: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

1.8/3.3V High-Bandwidth 6-channel, 2:1 Mux/DeMux with switched Pull-ups

Description

The PI3G612 is a 3-port, 6-channel, 1:2 multiplexer/demultiplexer. It features switched 100 K -Ohm active pull-ups on output ports A and B to prevent disconnected floating signals and thereby reduce system noise and power. The Y port can be connected to either the A or B ports, or alternatively both ports can be isolated, disconnected, or all connected. When the EP pin is low, the pull-up transistors are off. When EP is high, the pull-up transistors are on. If EP is not connected, an internal pull-down will turn the pull-up off. If pullups are not used, EP should be connected to ground. The PI3G612 has a wide operating voltage range, very low power consumption and small packaging suitable for mobile, and handheld equipment.

Block Diagram

Applications

- Memory card switching
- Photo printers
- Mobile devices

Pin Configuration (Top-side view)

Pin Description

Pin Name	Description
$\mathrm{A}_{\mathrm{X}}, \mathrm{B}_{\mathrm{X}}, \mathrm{Y}_{\mathrm{X}}$	Data I/O
SA, SB	Channel Select Inputs
EP	Pull-ups Enable
GND	Ground
V_{DD}	Power

Truth Table

Control Inputs			Switch State ${ }^{1}$		Pullup State	Function ${ }^{2}$
EP	SB	SA	Bx	Ax		
0	0	0	Open	Open	Off	Y, A, B all disconnected and Hi-Z
0	0	1	Open	Closed	Off	$\mathrm{Y}=\mathrm{A}, \mathrm{B}=\mathrm{Hi}-\mathrm{Z}$
0	1	0	Closed	Open	Off	$\mathrm{Y}=\mathrm{B}, \mathrm{A}=\mathrm{Hi}-\mathrm{Z}$
0	1	1	Closed	Closed	Off	$\mathrm{Y}=\mathrm{A}=\mathrm{B}$
1	0	0	Open	Open	On	$\mathrm{Y}, \mathrm{A}, \mathrm{B}$ all disconnected; $\mathrm{Y}=\mathrm{Hi}-\mathrm{Z}$; $\mathrm{A} \& \mathrm{~B}$ pull to $V_{D D}$
1	0	1	Open	Closed	On	$\mathrm{Y}=\mathrm{A} ; \mathrm{A} \& \mathrm{~B}$ pull toV DD
1	1	0	Closed	Open	On	$\mathrm{Y}=\mathrm{B}$; A\& B pull to V_{DD}
1	1	1	Closed	Closed	On	$\mathrm{Y}=\mathrm{A}=\mathrm{B}$; A \& B pull to V_{DD}

Notes:

1. For the group of 6 transistor switches connecting to the Ax or Bx signals.
2. Function for stand-alone device (no other signal source connected)

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)
Storage Temperature .. $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with Power Applied $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential -0.5 V to +4.6 V
DC Input Voltage .. -0.5 V to +6.0 V
DC Output Current.. 120 mA
Power Dissipation.. 0.5 W

Note:
Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

DC Electrical Characteristics, 3.3V Supply (Over the Operating Range, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V} \pm 10 \%$)

Parameters	Description	Test Conditions ${ }^{(1)}$	Min.	Typ ${ }^{(2)}$	Max.	Units
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage	Guaranteed Logic HIGH Level	2.0			V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	Guaranteed Logic LOW Level	-0.5		0.8	
$\mathrm{V}_{\text {IK }}$	Clamp Diode Voltage	$\mathrm{V}_{\mathrm{DD}}=$ Min., $\mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$		-0.75	-1.2	
I_{IH}	Input HIGH Current	$\mathrm{V}_{\mathrm{DD}}=$ Max., $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{DD}}$			± 1	$\mu \mathrm{A}$
IIL	Input LOW Current	$\mathrm{V}_{\mathrm{DD}}=$ Max., $\mathrm{V}_{\text {IN }}=\mathrm{GND}$			± 1	
IOZH	High Impedance Output Current	$0 \leq \mathrm{Y}, \mathrm{In} \leq \mathrm{V}_{\mathrm{DD}}$			± 25	
R_{ON}	Switch On-Resistance ${ }^{(3)}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=\mathrm{Min} ., \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{ON}}=24 \mathrm{~mA} \end{aligned}$		2	3.3	Ohm
		$\mathrm{V}_{\mathrm{DD}}=$ Min., $\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}, \mathrm{I}_{\mathrm{ON}}=12 \mathrm{~mA}$		2.6	4.3	

