imall

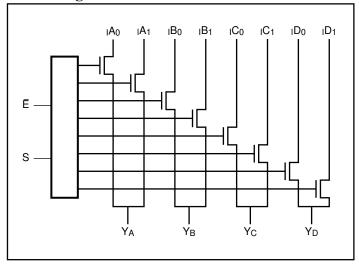
Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China


PI3L100

3.3V, Wide Bandwidth, Quad 2:1 Mux/DeMux LAN Switch

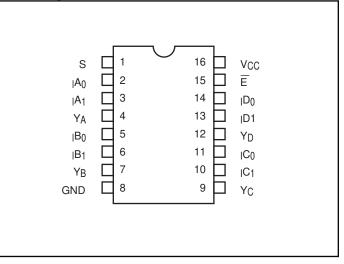
Features

- Replaces Mechanical Relays
- High-performance, Low-cost Solution for switching between Different LAN Signals
- Ultra-low Quiescent Power (0.1µA typical)
- Low Crosstalk: -100dB @ 10 MHz
- Low Insertion Loss or On-Resistance: 5 typical
- Single Supply Operation: $3.3V \pm 10\%$
- Off Isolation: -50dB @ 10 MHz
- Wide-bandwidth data rates >200 MHz
- Packaging (Pb-free & Green available):
 16-pin 150 mil wide plastic QSOP (Q)
 - 16-pin 173 mil wide plastic TSSOP (L)

Block Diagram

Truth Table⁽¹⁾

Ē	S	YA	YB	YC	YD	Function
Н	Х	Hi-Z	Hi-Z	Hi-Z	Hi-Z	Disable
L	L	IA0	IB0	_O C ₀	ID0	S = 0
L	Н	$_{I}A_{1}$	IB1	_I C ₁	_I D ₁	S = 1


Note:

1. H = High Voltage Level, L = Low Voltage Level

Description

Pericom Semiconductor's PI3L100 is a Quad 2:1 multiplexer/ demultiplexer LanSwitch with three-state outputs. This device can be used for switching between various standards, such as 10 Base-T and 100 Base-T. Generally, this part can be used to replace mechanical relays in low voltage LAN applications that have physical layer, unshielded twisted pair media (UTP) with either CAT 3 or CAT 5 grade cable.

Pin Configuration

Pin Description

Pin Name	Description
IAn-IDn	Data Inputs
S	Select Inputs
Ē	Enable
YA-YD	Data Outputs
GND	Ground
V _{CC}	Power

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature65°C to +150°C
Ambient Temperature with Power Applied0°C to +70°C
Supply Voltage to Ground Potential (Inputs & Vcc Only) –0.5V to +4.6V
Supply Voltage to Ground Potential (Outputs & D/O Only) -0.5V to +4.6V
DC Input Voltage0.5V to +4.6V
DC Output Current
Power Dissipation

Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Note:

DC Electrical Characteristics (Over the Operating Range, $T_A = -40^{\circ}$ C to $+85^{\circ}$ C, $V_{CC} = 3.3V \pm 5\%$)

Parameters	Description	Test Conditions ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units
V _{IH}	Input HIGH Voltage	Guaranteed Logic HIGH Level	2.0			v
V _{IL}	Input LOW Voltage	t LOW Voltage Guaranteed Logic LOW Level -0.5			0.8	v
I _{IH}	Input HIGH Current	$V_{CC} = Max., V_{IN} = V_{CC}$			±1	
I _{IL}	Input LOW Current	$V_{CC} = Max., V_{IN} = GND$			±1	μΑ
I _{OZH}	High Impedance Output Current	$0 \leq A, B \leq V_{CC}$			±1	
V _{IK}	Clamp Diode Voltage	$V_{CC} = Min., I_{IN} = -18mA$			-1.2	V
I _{OS}	Short Circut Current ⁽³⁾	$A(B) = 0V, B(A) = V_{CC}$	100			mA
V _H	Input Hysteresis atr Control Pins			150		mV
Dava	Switch On-Resistance	$V_{CC} = Min., V_{IN} = 0V, I_{ON} = 48mA$		5	7	
R _{ON}	Switch On-Kesistance	$V_{CC} = Min., V_{IN} = 2.4, I_{ON} = 15mA$		10	15	Ω
ΔR_{ON}	On-Resistance Match	$V_{\rm IN} = 3.0V, \ \overline{\rm E} = \rm LOW$		1		

Notes:

1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for applicable device type.

