be- tween channel	$V_{\rm CC} = 3$ V, $V_{\rm I} = 0$ to $V_{\rm CC}$, $I_{\rm O} = -30$ mA		2	2.5	Ω
ron(flat)	ON state resistance flatness	$V_{\rm CC}$ = 3 V, $V_{\rm I}$ = 1.5 V and $V_{\rm CC}, {\rm I_O}$ = -30 mA		4	6	Ω

Notes:

1. $V_{\rm IN}$ and $I_{\rm IN}$ refer to control inputs. $V_{\rm I}, V_{\rm O}, I_{\rm I}$ and $I_{\rm O}$ refer to data pins.

2. All typical values are at $V_{CC} = 3.3V$ (unless otherwise noted), $T_A = 25$ °C.

3. For I/O ports, the parameter I_{OZ} includes the input leakage current.

Dynamic Characteristics

For Single 1:4 or Dual 1:2 configurations. $T_A = -40$ °C to 85 °C, Typical values are at Vcc = $3.3V \pm 10\%$ and $T_A = 25$ °C (unless

otherwise noted)

Symbol	Parameter	Test Condition		Unit
BW	Bandwidth	$R_L = 50 \Omega$, Switch ON	1.2	GHz
O _{ISO}	OFF Isolation	$R_L = 50 \Omega$, $f = 250 MH_Z$	-30	dB
X _{TALK}	Crosstalk	$R_L = 50 \Omega$, $f = 250 MH_Z$	-35	dB

Switching Characteristics

For Single 1:4 or Dual 1:2 configurations. Over operating range, $T_A = -40$ °C to 85 °C, Vcc = 3.3V ± 10%, GND = 0 V (unless otherwise noted)

Symbol	Parameter	Test Condition	Min	Тур	Max	Unit
$t_{pd}^{(1)}$		$R_L = 50 \Omega, C_L = 2 pF$		50		ps
t _{on}	SAI/SAO/SBI/SBO to OUTAx/OUTBx	$R_L = 50 \Omega, C_L = 2 pF$		40	100	ns
t _{OFF}	SAI/SAO/SBI/SBO to OUTAx/OUTBx	$R_L = 50 \Omega, C_L = 2 pF$		20	30	ns
t _{sk(0)} (2)		$R_L = 50 \Omega, C_L = 2 pF$		40		ps
t _{sk(p)} ⁽³⁾		$R_{\rm L} = 50 \ \Omega, \ C_{\rm L} = 2 \ pF$		40		ps

Notes:

1. The propagation delay is the calculated RC time constant of the typical ON-State resistance of the switch and the specified load capacitance when driven by an ideal voltage source (zero output impedance).

2. Output skew between center channel and any other channel.

3. Skew between opposite transitions of the same output ($|t_{PHL}$ - $t_{PLH}|$).

DC Electrical Characteristics over Operating Range

For fan-out 1:2 configurations. $T_A = -40$ °C to 85 °C, Typical values are at Vcc = 3.3V, $T_A = 25$ °C (unless otherwise noted)

Symbol	Parameter	Test Condition	Min	Тур	Max	Unit
VIK	Digital input clamp voltage	$V_{CC} = 3.6 \text{ V}, I_I = -18 \text{ mA}$	-1.2	-0.9		V
I _{IN}	Digital input leakage current	V_{CC} = 3.6 V, V_{IN} =0 to 3.6 V			±2	μΑ
I _{OZ} ⁽³⁾		V_{cc} = 3.6 V, V_0 = 0 V to 3.6 V, V_1 = 0 V, Switch OFF			±2	μΑ
Ioff	Power off leakage current	$V_{CC} = 0$ V, $V_{IN} = V_{CC}$ or GND, $V_{I/O} = 0$ V to 3.6 V			±8	μΑ
Icc	Supply current	V_{CC} = 3.6 V, $I_{I/O}$ = 0, Switch ON or OFF		70	130	μΑ
CIN	Digital input capacitance	$V_{CC} = 3.3 \text{ V}, V_{IN} = V_{CC} \text{ or } \text{GND}$		3	5	pF
C1/O(OFF)	OFF capacitance	V_{CC} = 3.3 V, $V_{L/O}$ = 3.3V or 0, f = 10MHz, Switch OFF		6	7	pF
CI/O(ON)	ON capacitance	V_{CC} = 3.3 V, $V_{L/O}$ = 3.3V or 0, f = 10MHz, Switch ON		12	13	pF
r _{on}	ON state resistance	$V_{CC} = 3.6 \text{ V}, V_{I} = V_{CC}, I_{O} = -30 \text{ mA}$		13	19	Ω
Δr_{on}	ON state resistance match between channel	$V_{CC} = 3 V$, $V_I = 0$ to V_{CC} , $I_0 = -30 mA$		2	2.5	Ω
r _{on(flat)}	ON state resistance flatness	$V_{\rm CC}{=}\;3$ V, $V_{\rm I}{=}\;1.5$ V and $V_{\rm CC},$ Io = -30 mA		4	6	Ω