DC Electrical Characteristics, 1.8V Supply (Over Operating Range, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V} \pm 10 \%$)

Parameters ${ }^{(4)}$	Description	Test Conditions ${ }^{(1)}$	Min.	Typ. ${ }^{(2)}$	Max.	Units
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage	Guaranteed Logic HIGH Level	1.1	-	$\mathrm{V}_{\mathrm{DD}}+0.3$	V
$\mathrm{V}_{\text {IL }}$	Inout LOW Voltage	Guaranteed Logic LOW Level	-0.3	-	0.5	
$\mathrm{V}_{\text {IK }}$	Clamp Diode Voltage	$\mathrm{V}_{\mathrm{DD}}=$ Max., $\mathrm{I}_{\text {IN }}=-6 \mathrm{~mA}$	-	-0.7	-1.8	
I_{IH}	Input HIGH Current	$\mathrm{V}_{\mathrm{DD}}=$ Max., $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {DD }}$	-	-	± 1	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Input LOW Current	$\mathrm{V}_{\mathrm{DD}}=$ Max., $\mathrm{V}_{\text {IN }}=$ GND	-	-	± 1	
IOZH	High Impedance Current	$0 \leq \mathrm{Y}, \mathrm{In} \leq \mathrm{V}_{\mathrm{DD}}$	-	-	± 10	
R_{ON}	Switch On-Resistance ${ }^{(3)}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{ON}}=24 \mathrm{~mA} \end{aligned}$	-	2.6	4	Ohm
		$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=1.3 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{ON}}=12 \mathrm{~mA} \end{aligned}$	-	5.5	8	

[^0]Capacitance $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ f $=1 \mathrm{MHz}$)

Parameters	Description	Test Conditions	Typ.	Units
C_{IN}	Input Capacitance (Control)		2	
$\mathrm{C}_{\mathrm{OFF}(\mathrm{IN})}$	In Capacitance, Switch Off	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$	pF	
C_{ON}	In Capacitance, Switch On		4	

Power Supply Characteristics

Parameters	Description	Test Conditions ${ }^{(1)}$	Min.	Typ.	Max.	Units
I_{CC}	Quiescent Power Supply Current Vcontrol (EP, SB, SA) = GND or $V_{D D}$	$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$			120	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V}$			10	

Notes:

1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device.

Dynamic Electrical Characteristics Over the Operating Range ($\mathrm{T}_{\mathrm{A}}=-40^{\circ}$ to $+85^{\circ}, \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V} \pm 10 \%$)

Parameter	Description	Test Condition	Min.	Typ.	Max.	Units
BW	-3 dB Bandwidth	See Test Diagram $\left(\mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}\right)$		400		MHz

Switching Characteristics over 3.3V Operating Range

Parameters	Description	Conditions ${ }^{(1)}$	Min.	Max.	Units
$\begin{array}{r} \mathrm{t}_{\mathrm{PLH}} \\ \mathrm{t}_{\mathrm{PHLL}} \\ \hline \end{array}$	Propagation Delay ${ }^{(2,3)}$ Y to (A or B), (A or B) to Y	See Test Diagram		0.3	ns
$\begin{aligned} & \text { tPZH } \\ & \text { tpZL }^{2} \end{aligned}$	Enable Time S to (Y, A or B)	See Test Diagram	1.5	10	
$\begin{array}{r} \text { tpHZ } \\ \text { tpLZ } \\ \hline \end{array}$	Disable Time S to (Y, A or B)		1.5	10	