2. Typical values are at $V_{CC} = 3.3V$, $T_A = 25^{\circ}C$ ambient temperature.

3. Not more than one output should be shorted at one time. Duration of the test should not exceed one second.

Capacitance ($T_A = 25^{\circ}C$, f = 1 MHz)

Parameters ⁽¹⁾	Description	Test Conditions	Тур.	Max.	Units
C _{IN}	Input Capacitance		-	3	
C _{OFF}	Capacitance, Switch Off (Y)	- 1 ¹		17	pF
C _{ON}	Capacitance, Switch On	$V_{IN} = 0V$	-	25	рг
C _{OFF}	Capacitance, Switch Off, (I _N)		-	8	

Note:

1. This parameter is determined by device characterization but is not production tested.

Power Supply Characteristics

Parameters	Description	Test Condidtions ⁽¹⁾		Min.	Typ. ⁽²⁾	Max.	Units
I _{CC}	Quisecent Power Supply Current	$V_{CC} = Max.$	$V_{IN} = GND \text{ or}$ V_{CC}		0.1	3.0	μA
ΔI _{CC}	Supply Current per Input @ TTL HIGH	$V_{CC} = Max.$	$V_{\rm IN} = V_{\rm CC}$ -0.6			750	μA
I _{CCD}	Supply Current per Input per MHz ⁽¹⁾	$V_{CC} = Max.,$ Input Pins Open $\overline{E} = GND$ Control Input Toggling 50% Duty Cycle				0.25	mA/ MHZ

Notes:

1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device.

2. Typical values are at $V_{CC} = 3.3V$, $+25^{\circ}C$ ambient.

3. Per TTL driven input (V_{IN} = 3.0V, control inputs only); A and B pins do not contribute to I_{CC}.

4. This current applies to the control inputs only and represent the current required to switch internal capacitance at the specified frequency. The A and B inputs generate no significant AC or DC currents as they transition. This parameter is not tested, but is guaranteed by design.

Switching Characteristics over Operating Range

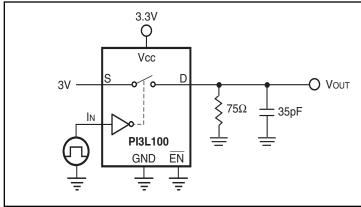
Paramters	Description	Conditions ⁽¹⁾	Com.			Units
Paramers	Description	Conditions	Min.	Тур.	Max.	Units
T _{PLH}	Propagation $Delay^{(2, 3)}$; In to Y				0.25	
T _{PY}	Bus Enable Time; S to Y	$C_L = 50 pf$	1		4.5	ns
T _{PHZ} T _{PLZ}	Bus Disable Time; \overline{E} to Y	$R_L = 500\Omega$	1		4.5	115
X _{TALK}	Crosstalk	R_L = 100 Ω ; f = 30MHz See Figure 2		-90		dB
O _{IRR}	Off Isolation	R_{L} = 100 Ω ; f = 30MHz		-45		
B _W	-3dB Bandwidth	R_L = 100 Ω ; See Figure 2		213		MHz
t _{ON}	Turn On Time	$R_L = 100\Omega$	1.0		5	ng
t _{OFF}	Turn Off Time	$C_L = 35 pF$, See Figure 1	1.0		5	ns

Notes:

1. See test circuit and waveforms.

2. This parameter is guaranteed but not tested.

3. The bus switch contributes no propagational delay other than the RC delay of the On-Resistance of the switch and the load capacitance. The time constant for the switch alone is of the order of 0.25ns for 50pF load. Since this time constant is much smaller than the rise/fall times of typical driving signals, it adds very little propagational delay to the system. Propagational delay of the bus switch when used in a system is determined by the driving circuit on the driving side of the switch and its interaction with the load on the driven side.

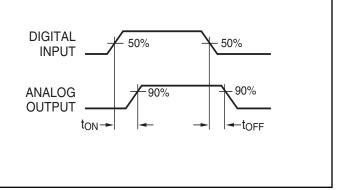

Applications

LAN Switch

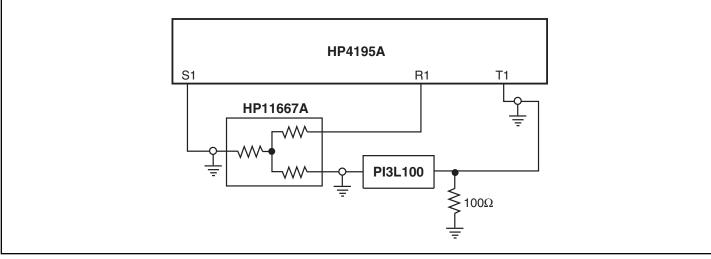
The PI3L100 was designed to switch between various standards such as 10 Base-T, 100 Base-T, 100 VG-Any LAN, and Token Ring. Also general purpose applications such as loopback, line termination, and line clamps that might normally use mechanical relays are also ideal uses for this LAN Switch (see Figure 4). Generally speaking, this LAN Switch can be used for data rates to 200 Mbps and data signal levels from 0V to 3.6V.

LAN Standards	Data Rate per twisted pair (UTP)
10 Base-T	10 Mbps
100 Base-T	100 Mbps
100 VG-Any LAN	25 Mbps

Test Circuits



V_{CC} Bias Voltage vs. R_{ON}


To keep R_{ON} to a minimum, it is recommended that the V_{CC} voltage be increased to a voltage between 3.3V and 3.6V. Ideally an input voltage between 0.2V and 3.6V will keep R_{ON} flat.