Notes:

 $1. \qquad V_{IN} \text{ and } I_{IN} \text{ refer to control inputs. } V_{I}, V_{O}, I_{I} \text{ and } I_{O} \text{ refer to data pins.}$

2. All typical values are at $V_{CC} = 3.3V$ (unless otherwise noted), $T_A = 25$ °C.

3. For I/O ports, the parameter I_{OZ} includes the input leakage current.

Dynamic Characteristics

For fan-out 1:2 configurations. $T_A = -40$ °C to 85 °C, Typical values are at Vcc = 3.3V \pm 10% and $T_A = 25$ °C (unless otherwise noted)

Symbol	Parameter	Test Condition	Тур	Unit
BW	Bandwidth	$R_L = 50 \Omega$, Switch ON	500	MHz
O _{ISO}	OFF Isolation	$R_L = 50 \Omega$, $f = 250 MH_Z$	-30	dB
X _{TALK}	Crosstalk	$R_L = 50 \Omega$, $f = 250 MHz$	-35	dB

Switching Characteristics

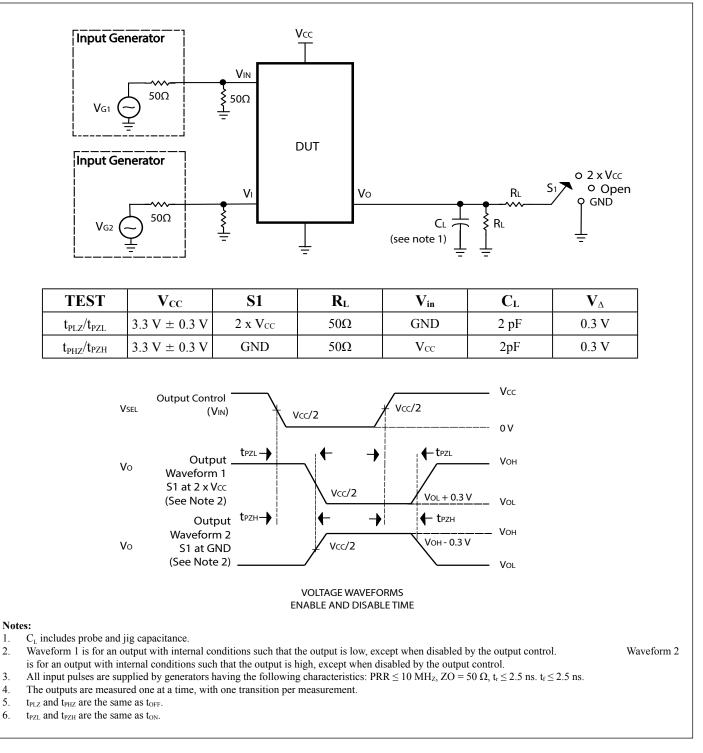
For fan-out 1:2 configuration. Over operating range, $T_A = -40$ °C to 85 °C, Vcc = 3.3V \pm 10%, GND = 0 V (unless otherwise noted)

Symbol	Parameter	Test Condition	Min	Тур	Max	Unit
$t_{pd}^{(1)}$		$R_L = 50 \Omega, C_L = 2 pF$		140		ps
t _{on}	SAI/SAO/SBI/SBO to OUTAx/OUTBx	$R = 50 \Omega, C_L = 2 pF$		40	100	ns
t _{OFF}	SAI/SAO/SBI/SBO to OUTAx/OUTBx	$R_{LL} = 50 \ \Omega, \ C_L = 2 \ pF$		20	30	ns
t _{sk(o)} (2)		$R_L = 50 \Omega, C_L = 2 pF$		60		ps
$t_{sk(p)}^{(3)}$		$R_{\rm L} = 50 \ \Omega, \ C_{\rm L} = 2 \ pF$		60		ps