Switching Characteristics over 1.8V Operating Range

Parameters	Description	Conditions ${ }^{(1)}$	Min.	Max.	Units
$t_{\text {PLH }}$ tpHL	Propagation Delay ${ }^{(2,3)} \mathrm{Y}$ to (A, or B), or (A, or B) to Y	See Test Diagram		0.3	ns
tpZH tPZL	Enable Time S to (Y, A, or B)	See Test Diagram	1.5	25.0	
$\begin{aligned} & \text { tPHZ } \\ & \text { tpLZ }^{2} \end{aligned}$	Disable Time S to (Y, A, or B)		1.5	25.0	

Notes:

1. See test circuit and waveforms.
2. This parameter is guaranteed but not tested on Propagation Delays.
3. The switch contributes no propagational delay other than the RC delay of the On-Resistance of the switch and the load capacitance. The time constant for the switch alone is of the order of 0.30 ns for 10 pF load. Since this time constant is much smaller than the rise/fall times of typical driving signals, it adds very little propagational delay to the system. Propagational delay of the switch when used in a system is determined by the driving circuit on the driving side of the switch and its interaction with the load on the driven side.

Test Circuit for Electrical Characteristics ${ }^{(1-5)}$

Notes:

1. $\mathrm{C}_{\mathrm{L}}=$ Load capacitance: includes jig and probe capacitance.
2. $\quad \mathrm{R}_{\mathrm{T}}=$ Termination resistance: should be equal to $\mathrm{Z}_{\mathrm{OUT}}$ of the Pulse Generator
3. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
4. All input impulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{R}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{F}} \leq 2.5 \mathrm{~ns}$.
5. The outputs are measured one at a time with one transition per measurement.

Switching Waveforms

Voltage Waveforms Enable and Disable Times

Pulse Skew - $\mathbf{t S K}_{\text {SK }}$ (p)

Switch Positions

Test	Switch
t PLZ t $_{\text {PZL }}$	$2 \times \mathrm{V}_{\text {DD }}$
t $_{\text {PHZ }}, \mathrm{t}_{\text {PZH }}$	GND
Prop Delay	Open

Test Circuit for Dynamic Electrical Characteristics

Applications Information

Logic Inputs

The logic control inputs can be driven up to 3.6 V regardless of the supply voltage. For example, given a +3.3 V supply, SA or SB maybe driven LOW to 0 V and HIGH to 3.6 V . Driving SA or SB Rail-to-Rail ${ }^{\circledR}$ minimizes power consumption.

Packaging Mechanical: 28-pin TQFN (ZH)
NOTE :

1. ALL DIMENSIONS ARE IN mm . ANGLES IN DEGREES.
2. COPLANARITY APPLIES TO THE EXPOSED THERMAL PAD AS WELL AS THE TERMINALS.
3. REFER JEDEC MO-22O
4. RECOMMENDED LAND PATtERN IS FOR REFERENCE ONLY.
5. THERMAL PAD SOLDERING AREA (MESH STENCIL DESIGN IS RECOMMENDED).

(4)	DATE: 07/11/12
DESCRIPTION: 28-Contact, Very Thin Quad Flat No-Lead, TQFN	
PACKAGE CODE: ZH28	
DOCUMENT CONTROL \#: PD-2034	REVISION: C

Note: For latest package info, please check: http://www.pericom.com/products/packaging/mechanicals.php

Ordering Information

Ordering Code	Package Code	Package Description
PI3G612ZHE	ZH	28-contact, Very Thin Quad Flat No-Lead (TQFN)

Notes:

- Thermal characteristics can be found on the company web site at www.pericom.com/packaging/
- $\mathrm{E}=\mathrm{Pb}$-free and Green
- X suffix $=$ Tape/Reel

[^0]: Notes:

 1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device type.
 2. Typical values are at nominal $\mathrm{V}_{\mathrm{DD}}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ ambient and maximum loading.
 3. Measured by the voltage drop between Y and In pin at indicated current through the switch. On-Resistance is determined by the lower of the voltages on the two (Y, In) pins.
 4. This parameter is determined by device characterization but is not production tested.