Signal Distortion

Distortion of the input signal is equated to 20 LOG $\Delta R_{ON}/R_L$. So keeping R_{ON} flat as the data signal level varies is critical to low distortion. It should also be noted that increasing the data rate increases harmonic distortion which also effects the signal amplitude.

Figure 1. Switching Time

Figure 2. Gain/Phase Crosstalk, Off Isolation

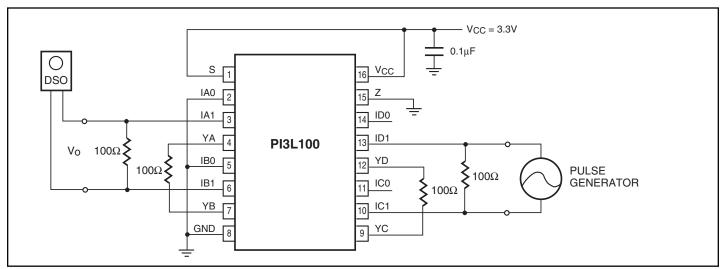


Figure 3. Differential Crosstalk Measurement

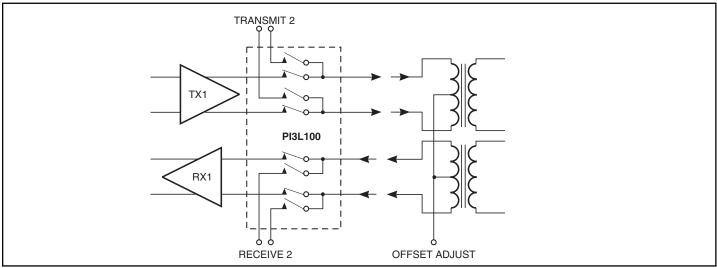


Figure 4a. Full Duplex Transceiver

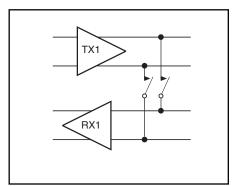
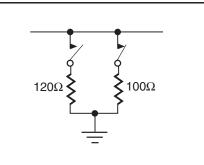
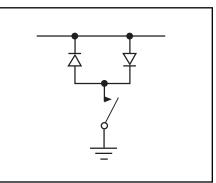
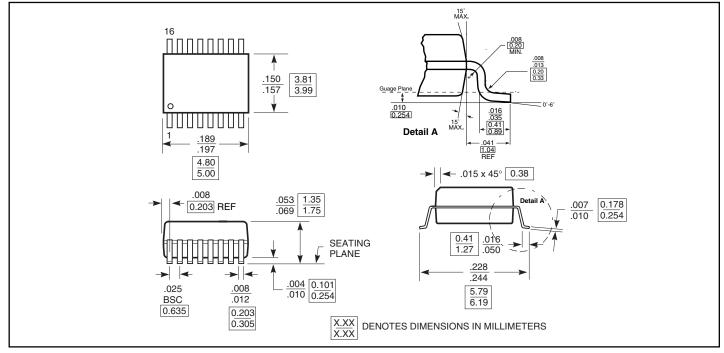
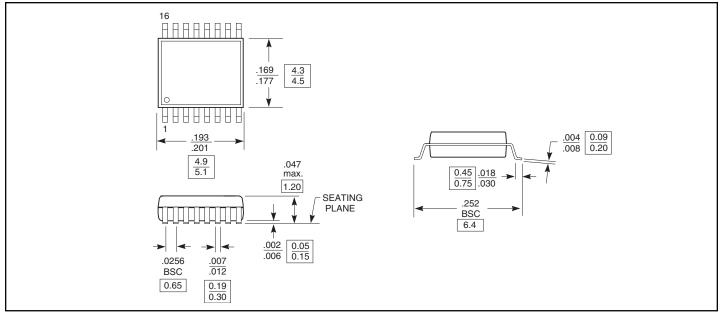



Figure 4b. Loop Back


Figure 4d. Line Clamp

Packaging Mechanical: 16-pin QSOP (Q)

Packaging Mechanical: 16-pin TSSOP (L)

Ordering Information

Ordering Code	Packaging Code	Package Description
PI3L100Q	Q	16-pin 150 mil wide plastic QSOP
PI3L100QE	Q	Pb-free & Green, 16-pin 150-mil wide plastic QSOP
PI3L100L	L	16-pin 173 mil wide plastic TSSOP
PI3L100LE	L	Pb-free & Green, 16-pin 173-mil wide plastic TSSOP

Notes:

1. Thermal characteristics can be found on the company web site at www.pericom.com/packaging/mechanicals.php

Pericom Semiconductor Corporation • 1-800-435-2336 • www.pericom.com