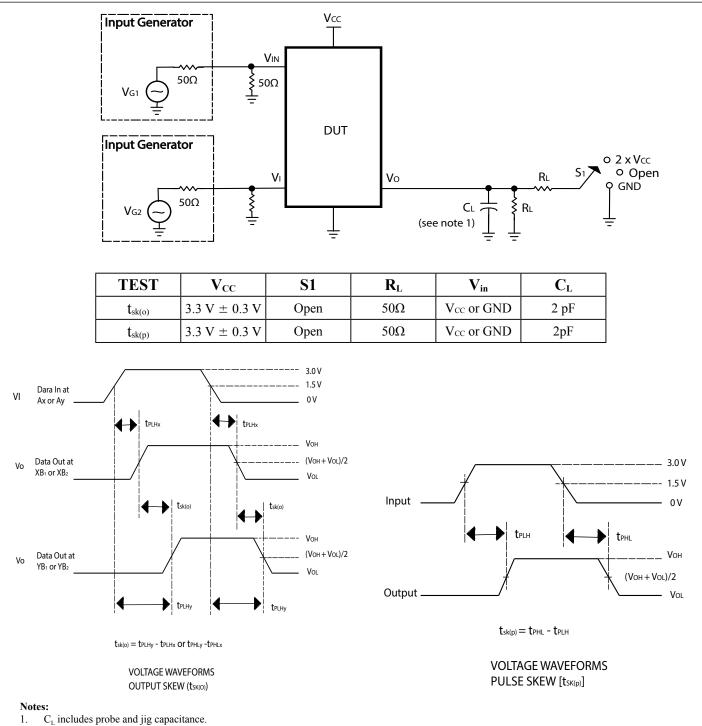
Notes:

1. The propagation delay is the calculated RC time constant of the typical ON-State resistance of the switch and the specified load capacitance when driven by an ideal voltage source (zero output impedance).

2. Output skew between center channel and any other channel.

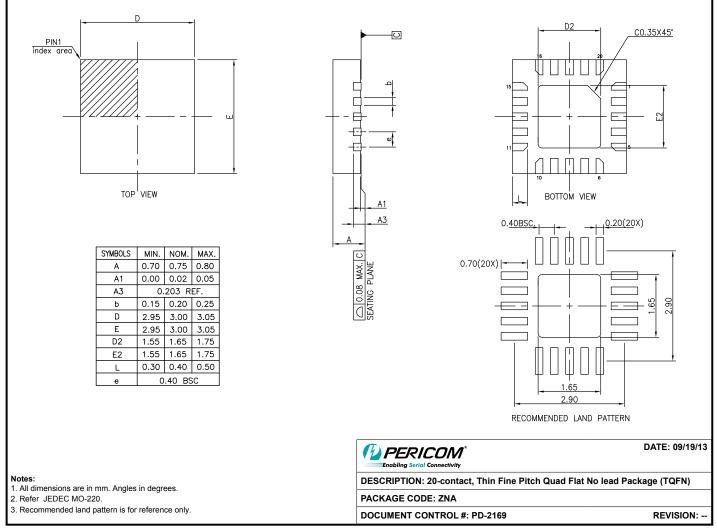

3. Skew between opposite transitions of the same output ($|t_{PHL} - t_{PLH}|$).

DC Electrical Characteristics over Operating Range


 T_A = -40 °C to 85 °C, Typical values are at Vcc = 3.3V, T_A = 25 °C

Symbol	Parameter	Test Condition	Min	Тур	Max	Unit
VIO	Analog I/O voltage		0		Vcc	V
VIH	High level input control voltage	ENx, SAx, SBx Pins	0.75Vcc		Vcc	V
VIL	Low level input control voltage	ENx, SAx, SBx Pins	0		0.6	V
Vcc	Supply voltage		3.0		3.6	V

Test Circuit For Electrical Characteristics



- 2. All input pulses are supplied by generators having the following characteristics: $PRR \le 10 \text{ MH}_Z$, $ZO = 50 \Omega$, $t_r \le 2.5 \text{ ns.} t_f \le 2.5 \text{ ns.}$
- 3. The outputs are measured one at a time, with one transition per measurement.

13-0240

Ordering Information

Ordering Code	Packaging Code	Package Description
PI3DBS3224ZNAE	ZNA	20-contact, Thin Fine Pitch Quad Flat No Lead Package (TQFN)

Notes:

- Thermal characteristics can be found on the company web site at www.pericom.com/packaging/
- "E" denotes Pb-free and Green
- Adding an "X" at the end of the ordering code denotes tape and reel packaging

Pericom Semiconductor Corporation • 1-800-435-2336 • www.pericom.com